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Abstract: It is expected that distribution power systems will soon be able to connect a variety of
microgrids from residential, commercial, and industrial users, and thus integrate a variety of dis-
tributed generation technologies, mainly renewable energy sources to supply their demands. Indeed,
some authors affirm that distribution networks will propose significant changes as a consequence
of this massive integration of microgrids at the distribution level. Under this scenario, the control
of distributed generation inverters, demand management systems, renewable resource forecasting,
and demand predictions will allow better integration of such microgrid clusters to decongest power
systems. This paper presents a review of microgrids connected at distribution networks and the
solutions that facilitate their integration into such distribution network level, such as demand man-
agement systems, renewable resource forecasting, and demand predictions. Recent contributions
focused on the application of microgrids in Low-Voltage distribution networks are also analyzed and
reviewed in detail. In addition, this paper provides a critical review of the most relevant challenges
currently facing electrical distribution networks, with an explicit focus on the massive interconnection
of electrical microgrids and the future with relevant renewable energy source integration.

Keywords: control inverter; demand-side management; energy management; low voltage configura-
tion; microgrids

1. Introduction

A microgrid (MG) is a small-scale electrical energy network characterized by dis-
tributed generation (DG), such as photovoltaic (PV) solar panels [1], wind turbines (WT),
heat and power generators (CHP), and other components of control units, manageable
loads, and storage units [2]. To achieve a suitable integration between renewable energy
technologies and energy storage systems (ESS), it is necessary to include energy man-
agement schemes (EMS) that allow strategies for avoiding inappropriate costs in an MG.
Moreover, both RE and ESS play an essential role in the costs of implementing a micro-
grid [3]. Regarding control and management systems, MGs can operate in two modes:
(i) when it is interconnected to a grid and (ii) in islanding mode [4], the latter of which re-
quires the maintenance of demand and generation balance, according to energy availability
over time [5]. When an MG is connected to a power system at a common coupling point
(PCC), it is possible to interact with the electrical distribution network and the operator of
this network (DSO), providing generation or demanding power from the grid. Under is-
landing mode, the MG is disconnected from the corresponding power system, maintaining
quality energy services to some critical loads with demand management and control. It can
also forecast available generation resources and propose some demand response strategies.
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The electrical loads within MGs are typically elements demanding power. They can be
composed of a lighting system, a heating ventilation and air conditioning (HVAC) system,
residential appliances, industrial loads, plug-in electric vehicles (PEV), a storage system,
and other equipment [6].

Residential customers represent an essential part of world energy consumption. Sub-
sequently, MG implementation is increasing to provide distribution networks with a more
efficient control and management system in this consumption sector [7]. Fiorini [8] explains
how EMS can monitor, measure, and control the energy consumption and production of a
system—such as an MG—through control algorithms that can model all possible conditions
throughout a given microgrid. Among the conditions, these algorithms must evaluate
the availability of energy resources, the status of the storage system, the conditions of
the loads or consumption, environmental impact, economic indicators, the status of the
network, and the flow of energy from said network. For this reason, the integration of EMS
benefits both the end-users of energy and generators and the administrators of electrical
transmission and distribution networks. Though the integration of renewable technologies
and modern equipment into energy systems has increased, so too have the costs of energy
production; these have become a challenge for each country. Demand-side management
(DSM) is used to mitigate this challenge. This strategy allows one to control and monitor
an end user’s energy consumption. Therefore, DSM can manipulate end-users’ demands
for electricity [9]. The benefits provided by distributed generation and microgrids in the
electrical distribution network currently suppose a relevant target due to increases in the
interconnection of energy resources that are distributed in Low-Voltage (LV) networks [10].

Most contributions to this field have focused on MG, and they are based predomi-
nantly on simulation software. This is a faster and cheaper solution than real case studies,
avoiding any experimental system implementation. The elements and components used to
simulate supply-side and demand-side scenarios in residential, commercial, and industrial
sectors are then defined and emulated. Nevertheless, other contributions are based on
real implementation case studies, as can be seen in Table 1. MG implementation thus
comprises a remarkable number of contributions and results that allow for easier analysis
of this system’s integration into distribution networks. Therefore, there are still some
opportunities that should be developed and improved accordingly:

• How interconnected electrical microgrids in electrical distribution systems allow
passive systems to become active electrical distribution networks. A literary review of
projects related to electrical microgrids implemented in distribution networks allows
us to analyze trends regarding their integration into electrical systems.

