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Abstract: In this work, a virtual sensor for PM10 concentration monitoring is presented. The sensor
is based on wavenet models and uses daily mean NO2 concentration and meteorological variables
(wind speed and rainfall) as input. The methodology has been applied to the reconstruction of
PM10 levels measured from 14 monitoring stations in Lombardy region (Italy). This region, usually
affected by high levels of PM10, is a challenging benchmarking area for the implemented sensors.
Neverthless, the performances are good with relatively low bias and high correlation.

Keywords: virtual sensors; wavenet; air quality

1. Introduction

Exposure to high levels of particulate matter (PM10) is a big social problem [1] due
to its impacts on human health, with effects including pulmonary and cardio-vascular
diseases [2,3]. One of the main challenges in decision making related to PM10 control is
that, usually, win–win solutions that also consider other pollutants, such as nitrogen oxides
(NO2) and ozone (O3), are complex to identify and implement [4–7]. For this reason, having
detailed information about the level of all of the significant air pollutants over a certain
area is a key issue in decision-making processes. In this context, the use of integrated
information coming from regional networks and novel/private networks supported by
low-cost technology [8,9] has become more and more important, which has been mainly
due to the fact that they can provide suitable information for chemical transport models
(CTMs), allowing them to compute concentrations far away from the official monitoring
network stations [10–12].

In principle, four main techniques for the measurement of PM10 are presented in
literature [13]: (1) gravimetric analysis of pumped and filtered particles; (2) tapering
element oscillating microbalance (TEOM); (3) beta-attenuation; (4) light scattering. The first
three of these techniques are quite expensive, so their use is limited to regional authorities,
private companies and research groups [13]. Light scattering, instead, is a relatively low-
cost technique, but it is often affected by consistent biases [14].

The objective of this work is to evaluate the possibility of implementing a virtual
sensor for PM10 daily mean concentration starting from the data measured by sensors
detecting other pollutants and meteorological variables. In particular, the virtual sensors
applied in this work are based on NO2 daily mean concentration and meteorological
variables, such as wind speed, rainfall, relative humidity and temperature.

As indicated by the name, virtual sensors can be broadly described as a software
that allows us to compute the value of a certain variable without direct measurement
considering measurements that are physically/chemically related to the variable that
should be reproduced [15]. They assume a key role when it is not possible to place a
physical sensor due to any kind of limitations (e.g., unreachable position, high cost). There
are two possible approaches to virtual sensor implementation:
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1. Data-driven: in this approach, time series of input and output variables are collected
from direct measurement and are used to compute a mathematical, approximated
relationship between the measured variables’ and sensors’ output [16];

2. Deterministic: in this approach, the (eventually approximated) physical/chemical
relationships among input and output variables are used to compute the unmeasured
variable through the virtual sensor [17].

This work presents a data-driven approach based on wavenet models to implement
a PM10 virtual sensor using NO2 and meteorological variables. All these variables are
strictly related to the phenomena involved in the formation and accumulation of PM10 in
atmosphere; their choice is due to the presence in the literature of low-cost sensors with
performances that are adequate [18] enough to identify a virtual sensor, therefore allowing
the definition of a low-cost PM10 measuring network. Wavenets are data-driven models
resulting from the integration of wavelet theory and neural network models [19]. Their
main applications are related to sound management/filtering [20], even if their nonlinear
function approximation (and thus forecasting) properties have been applied with good
results also in other fields such as energy systems [19,21]. These approximation properties
make them suitable for environmental monitoring and forecasting applications, but still,
there is no literature related to their application to reproduce PM10 or other air quality
pollutants. Therefore, since artificial neural networks are widely used in this field [4,22,23],
wavenets could also be useful for the definition of a PM10 virtual sensor. The paper is
organized in two main parts, a methodological one (Section 2) where the basics of the
artificial neural network, wavelet theory and wavenets are introduced and a second part
presenting the evaluation of the results on a test case.

2. Materials and Methods

In this section, the theoretical framework used to derive a virtual air quality sensor
based on wavenets [24] is presented.

2.1. Artificial Neural Networks

Artificial Neural Networks (ANNs) are functions approximating human brain behav-
ior, considered as a network of smaller units, called neurons, representing the information
processing unit (Figure 1).

Figure 1. Typical neuron model.