• Explain and analyze why the trend of using microgrids in electrical distribution
networks and how they allow the transition from passive energy distribution systems
to active systems

• The prediction of resources in energy production is a highly developed component
within the field of generation. However, when it is applied to a distributed generation
system, forecasting allows both network operators and final energy users to project
their systems and infer network decongestion. This situation is due to microgrids
supplying interconnected local demands.
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Table 1. Microgrid case studies; LV distribution networks.

Ref. Year Location Component System Control Microgrid Type System Management

[11] 2017 Columbus, Ohio PV, WT, TESS - Building -

[12] 2017 Sydney PV, WT, ESS, STC - Commercial
Building Optimal EMS

[13] 2017 University of British
Columbia PV ESS, Harmonics detection Campus,

hibryd AC-DC EMS

[14] 2017 EE. UU, Kayenta
Health Center

PV, Diesel Generators,
emergency power

supply system (EPSS)

MPPT conotrol P-O.
Static Transfer Switch

Health care
building

All equipment
are critical,
don’t have

DSM

[15] 2018
Italy, Electric Power
System laboratory of

Politecnico di Bari

PV, WT, ESS,
Gas-fueled internal

combustion engine in
cogeneration, gas
microturbine in

cogeneration layout

- Comercial/
Education -

[16] 2018 University of Seville FC Model Predictive
Control Education

Model
Predictive

Control

[17] 2018 Bilbao PV, ESS
Perturb and Observe
algorithm (P&O) for

MPPT

Building
housing -

[9] 2018 Graciosa Island in the
Canary Islands PV, ESS

nonlinear
mathematical

programming model

smart
microgrid

district

Game Theory
for Microgrids

[18] 2018 Brooklyn, New York PV blockchain-based
information systems

residential
community

Energy
management

trading system
(EMTS)

[19] 2018 Venice, Italy
PV, biodiesel

engine-generator
(BDEG), ESS

blockchain-based
information systems

Industrial
community

power
management

systems (PMSs)

[20] 2018 Australia PV, ESS Primary, secondary,
tertiary Campus

Time of Use
(ToU) tariffs,

load level and
State of Charge
(SOC) of battery,

EMS decides

[21] 2019 Finland PV, WT, ESS
Flexibility for HVAC

and Electric water heat
(EWH) loads

Residential
community Home EMS

[22] 2020 Coimbra, Portugal PV, ESS BMS-V2B Campus
Building

Management
System (BMS).

There are several revisions about MGs in the field of control and operation [23–25];
interconnection with the distribution network [26–29]; sustainable trends to apply the MG
in the distribution network [30], or MG management [31]. However, and to the best of
the authors’ knowledge, there is a lack of revisions focused on MG interconnections in LV
distribution electrical networks. In this framework, the DSOs should be able to integrate
customer demand, interconnected MGs, and bidirectional power flows into such Low-
Voltage distribution networks with remarkable renewable integration. Therefore, and based
on recent contributions, this paper reviews critical aspects regarding MG interconnection
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in LV distribution networks, such as demand and generation management and renewable
energy source forecasting technologies. In addition, the advantages and challenges of
integrating distributed generation resources into MGs at LV level are also discussed. Some
technical implementation limits and drawbacks are also reviewed. This work thus aims to
establish the following points:

• A critical review of electrical MG implementation at the LV distribution network.
• An analysis of the relevance of demand and generation forecasting solutions in electri-

cal MGs for their operation and management.
• A detailed discussion of demand management programs to provide a more efficient

scenario of renewable energy source integration into MGs.
• A revision of current solutions to facilitate MG integration and avoid relevant addi-

tional power system investments.

This paper is structured as follows: Section 2 presents the methodology. Section 3
describes LV MG configurations and advantages of LV MGs over existing conventional
network, Section 4 discusses generation and demand forecasting approaches, Section 5
reviews recent LV MG management and control strategies, and demand-side management
programs for LV MGs (load displacement) are reviewed in Section 6; Section 7 comprises the
discussion; and Section 8 examines our conclusion and future challenges for the industry.

2. Methodology

For the development of this review, the following methodology is proposed and used
by the authors:

1. Data collection: several searches were carried out in the ScienceDirect, IEEE, and
GoogleScholar databases according to keywords, types of articles, and publication
time searching criteria. The keywords used for the searching process were Micro-
grid, Low-Voltage, Residential, Configuration, Commercial, industries, among others.
The types of publications selected were relevant research works and thematic reviews.
From this initial classification process, the most relevant contributions were taken
from the selected databases, according to the requirements set for the development of
the document.

2. Selection and filtering of information: the references were ordered in a bibliographic
manager, we proceeded to filter the information by keywords, title, and abstract to
organize the information by relevance. Indeed, the identified contributions were
classified according to the sections developed in this work, such as the configurations
of LV distribution networks with integrated MGs, generation and demand forecasting
approaches, LV MG management and control, as well as demand-side management
programs for LV MGs.

3. Distribution of topics to be reviewed: by analyzing the information of the selected
contributions. The relationship among the selected topics with significant similarity
and relevance is identified and discussed.

4. Analysis of selected information: through a critical analysis of the references, being
then possible to infer the conclusions presented in this work.

Figure 1 displays a general scheme of the methodology proposed for this review.
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Figure 1. Proposed methodology, general scheme.

3. Low-Voltage Microgrids

According to the field-specific literature, MGs can be classified depending on different
parameters, such as level of voltage, supervisory and management control, type of inter-
connection phases, and type of application. Xu et al. [32] describe the characteristics of
the different microgrid configurations presented in Figure 2. Hirsch [11] explains the ad-
vantages of applying MG campus/institutional, which can be used for demand reduction
and optimization of the demand profile according to energy resources. In addition, MG
military application can also give energy security in critical infrastructures. Remote MGs
are used in regions with poor access to public energy services, such as rural areas. Finally,
MG applications in distribution networks (residential, commercial, and industrial) allow
for the integration of customers as individual prosumers. Moreover, groups of prosumers
are able to communicate and provide greater stability at the LV level without significant
investment in these networks. Furthermore, LV MGs commonly combine renewable energy
sources [33], PV installations [34,35], electric vehicle charging [36,37], and hybrid storage
systems [38], aiming to provide auxiliary services for local LV networks [39,40]. Recently,
multi-microgrid systems provide additional reliability of distribution systems and enhance
system resiliency under contingencies [41]. According to the American National Standard
ANSI C84.1, voltages in an electrical system can be classified by the criteria depicted in
Table 2. MGs connected to LV distribution networks can then be used to supply resi-
dential buildings, low-demand industrial buildings, low-demand commercial buildings,
and low-demand buildings.
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Figure 2. Microgrids classification.

Table 2. Range voltage according ANSI C84.1.

Voltage Class Range

Low voltage (LV) ≤1000 V
Medium voltage (MV) >1000 V and ≤100 kV

High voltage (HV) >100 kV and ≤230 kV
Extra high voltage (EHV) >230 kV and ≤1000 kV
Ultra high voltage (UHV) >1000 kV

Rebollal et al. [42], in their review of norms and standards used in MGs and distributed
generation, compare parameters that should be used to evaluate the interconnection and
disconnection states of MGs in the downstream network. These parameters should be
considered in addition to the tolerances and values allowed for electrical grid-codes,
such as voltage, frequency, response time, synchronization, power factor, and steady-
state among other conditions. Among the international standards analyzed, they include
IEC/IEEE/PAS 63547, IEEE 929, IEEE 1547, UNE/EN/IEC 62109, IEC 62898-1, IEC 62898-
2, IEC 62898-3-1, and IEEE P2030.8. Note that it is necessary to develop a technical
framework to converge all the technical suggestions given by these international standards.
Although other protocols are used to automatize power systems and implement them in
MGs —such as DNP3 and IEC104; they are no longer in use due to the implementation of
IEC61850, used for automation of power transformation centers and electrical distribution
networks [43].