Each input xi of the network is multiplied by a corresponding weight wi, analogous
to a synaptic force; then all the weighted inputs are added together, including also a bias b
term in order to compute the activation level x of the neuron. The output signal y(x) is
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usually a nonlinear function f (x) of the activation level. Hence, the typical neuron model
is represented as (1):

y(x) = f

(
d

∑
i=1

xi × wi + b

)
(1)

where d is the length of the input vector.
The approximation capacity of a single neuron is quite limited; to overcome this, they

are collected in layers sharing the same input. The final structure of a neural network is
obtained by connecting several layers, as in the case of the two-layer feedforward neural
network in Figure 2.

Figure 2. Two-layer feedforward neural network structure.

In this case, the output y(x) can be computed as:

y(x) = g(LW × f (IW × x + b1) + b2) (2)

where y(x) ∈ Rm2 is the output of the network, x ∈ Rd is its input vector, f : Rd → Rm1 and
g : Rm1 → Rm2 are the activation functions of the hidden and output layers, respectively,
and, finally, m1 and m2 are the lengths of the activation function output and the neural
network output. The bias terms b1, b2 ∈ Rm1 and the weight matrices IW ∈ Rm1×d and
LW ∈ Rm2×m1 are computed during the training phase. Even if the number of layers
of an artificial neural network can be higher than 2, following the proof of the Cybenko
approximation theorem, and in order to limit the complexity of the network, in real
applications only a two layers neural network is used [25].

2.2. Wavelets and Wavenet Models

Wavelets are a family of orthonormal basis functions that can be used to perform trans-
formations among spaces. Their use ranges from function approximation to audio com-
pression [26–28]. The wavelet approximation theory is strictly related to multi-resolution
analysis [26]. In this context, a function h(x) can be approximated using the so-called
wavelet (mother) and scaling (father) functions, as:

h(x) = ∑
k

cj0(k)φj0,k(x) +
∞

∑
j=j0

∑
k

dj(k)ψj,k(x) (3)

where:

• cj0(k) are the scaling coefficients;
• dj(k) are the details (wavelet) coefficient;
• φj0,k(x) is the selected scaling (father) function family;
• ψj,k(x) is the selected wavelet (mother) function family.
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The computation of the scaling and wavelet coefficient is strongly connected to the
selected wavelet family (considered as the couple wavelet/scaling functions). Up to now,
a number of different functions has been considered and are currently used. More details
about wavelet transformation can be found in [26–28].

Wavenets (wavelet networks) [24] can be considered as a one hidden layer network
with wavelets as activation functions. In particular, the wavenet output Y(x) for an input
x ∈ Rd can be computed as:

Y(x) =WN(x) = (x− r)G+

+
ns

∑
i=1

as_iφ(bs_i((x− r)Q− cs_i)+

+
nw

∑
j=1

aw_jψ(bw_j((x− r)Q− cs_j)

(4)

where φ(z) = e−0.5z·z′ , z = bs_i((x − r)Q − cs_i is the scaling function, ψ(t) = (m − t ·
t′)e−0.5t·t′ , t = bw_j((x − r)Q− cs_j) is the wavelet function, x ∈ R1×d is the row vector
input of the wavenet, as_i, bs_i, aw_i, bw_i, r ∈ R1×d, G ∈ Rd×1 and Q ∈ Rd×d are the
parameters to be computed during the training.

The comparison between Equations (2) and (4) shows that the wavenet can be consid-
ered as a neural network with the function:

f (·) =
[

φ(·)
ψ(·)

]
(5)

as the activation function of the hidden layer.
When the phenomena to model with the wavenet is dynamical, the wavenet is feeded

by an input vector x(t) that is the output of a time delay phase:

x(t) =



u1(t)
u1(t− 1)

...
u1(t− n1)

...
um(t)

um(t− 1)
...

um(t− nm)


(6)

where u1...um are the variables selected to compute the output y(t) of the overall system.
In this work, since the PM10 formation, accumulation and removal are clearly dynamical
processes, the system structure presented in Figure 3 is used.