The use of MGs in LV distribution networks has the following advantages, over exist-
ing conventional LV networks:

• Any direct dependence on public networks to supply the local demand connected to
the LV distribution network is avoided. MGs also reduce the distribution system’s
losses, since the loads are closer to the source of microgeneration [44]. Electrical
storage systems can also be located close to the demand and the interconnection
bus [45]. Moreover, the integration of a peer-to-peer (P2P) system promotes the
purchase of energy from among MGs, reducing distribution losses and increasing
network operation efficiency [46].

• MGs are able to be contingency systems in the distribution network and energy man-
agement [47], minimizing losses and improving the voltage profile according to the
load connected to the network [48,49]. MGs also allow for changing the traditional
distribution network configuration from a radial to mesh layout [50]. This reconfigura-
tion improves the LV distribution network response, being able to restore the network
under technical failures [51].
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• MGs allow both integration and control of the different EV technologies connected to
the LV distribution network for optimal charging and discharging processes, depend-
ing on the needs of the LV distribution network operator [52]. In addition, MGs allow
managing the power flow within the LV distribution network [53], becoming a link
between the distributed generation and the distribution network [54].

• MGs are elements of the LV distribution network that, through appropriate incen-
tives, can become mechanisms to regulate voltage and frequency within such LV
distribution networks [55]. MGs thus guarantee a reliable electricity supply to cus-
tomers [56], being considered as a backup supply source in the event of a mains power
outage [57]. From their different generation sources, MGs have the ability to allow
the LV distribution network to adapt accordingly under extreme atmospheric and
weather events [58]. In addition, MGs also allow the programming and configuration
of distribution networks as a demand response program [59].

• MGs reduce greenhouse gas emissions from LV distributed generation connected to
the distribution network by managing their energy resources. Therefore, MGs are
positively in line with the Sustainable Development Goals (SDG). More specifically,
Goal 7 focused on obtaining access to accessible, reliable, sustainable, and modern
energy [60].

4. Generation and Demand Forecasting Approaches

Effective energy balancing relies upon two fundamental factors: (i) the corresponding
energy generation reserve that can be specified to the power station, and (ii) the expected
demand and renewable generation forecasting [61]. Forecasting at the MG level has
developed significantly in recent years [62], and it has enhanced both the management and
the use of conventional and renewable energy sources within MGs. Moreover, financial
matters of energy trade with other MGs and the main grid can also be improved [63].
Nevertheless, and due to the variability of renewable resources [64] and the need to decide
how much generation power is used from controllable assets [65], the main objectives
of most forecasting methods at the MG level are focused on estimating both renewable
resources and demand simultaneously. Forecasting of energy resources is required by
the MGS, since they mainly depend on such sustainable resources. These resources can
be inconsistent due to the fact that they rely on stochastic boundaries, such as solar
irradiance, climate, and wind speed [66]. On the other hand, energy demand forecasting is
needed to make microgrids possible and proficient in their determination of likely electric
demand [67]. Forecasting processes can be carried out at different time intervals, such as
very short-term (seconds to hours), short-term (hours to one week), medium-term (weeks
to a month), and long-term (months to a year) [68]. Nonetheless, the short-term time
interval is mainly used in relation to an MG’s ideal activity [69]. The forecasting accuracy of
energy demand and renewable resources plays a fundamental role in successful exchanges
on electricity markets [70]. The accuracy of these approaches is usually evaluated by a
variety of metrics, such as mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean squared error (RMSE) [71]. Other performance metrics that are
not widely used are correlation coefficient (R), mean bias error (MBE), mean relative error
(MRE), and mean square error (MSE). A review and comparison of these metrics can be
found in [72].

Recent studies focused on forecasting energy resources are summarized in Table 3.
In addition, forecasting demand contributions are given in Table 4. In these studies,
different forecasting approaches—such as machine learning [73–79], deep learning [80–86],
and ensemble learning [87,88]—are used and implemented for evaluation. Note that the
ideal approach relies upon the application, necessary horizon, and time step; hence, various
procedures can be effectively executed [89].



Electronics 2021, 10, 2093 8 of 25

Table 3. Renewable energy resources forecasting: a comparison of approaches.