Figure 3. Wavenet structure.
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3. Results and Discussion
3.1. Case Study and Dataset Definition

The aim of this work is the definition of a virtual sensor to compute PM10 daily average
concentrations starting from the measured data of daily average NO2 concentration and
the measured values of two meteorological variables: average daily wind speed WS, total
daily rainfall RF, average daily relative humidity RH and average daily temperature T.
The selection of NO2 as the input variable is due to the fact that its levels are strongly
related to PM10 ones, as they shared some emission drivers (i.e., road traffic, domestic
heating) and chemical paths (i.e., formation of secondary inorganic aerosol starting from
the ammonium nitrates). On the other hand, the selected meteorological variables can be
related to general deposition or dispersion conditions (mainly rainfall and wind speed) or
to the formation of secondary aerosol by condensation. Thus, the Y(x) in Equation (4) is
the dailyPM10 concentration computed by the model, which is referred to as n ˆPM10(x)
from now on. Moreover, the input x of the wavenet function is time dependent, so x = x(t),
and it includes both NO2 concentrations and meteorological variables for the day t and the
previous days, as in:

x(t) =



NO2(t)
NO2(t− 1)

...
NO2(t− nNO2)

...
WS(t)

WS(t− 1)
...

WS(t− nWS)
...

RF(t)
RF(t− 1)

...
RF(t− nRF)

...
RH(t)

RH(t− 1)
...

RH(t− nRH)
...

T(t)
T(t− 1)

...
T(t− nT)



(7)

In order to test the presented methodology, a series of models has been trained
and validated to reproduce the PM10 daily mean concentrations starting from different
input measured by the Lombardy region monitoring network. The work has been tested
using data measured by 14 monitoring stations belonging to the Lombardy region (Italy)
monitoring network (Figure 4).

More in detail, the data from year 2019 have been used (365× 14 = 5110 available
raw data tuples). The performance evaluation for the different models has been performed
using a leave-p-out approach with p = 4. Following this approach, 100 tests have been
performed for each model configuration, with 10 stations being used for the identification,
and the data for p = 4 being randomly selected as stations queued in order to define the
metastation used for the validation.
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Figure 4. Domain and measuring stations.

3.2. Configuration Tests

In order to evaluate the capability of the methodology presented in Section 2 to
compute PM10 concentrations, all the possible configurations among the input variables
have been considered, and the relative models PM10 = WN(x) trained.

In principle, the different configurations can be grouped into three categories:

• Configurations including only NO2 concentration as input;
• Configurations including only meteorological variables as input;
• Configurations including both NO2 concentrations and meteorological variables as in-

put.

For each test, an analysis of the memory of the systems, i.e., an evaluation of the
performances of varying nNO2 , nWS, nRF, nRH and nT , has been performed. On the basis
of the knowledge of the phenomena related to the formation of PM10 in atmosphere,
a maximum value of 5 days can be considered for these parameters. Each model has been
evaluated on the basis of the following three different statistical indexes:

• Normalized Root Mean Squared Deviation:

NRMSD =

√
∑T

t=1(PM10(t)− ˆPM10(t))
2

n

PMmax
10 −PMmin

10

• Root Mean Squared Error

RMSE =

√
∑T

t=1(PM10(t)− ˆPM10(t))2

T
• Correlation Coefficient

Correlation =
∑T

t=1(PM10(t)−µPM10 )(
ˆPM10(t)−µ ˆPM10

)√
∑T

t=1(PM10(t)−µPM10 )
2·
√

∑T
t=1(

ˆPM10(t)−µ ˆPM10
)2

where ˆPM10(t) and PM10(t) are, respectively, the t-th values of the model output and of
the validation dataset, and µ ˆPM10

and µPM10 are their mean values. From the huge set of
performed tests, only the best-performing ones are presented in this context, in particular
for the combination of multiple input.

3.3. Validation Results
3.3.1. Models with NO2 as Input

This first class of models includes only NO2 daily mean concentrations as input. This
is due to the fact that PM10 and NO2

concentrations are generated by several common emitting activities (i.e., road trans-
port) and that the secondary inorganic fraction of PM10 is composed, in part, of nitrates,
in particular ammonia nitrate, whose formation depends on the NO2 concentration in
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atmosphere. Table 1 highlights that the performances are quite good in terms of correla-
tion, with values around 0.74, and acceptable in terms of root mean square error, with a
normalised root mean standard deviation (allowing one to compare the root mean square
error with respect to the overall variability of the output time series) around 0.1.