Ref. Year Forecasting Horizon Forecasting Approach Forecasting Model Forecast Accuracy

[79] 2017 Hours Machine learning Back propagation neural network MAPE

[76] 2018 Hours Machine learning Artificial neural network RMSE

[78] 2019 Hours Machine learning Adaptive neuro fuzzy interfence RMSE, MAE, MSE,
MBE, RME

[75] 2019 Hours Machine learning Physical hybrid artificial
neural network MAE, RMSE

[83] 2019 Hours Ensemble learning
Long short-term memory
recurrent neural network,

feed-forward neural network
RMSE

[87] 2019 Day Deep learning Long short-term memory
recurrent neural network RMSE, MAE

[80] 2019 Hours Deep learning Multi–headed convolutional
neural network

MBE, RMSE,
MAPE, MAE

[86] 2019 Hours Deep learning Deep recurrent neural network,
Long short-term memory

RMSE, MAPE,
MAE

[66] 2020 Hours Machine learning Artificial neural network MAPE, MSE

[77] 2020 Minutes Machine learning Artificial neural network RMSE

Table 4. Energy demand forecasting: a comparison of approaches.

Ref. Year Forecasting Horizon Forecasting Approach Forecasting Model Forecast Accuracy

[63] 2018 Day Machine learning Neuro fuzzy inference RMSE, MAE,
MAPE

[74] 2019 Hours Machine learning k-neighbors, Self–organizing
maps MAPE

[73] 2019 Day Machine learning Support vector machine RMSE, MAE

[88] 2019 Hours Ensemble learning GBRT, Xgboost, Decision tree,
Seq2Seq MAE, RMSE

[81] 2019 Hours Deep learning Long short-term memory
recurrent neural network MAE, MAPE

[69] 2020 Hours Ensemble learning Support vector regression, Long
short-term memory

RMSE, MAE,
MAPE, MSE, R

[85] 2020 Hours Deep learning Long short-term memory
recurrent neural network MSE

[82] 2020 Hours Deep learning Multi-layer perceptron artificial
neural network RMSE, MSE, R

[84] 2021 Hours Deep learning Bidirectional long short-term
memory RMSE, MSE, R

5. Low-Voltage Microgrid Management and Control

Samadi et al. [90] affirm that the two most important challenges affecting MG opera-
tion are: (i) the development of intelligent controls for the MG elements, allowing them to
work within an optimal range; and (ii) optimal energy management system (EMS) to main-
tain stability between generation and demand. The EMS of an MG is in charge of verifying
and monitoring the energy flow between each element connected to MG [91]. In addition,
the EMS is based on verifying the status of the distributed generation system, the status of
the load, the operation of the system, the operating and maintenance costs, the technical
and economic restrictions of the system [92], the reduction in the amount of GHG emis-



Electronics 2021, 10, 2093 9 of 25

sions [93], and the status and operating costs of ESS [31]. Figure 3 depicts the information
exchanged between the EMS and the rest of the system. Harmouch et al. [94] identify three
categories of EMS: (i) centralized EMS applied for a specific rule, (ii) decentralized EMS,
and (iii) distributed EMS. Decentralized and distributed EMS have more flexibility for the
operation of a group of MGs. EMS can be configured as autonomous and grid-connected
to an MG network, with different operational requirements. A grid-connected EMS aims
to obtain the highest income according to the market. An EMS in autonomous mode
meets a user’s needs by controlling the loads connected to the MG [95]. Recent studies,
summarized in Table 5, use EMS systems to connect MGs at LV distribution networks.

Table 5. EMS system in a microgrid: Low-Voltage networks.

Ref. Year System Component EMS Type Microgrid

[92] 2018 PV, WT, VE Optimization model compare the state
of charge of the two storage systems Home with V2G

[94] 2018 PV, WT, BESS, Critical loads that are
not controllable, controllable loads

Decentralized multi-agent EMS
(DMA-EMS)

Cluster multiple
microgrid

[96] 2018 PV, WT, BESS, combined cooling heat
power µ–CCHP unit, TESS, Genetic algorithm Industrial

[97] 2018

BSSS, EV, PV, WT, Electrical
controllable loads (ECL), Thermal
controllable (TCL) loads such as

refrigerator (REF), air conditioner (AC)
and electric water heater (EWH)