From these results, it is clear that an increase in the memory of the system does not lead
to significant impacts on the performances and on the behavior of the model. The negligible
increase in performances for the test with nNO2 = 4 does not justify the increasing number
of parameters. Table 2 shows the performances for the same configurations for the part
of the time series where PM10 concentrations higher than 30 µg/m3 have been measured.
The table states that the model has strong difficulties in reproducing high concentrations,
as highlighted by the strong decrease in statistical indexes.

3.3.2. Models with Meteorological Variables as Input

The second class of models considers only the meteorological variables as input. These
tests allow an assessment of the relative “importance” between meteorology and NO2
concentration for the computation of PM10 levels. Tables 3 and 4 show poor performances,
with the limited exception of the cases with temperature T as input. Thus, the perfor-
mances suggest that the meteorological conditions alone are not enough to estimate PM10
concentrations, and, so, they may be at best used to increase the performances in addition
to the NO2 concentrations.

Table 1. NO2 input configuration performances.

x = {NO2}
nNO2 = 1

correlation 0.723
RMSE 10.896
NRMSD 0.1101

nNO2 = 2

correlation 0.722
RMSE 10.927
NRMSD 0.1104

nNO2 = 3

correlation 0.732
RMSE 10.764
NRMSD 0.1087

nNO2 = 4

correlation 0.733
RMSE 10.743
NRMSD 0.1085

nNO2 = 5

correlation 0.742
RMSE 10.575
NRMSD 0.1068
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Table 2. NO2 input configuration performances for PM10 > 30 µg/m3.

x = {NO2}
nNO2 = 1

correlation 0.39
RMSE 11.531
NRMSD 0.1696

nNO2 = 2

correlation 0.39
RMSE 11.481
NRMSD 0.1688

nNO2 = 3

correlation 0.41
RMSE 11.390
NRMSD 0.1675

nNO2 = 4

correlation 0.40
RMSE 11.412
NRMSD 0.1678

nNO2 = 5

correlation 0.40
RMSE 11.444
NRMSD 0.1683

Table 3. Meteorological input configuration performances.

x = {WS} x = {RF} x = {RH} x = {T} x = {RH, T}
nWS = 1 nRF = 1 nRH = 1 nT = 1 nRH,T = 1

correlation 0.33 0.10 0.150 0.461 0.47
RMSE 16.733 16.622 16.380 14.807 14.736
NRMSD 0.1690 0.1679 0.1655 0.1496 0.1488

nWS = 2 nRF = 2 nRH = 2 nT = 2 nRH,T = 2

correlation 0.37 0.18 0.185 0.494 0.50
RMSE 16.723 16.486 16.132 14.551 14.469
NRMSD 0.1689 0.1665 0.1630 0.1470 0.1462

nWS = 3 nRF = 3 nRH = 3 nT = 3 nRH,T = 3

correlation 0.37 0.23 0.171 0.503 0.52
RMSE 16.899 16.283 16.176 14.467 14.385
NRMSD 0.1707 0.1644 0.1634 0.1461 0.1453

nWS = 4 nRF = 4 nRH = 4 nT = 4 nRH,T = 4

correlation 0.38 0.27 0.190 0.513 0.513
RMSE 16.912 15.9010 16.085 14.347 14.474
NRMSD 0.1708 0.1606 0.1625 0.1449 0.1462

nWS = 5 nRF = 5 nRH = 5 nT = 5 nRH,T = 5

correlation 0.339 0.30 0.183 0.514 0.52
RMSE 16.846 15.730 16.126 14.348 14.419
NRMSD 0.1701 0.1588 0.1629 0.1449 0.1456
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Table 4. Meteorological input configuration performances for PM10 > 30 µg/m3.

x = {WS} x = {RF} x = {RH} x = {T} x = {RH, T}
nWS = 1 nRF = 1 nRH = 1 nT = 1 nUT = 1

correlation 0.19 0.079 0.15 0.35 0.32
RMSE 12.711 12.517 12.296 11.732 11.889
NRMSD 0.1869 0.1841 0.1808 0.1725 0.1748

nWS = 2 nRF = 2 nRH = 2 nT = 2 nUT = 2

correlation 0.196 0.153 0.18 0.40 0.43
RMSE 12.862 12.425 12.231 11.411 11.263
NRMSD 0.1891 0.1827 0.1799 0.1678 0.1656

nWS = 3 nRF = 3 nRH = 3 nT = 3 nUT = 3

correlation 0.185 0.212 0.20 0.43 0.40
RMSE 12.935 12.272 12.193 11.220 11.536
NRMSD 0.1902 0.1805 0.1793 0.1650 0.1696

nWS = 4 nRF = 4 nRH = 4 nT = 4 nUT = 4

correlation 0.24 0.210 0.17 0.44 0.42
RMSE 12.926 12.272 12.284 11.190 11.388
NRMSD 0.1901 0.1805 0.1806 0.1646 0.1675

nWS = 5 nRF = 5 nRH = 5 nT = 5 nUT = 5

correlation 0.192 0.220 0.20 0.44 0.45
RMSE 12.979 12.244 12.178 11.164 11.193
NRMSD 0.1909 0.1801 0.1791 0.1642 0.1646

3.3.3. Models with NO2 and Meteorological Variables as Input

The last class of models considers both the meteorological variables and the NO2
daily mean concentration as input in order to evaluate if the joint use of these information
sources leads to an increase in the performances. Table 5 presents the results with NO2
concentrations coupled to a meteorological variable at a certain time. The performances are
in line with that of the models with only NO2 as an input. Moreover, the combined use of
more than one meteorological variable did not lead to a consistent increase in performance
(Tables 6–8). The only slight improvement can be seen for high concentrations when the
temperature is used as input (Tables 9–12), but also, in this case, the performances seem not
to be good enough (correlation coefficient close to 0.52) in the preproduction of the peaks.
These results suggest that, to reproduce mean PM10 levels in this domain, only the NO2
concentrations should used, thus relying on cheaper sensors. Nevertheless, a bond in the
performances exists, which did not allow the reconstruction of peak concentrations.
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Table 5. NO2 and one meteorological variable input configuration performance.

x = {NO2, WS} x = {NO2, RF} x = {NO2, RH} x = {NO2, T}
nNO2,WS = 1 nNO2,RF = 1 nNO2,RH = 1 nNO2,T = 1

correlation 0.69 0.72 0.71 0.72
RMSE 11.285 10.987 10.969 10.808
NRMSD 0.1139 0.1109 0.1108 0.1092

nNO2,WS = 2 nNO2,RF = 2 nNO2,RH = 2 nNO2,T = 2

correlation 0.70 0.73 0.72 0.73
RMSE 11.207 10.796 10.916 10.672
NRMSD 0.1132 0.1090 0.1103 0.1078

nNO2,WS = 3 nNO2,RF = 3 nNO2,RH = 3 nNO2,T = 3

correlation 0.71 0.73 0.72 0.73
RMSE 11.042 10.735 10.890 10.669
NRMSD 0.1115 0.1084 0.1100 0.1078

nNO2,WS = 4 nNO2,RF = 4 nNO2,RH = 4 nNO2,T = 4

correlation 0.71 0.731 0.72 0.74
RMSE 11.007 10.670 10.906 10.543
NRMSD 0.1111 0.1077 0.1102 0.1065

nNO2,WS = 5 nNO2,RF = 5 nNO2,RH = 5 nNO2,T = 5

correlation 0.711 0.741 0.71 0.73
RMSE 10.950 10.500 10.954 10.716
NRMSD 0.1106 0.1060 0.1106 0.1082

Table 6. NO2 and two meteorological variable input best configuration performances.

x = {NO2, x = {NO2, x = {NO2, x = {NO2, x = {NO2,
WS, RF} RH, T} WS, T} RF, RH} RF, T}

nNO2,WS,RF = 1 nNO2,RH,T = 1 nNO2,WS,T = 1 nNO2,RF,RH = 1 nNO2,RF,T = 1

correlation 0.70 0.72 0.70 0.72 0.73
RMSE 11.132 10.859 11.103 10.870 10.768
NRMSD 0.1124 0.1097 0.1122 0.1098 0.1088

nNO2,WS,RF = 2 nNO2,RH,T = 2 nNO2,WS,T = 2 nNO2,RF,RH = 2 nNO2,RF,T = 2

correlation 0.72 0.73 0.69 0.725 0.73
RMSE 10.844 10.743 11.385 10.748 10.725
NRMSD 0.1095 0.1085 0.1150 0.1086 0.1083