Two–stage mixed–integer linear
programming (MILP) Home

[98] 2018 BSSS, EV, PV, WT, curtailable loads,
shiftable loads

Stochastic model predictive control
(SMPC) Community

[99] 2019 PV, WT, BESS Model predictive power and voltage
control (MPPVC) method Hybrid AC–DC

[100] 2019 PV, BESS

Adaptive neuro fuzzy inference
system (ANFIS), Training by

clustering and neuro-fuzzy Min-Max
classifier

Multiple

[101] 2019 PV, WT, BESS, Fixed Load economical storage management
system (ESMS) Home microgrid

[102] 2019 PV, WT, BESS
method of Lagrange multipliers and

power scheduling algorithm with
dynamic programming (DP)

Home microgrid

[90] 2019 PV, WT, DIESEL, MT, FC, ESSS EMS based on multi-agent systems
MAS Multiple microgrid

[103] 2019

PV, WT, BESSS, Phosphoric Acid Fuel
Cell (PAFC), Micro-gas Turbine (MT),

and electrical storage as Battery
Energy Storage System (BESS)

Modified Particle Swarm
Optimization Community Microgrid

[104] 2020 PV, WIND Self-evolving type-2 fuzzy logic Multiple microgrid

[105] 2020 PV, WIND Rolling Time Horizon RTH-based
EMS. Home with

[106] 2021 PV, WT, BESS hierarchical energy management
system (HEMS) Home Microgrid

[107] 2021
PV, WT, BESS, Hybrid Energy Storage
System (HESS), Thermal and electrical

loads
Fuzzy Logic Control (FLC) Home Microgrid

[108] 2021 PV, WT, microturbine, solid-oxide fuel
cell (SOFC) Based on frequency control Home community

[109] 2021 PV, BESS Decentralized field (MF) control Home Microgrid

[95] 2021 PV, WT, FC, Microturbine (MT) , BESS Quantum particle swarm optimization Multiple microgrid

[93] 2021 PV, fuel cell (FC), micro-turbine (MT),
diesel generator (DE), battery ESS

Optimization navigator (BARON)
algorithm Multiple microgrid
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Figure 3. EMS information flow.

With regard to renewable energy sources, both standalone and combined renewables
must be connected to the power systems through DC–DC and/or DC–AC power converter
topology [110]. Power converters are defined as a kind of electronic circuit used for energy
conversion that convert electrical energy from a certain supply into energy suitable for
loads (e.g., voltage or current with suitable frequency and/or amplitude) [111]. With the
current displacement of synchronous generators by inverter-based sources supplied by
renewables [112], larger frequency deviations, due to lower rotating inertial energy, have
emerged as additional drawbacks to be solved by providing ancillary services from renew-
ables [113] and MGs [114]. There are two types of converters in MGs: grid-followers and
grid-formers (see Figure 4); grid-tied inverters operate as grid-following sources tracking
the voltage angle of the grid to control output. Nevertheless, and even with inverter
fast frequency support, frequency regulation still depends on the remaining synchronous
generators [115]. Table 6 summarizes and compares the characteristics of recent contribu-
tions focused on grid-following methods for MGs. In addition, Tables 7 and 8 summarize
recent control strategy approaches for residential power inverters with voltage levels lower
than 1000 V.

Figure 4. Grid-following and grid-forming inverter models.
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Table 6. Analysis of contributions based on grid-following inverter MG control.

Refs. Control Method Advantages Drawbacks/Challenges

[116–138] Droop Control

No need for communication
link, excellent flexibility, high

reliability, easy
implementation, and a

combination of a variety of
DGs with different

power ratings

Compromise between
voltage/frequency

regulation and power
sharing, feeding under
unbalanced conditions,

harmonic load sharing and
voltage harmonic

compensation, coupling
inductances, line impedance,

renewable energy sources,
active and reactive power
sharing, load dependency,

and islanding
detection algorithm.

[118,119,127,130,139–141] Central control

Current sharing is perfect
even during the transient

phase, different power rating
inverters can be connected

without changing the control
structure, and voltage

regulation.

The high cost of
communication

infrastructure installing.
Difficult to handle
nonlinear loads.