nNO2,WS,RF = 3 nNO2,RH,T = 3 nNO2,WS,T = 3 nNO2,RF,RH = 3 nNO2,RF,T = 3

correlation 0.711 0.73 0.72 0.72 0.73
RMSE 10.945 10.690 10.945 10.837 10.690
NRMSD 0.1105 0.1080 0.1106 0.1095 0.1080

nNO2,WS,RF = 4 nNO2,RH,T = 4 nNO2,WS,T = 4 nNO2,RF,RH = 4 nNO2,RF,T = 4

correlation 0.72 0.72 0.73 0.71 0.73
RMSE 10.803 10.849 10.823 10.965 10.752
NRMSD 0.1091 0.1096 0.1093 0.1108 0.1086

nNO2,WS,RF = 5 nNO2,RH,T = 5 nNO2,WS,T = 5 nNO2,RF,RH = 5 nNO2,RF,T = 5

correlation 0.731 0.72 0.72 0.70 0.71
RMSE 10.62 10.880 10.918 11.109 11.032
NRMSD 0.1072 0.1099 0.1103 0.1122 0.1114
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Table 7. NO2 and three meteorological variable input configuration performances.

x = {NO2, RF, RH, T} x = {NO2, WS, RF, RH} x = {NO2, WS, RF, T}
nNO2,RF,RH,T = 1 nNO2,WS,RF,RH = 1 nNO2,WS,RF,T = 1

correlation 0.72 0.692 0.71
RMSE 10.841 11.241 10.992
NRMSD 0.1095 0.1135 0.1110

nNO2,RF,RH,T = 2 nNO2,WS,RF,RH = 2 nNO2,WS,RF,T = 2

correlation 0.72 0.72 0.71
RMSE 10.826 10.868 11.064
NRMSD 0.1094 0.1098 0.1118

nNO2,RF,RH,T = 3 nNO2,WS,RF,RH = 3 nNO2,WS,RF,T = 3

correlation 0.72 0.703 0.72
RMSE 10.869 11.084 10.916
NRMSD 0.1097 0.1119 0.1098

nNO2,RF,RH,T = 4 nNO2,WS,RF,RH = 4 nNO2,WS,RF,T = 4

correlation 0.70 0.71 0.721
RMSE 11.098 10.032 11.163
NRMSD 0.1121 0.1114 0.1128

nNO2,RF,RH,T = 5 nNO2,WS,RF,RH = 5 nNO2,WS,RF,T = 5

correlation 0.69 0.70 0.714
RMSE 11.324 11.207 11.071
NRMSD 0.1144 0.1132 0.1118

Table 8. NO2 and four meteorological variable input configuration performances.

x = {NO2, WS, RF, RH, T}
nNO2,WS,RF,RH,T = 1

correlation 0.70
RMSE 11.046
NRMSD 0.1116

nNO2,WS,RF,U,T = 2

correlation 0.72
RMSE 10.926
NRMSD 0.1104

nNO2,WS,RF,U,T = 3

correlation 0.73
RMSE 10.788
NRMSD 0.1090

nNO2,WS,RF,U,T = 4

correlation 0.71
RMSE 11.632
NRMSD 0.1127

nNO2,WS,RF,U,T = 5

correlation 0.71
RMSE 11.297
NRMSD 0.1141



Electronics 2021, 10, 2111 12 of 17

Table 9. NO2 one meteorological variable input configuration performance for PM10 > 30 µg/m3.

x = {NO2, WS} x = {NO2, RF} x = {NO2, RH} x = {NO2, T}
nNO2,WS = 1 nNO2,RF = 1 nNO2,RH = 1 nNO2,T = 1

correlation 0.381 0.39 0.392 0.39
RMSE 12.176 11.492 11.474 11.445
NRMSD 0.1791 0.1690 0.1687 0.1683

nNO2,WS = 2 nNO2,RF = 2 nNO2,RH = 2 nNO2,T = 2

correlation 0.39 0.401 0.422 0.49
RMSE 11.970 11.456 11.280 10.817
NRMSD 0.1760 0.1685 0.1659 0.1591