[119,121,124,127,130,132,135,138,
139,141–149] Master/Slave Control

Transfer of information
between the master controller

and the slave’s controllers.
Reduction of the complexity
and the cost while increasing

the reliability.

If the master unit fails,
the whole system will fail.

[118,129,132,136,139–142,149–157]
Averaging Control for

Voltage Regulation and
Current Sharing

All the inverters in the
microgrid take part in the

voltage, frequency, as well as
the current regulation,

demonstrating the democratic
nature of this controller.

Need for optimization of the
grid power management,
current sharing, and the
voltage control issues.

[118–120,139,158–163] Angle Droop Control

Capable to regulate system
frequency to its set point

without any steady state error
and no communication

channel between sources
allowing for reducing the
frequency deviation and

improving the voltage quality
and enhancing reliability.
Likewise, it ensures that

appropriate power sharing
can be performed under

weakness conditions of the
system by choosing a high

angle gain. This method also
agrees with harmonic power

sharing among DERs.

the selection the high angle
gain has a negative effect on

system stability,
the inaccurate real and

reactive power sharing and
GPS communications. Lack
of synchronism between DG
and low dynamics and slow

response in some cases.

[118,139,164–172] Multi Agent System (MAS)

Agent independency reducing
the need for information

manipulating, increasing the
reliability and robustness of
the control system, plug and
play capability, and learning

agents can be taught previous
behaviors by themselves.

Stability of voltage and
frequency along increasing

scheduling duration.
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Table 7. Inverter control approaches (I).

Ref. Year Power Control Control Equations Control Targets

[173] 2021
Autonomous droop control
(ADC) and decentralized

optimal control (DOC)
PPV = min(MPP, Pdroop);

Qpv = Qdroop

Keeping bus voltage, power
factor range and power capacity.

Voltage limit ≤ 1.095 pu

[174] 2020

The droop method:
hierarchical (primary,

secondary, and tertiary) control
method

ωi = ωnom −miPi;
Vi = Vnom − niQi

Droop control strategy derived
from integrator current sharing

designed and improved.

[175] 2020 Two voltage control methods:
P control and PQ control

g·Vnom
n·(n+1)/2 = (RP + XQ) ·∑n

j=1
1
V̂j

P control reduces active power
output when the inverter voltage

exceeds the specific upper
voltage limit. PQ control, first,

supplies reactive power to
reduce the voltage rise

[176] 2020
Finite control set FCS model

predictive control (MPC).
Droop control

[
Vc
I f

]
= Ad

[
Vc
Ij

]k
+ Bd

[
Vi
I0

]
Aq = eATs ; Bd =

∫ Ts
0 eAτ Bdτ

P offers a wide range of
operation and

adaptation flexibility

[177] 2020

PI controllers and integrate
Cost Optimization Based

Microgrid EMS Using Genetic
Algorithm (GA)

Min(J) = ∑T
t=0 Cugrid + Pugrid

Loss reduction strategy, operated
with an automatic centralized

controller, designed with the IEC
62040-3 standard

[178] 2020 The load side PC (LPC) and
machine side PC (MPC)

iqre f (n) = iqre f (n− 1) +
ki(ωerr−mod(n− 1)) +

kp(ωerr−mod(n))

Offers a wide range of operation
and adaptation flexibility

[179] 2020 Drop control with Newton’s
algorithm for island operation

(
∆p
∆q

)
=

(
DPθ

DPv

QQθ
DQv

)(
∆θ
∆v

) Algorithm for the power flow for
small signal stability

of microgrids

[180] 2020 Inter-phase power transfer
with droop control

Pload > (PMPPT
PV + Pmax

bat +
Pmax

droop)|φx;
SOCmin ≤ SOC ≤ SOCmax

Intra-phase power
management strategy

[181] 2019 Single-phase control strategy.
PV, Group or residences

Ixp = g1p v̂x · eθ jx ;

Ixq = g1q v̂x · eθ jx− π
2

Avoiding overvoltage’s;
assuming that the currently

available power at the DC-side is
the same as the injected power

on the AC-side

[182] 2019

Linear Quadratic Regulator
with added Integral action

(LQRI) with active power filter
(AFP)

d
dt x = [A]x + [B]u + [E]vg;
u = [dd, dp]T ; vg = [vgd , vgq ]

T

fast response, less overshoot and
reduced THD system.