nNO2,WS = 3 nNO2,RF = 3 nNO2,RH = 3 nNO2,T = 3

correlation 0.382 0.413 0.406 0.50
RMSE 12.086 11.384 11.467 10.744
NRMSD 0.1777 0.1674 0.1686 0.1580

nNO2,WS = 4 nNO2,RF = 4 nNO2,RH = 4 nNO2,T = 4

correlation 0.40 0.405 0.395 0.51
RMSE 11.938 11.438 11.553 10.671
NRMSD 0.1756 0.1682 0.1699 0.1569

nNO2,WS = 5 nNO2,RF = 5 nNO2,RH = 5 nNO2,T = 5

correlation 0.40 0.425 0.402 0.52
RMSE 11.855 11.311 11.498 10.570
NRMSD 0.1743 0.1663 0.1691 0.1554

Table 10. NO2 and two meteorological variable input best configuration performances for PM10 > 30 µg/m3.

x = {NO2, x = {NO2, x = {NO2, x = {NO2, x = {NO2,
WS, RF} RH, T} WS, T} RF, RH} RF, T}

nNO2,WS,RF = 1 nNO2,U,T = 1 nNO2,WS,T = 1 nNO2,RF,U = 1 nNO2,RF,T = 1

correlation 0.394 0.42 0.45 0.394 0.44
RMSE 12.058 11.246 11.445 11.458 11.160
NRMSD 0.1773 0.1654 0.1683 0.1685 0.1641

nNO2,WS = 2 nNO2,U,T = 2 nNO2,WS,T = 2 nNO2,RF,U = 2 nNO2,RF,T = 2

correlation 0.39 0.503 0.47 0.414 0.485
RMSE 11.970 10.750 11.367 11.364 10.832
NRMSD 0.1760 0.1581 0.1672 0.1671 0.1593

nNO2,WS = 3 nNO2,U,T = 3 nNO2,WS,T = 3 nNO2,RF,U = 3 nNO2,RF,T = 3

correlation 0.382 0.49 0.47 0.40 0.49
RMSE 12.086 10.895 11.237 11.575 10.825
NRMSD 0.1777 0.1602 0.1652 0.1702 0.1592

nNO2,WS = 4 nNO2,U,T = 4 nNO2,WS,T = 4 nNO2,RF,U = 4 nNO2,RF,T = 4

correlation 0.40 0.50 0.51 0.40 0.51
RMSE 11.938 10.919 10.839 11.658 10.667
NRMSD 0.1756 0.1606 0.1594 0.1714 0.1569

nNO2,WS = 5 nNO2,U,T = 5 nNO2,WS,T = 5 nNO2,RF,U = 5 nNO2,RF,T = 5

correlation 0.40 0.514 0.52 0.40 0.49
RMSE 11.855 10.707 10.703 11.632 10.856
NRMSD 0.1743 0.1575 0.1574 0.1711 0.1597
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Table 11. NO2 and three meteorological variable input configuration performances for PM10 > 30 µg/m3.

x = {NO2, RF, RH, T} x = {NO2, WS, RF, RH} x = {NO2, WS, RF, T}
nNO2,RF,RH,T = 1 nNO2,WS,RF,RH = 1 nNO2,WS,RF,T = 1

correlation 0.430 0.390 0.436
RMSE 11.201 11.660 11.444
NRMSD 0.1647 0.1715 0.1683

nNO2,RF,RH,T = 2 nNO2,WS,RF,RH = 2 nNO2,WS,RF,T = 2

correlation 0.503 0.407 0.462
RMSE 10.720 11.863 11.275
NRMSD 0.1576 0.1744 0.1658

nNO2,RF,RH,T = 3 nNO2,WS,RF,RH = 3 nNO2,WS,RF,T = 3

correlation 0.49 0.381 0.478
RMSE 10.945 12.103 11.063
NRMSD 0.1610 0.1780 0.1627

nNO2,RF,RH,T = 4 nNO2,WS,RF,RH = 4 nNO2,WS,RF,T = 4

correlation 0.503 0.396 0.498
RMSE 10.892 12.077 10.846
NRMSD 0.1602 0.1776 0.1595

nNO2,RF,RH,T = 5 nNO2,WS,RF,RH = 5 nNO2,WS,RF,T = 5

correlation 0.511 0.399 0.518
RMSE 10.756 11.953 10.678
NRMSD 0.1582 0.1758 0.1570

Table 12. NO2 and four meteorological variable input configuration performances for PM10 > 30 µg/m3.

x = {NO2, WS, RF, RH, T}
nNO2,WS,RF,RH,T = 1

correlation 0.425
RMSE 11.484
NRMSD 0.1689

nNO2,WS,RF,RH,T = 2

correlation 0.494
RMSE 11.067
NRMSD 0.1627

nNO2,WS,RF,RH,T = 3

correlation 0.484
RMSE 11.191
NRMSD 0.1646

nNO2,WS,RF,RH,T = 4

correlation 0.492
RMSE 11.107
NRMSD 0.1633

nNO2,WS,RF,RH,T = 5

correlation 0.522
RMSE 10.875
NRMSD 0.1599
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3.4. Comparison to State-of-the-Art Models

In this section, the comparison of the wavenet approach used in this work with two
different state-of-the-art models is presented. The two models are a (1) K-nearest neighbors
(KNN) and an (2) artificial neural network-based model, which are often used in this
context to capture the dynamic of the PM10 [29]. The comparison (Table 13) shows how the
performances of the best-identified wavenet are strongly better than that of the KNN model
and very similar (slightly better for high orders) to that of the ANN ones. Moreover, it has
to be stressed how the best model for the wavenet approach ensures these performances
with limited complexity and with a limited number of variables (only NO2 concentration)
with respect to the other approaches.

Figures 5–7 present the time series plots for the best configuration of wavenet, artificial
neural network and KNN models, respectively. As expected, the behaviour of the wavenet
and ANN models is very similar, with the first models showing slightly better performances
for the low value close to the sample n. 800. In general, the KNN model reproduces higher
value but, as also stated by the lower values of correlation coefficient, the time series rarely
follows the value and the gradient of the measured values.

Table 13. Best configuration performances.

WT (x = {NO2}) ANN (x = {NO2, RF}) KNN (x = {NO2, WS, RF, U})

nNO2 = 1 nNO2,RF = 1 nNO2,WS,RF,U = 1

correlation 0.723 0.72 0.523
RMSE 10.896 10.940 14.860
NRMSD 0.1101 0.1105 0.1501

nNO2 = 2 nNO2,RF = 2 nNO2,WS,RF,U = 2

correlation 0.722 0.732 0.581
RMSE 10.927 10.651 14.082
NRMSD 0.1104 0.1076 0.1422

nNO2 = 3 nNO2,RF = 3 nNO2,WS,RF,U = 3

correlation 0.732 0.72 0.59
RMSE 10.764 10.877 13.904
NRMSD 0.1087 0.1099 0.1404

nNO2 = 4 nNO2,RF = 4 nNO2,WS,RF,U = 4

correlation 0.733 0.713 0.61
RMSE 10.743 10.909 13.628
NRMSD 0.1085 0.1102 0.1377

nNO2 = 5 nNO2,RF = 5 nNO2,WS,RF,U = 5

correlation 0.742 0.73 0.634
RMSE 10.575 10.675 13.435
NRMSD 0.1068 0.1078 0.1357
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Figure 5. Time series comparison between the measured values (blue) and the best wavenet model
output (nNO2 = 5, red).

Figure 6. Time series comparison between the measured values (blue) and the best neural network
model output (nNO2,RF = 2, red).
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Figure 7. Time series comparison between the measured values (blue) and the best KNN model
output (nNO2,RF = 5, red).

4. Conclusions

In this work, a data-driven, wavenet-based virtual sensor for PM10 daily mean con-
centration is presented and evaluated. Different model configurations have been tested and
evaluated. The methodology has been applied to data measured by the Lombardy regional
monitoring network. The results show good agreement between the output of the virtual
sensor and the measured data used for validation when the daily mean NO2 concentration
is used as input—in particular, around the mean concentration values. Therefore, the
models fail to reproduce the peak concentrations, and this behaviour will not change even
if other inputs, such as meteorological data, are used. Nevertheless, the performances
show that this approach can be used to produce supporting information to integrate the
regional monitoring network that can be made available through app/web services due to
a relatively fast computation.

Author Contributions: Conceptualization, C.C., E.T., R.Z.; software, C.C., R.Z.; validation, C.C.,
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