[183] 2019

Droop Control and Model
predictive control under

different circumstances of
variable load conditions and

fluctuating wind speed

P = Re[Vg I f ] =
3
2 [Vgα I fα

+ Vgβ
I fβ

];

Q = Im[Vg I f ] =
3
2 [Vgβ

I fα
+ Vgα I fβ

]

WT–DG–battery–converter
hybrid energy for domestic load

in Pakistan by handling
intermittent nature of RE

resources, and abrupt
load variations
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Table 8. Inverter control approaches (II).

Ref. Year Power Control Control Equations Control Targets

[184] 2019
Droop control and

centralized-decentralized
voltage regulation scheme

PPV,h
j ∈ [PPV,h,min

j , PPH,h,max
j ];

QPH,h
j = αh

j + βh
j · P

PV,h
j

Coordinated Var compensation
for overvoltage mitigation

[185] 2019

Master-slave or multi-master
topologies, modified vector

control and Intra–phase Power
Management

G(s) = ω0−s
ω0+s[

d
q

]
= T

[
α
β

]
PTotal,φ = Pmax

PV + Pmax
Bat + Pmax

Droop

A cooperative control and power
management to ensure that the

loads on all three phases are
supported with as much RES

as possible

[186] 2019
Self-normalized estimator

(SNE) based algorithm.
PV-BES Microgrid

Vt = [2(V2
sa + V2

sb + V2
sc)/3]1/2;

iLA(t) = ∑n
k=1 iLan

sin[σkωt + λk]

Fluctuations in insolation and
temperature, grid outage

conditions, and load variations
are considered

[187] 2019
Fuzzy logic and Angle control

by single loop
proportional-integral (PI)

C(s) = Kp +
Ki
s ;

Kp = −ωc ·sin(θ)
G(j·ωc)

; Ki =
−ωc ·sin(θ)

G(j·ωc)

The energy management unit
(EMU) contained a short-term
and a long-term control unit

[188] 2019

Proportional integral
Controller (PI) and sliding

mode control (SMC) are chosen
to attain the control outputs of

the system

η(PPV + PESU) + Pg = PL;

Ire f
ESU = 1

VESU

(
PL−Pg

η − PPV

)
Stability and reliability of the
entire system are operating

under various operating modes
and demonstrated through the

laboratory experiments

[189] 2019 Voltage control Vnom + n·(n+1)
2 ·Vincr = Vlimit

The impact of P control (limiting
P to prevent voltage rise) on the
operation and overall generation

[190] 2019
PV, Plugging Electric Vehicles

and Batteries. Coordinated
control scheme

Pg,t − PPV
c,t + PPV

d,t + PPEV
c,t + PPEV

d,t −
Pde f ,t = Pω,t

L,t − Pω,L
PV,t

Stochastic dual dynamic
programming (SDDP) algorithm

is then applied to solve the
optimization problem

with uncertainty

[191] 2019 Decoupled Control Strategy
PDC = VDCCd

d
dt VDC;

PAC = I2
in,jR f ;

VDCCd
d
dt VDC = I2

in,jR f

Offering conventional power
electronic-based converter

topology, known as Electric
Spring (ES) a decoupled
dual-function capability.

The modified (ES) is able to
achieve PV–grid interface by

injecting the local available PV
power into grid

6. Demand-Side Management in Low-Voltage Microgrids

The appropriately consolidated activity of distributed energy resources and DSM in a
microgrid establishes a powerful correspondence plan that can assume a significant part in
lessening energy shortcomings by adjusting supply and demand [192]. DSM procedures—
such as flexible load shape, strategic load growth, strategic conservation, flexible load
shape, peak clipping, and load shifting [193]—are used to change customer demand pro-
files in response to emergency conditions or energy market costs [194]. Moreover, DSM
offers demand response (DR), which is considered as an alternative solution to the costly in-
vestment of upgrading conventional distribution networks [195]. Therefore, the role of DR
as a considerable potential for elastic demands in active distribution network management
(ADNM) becomes crucial. Based on the control mechanism of the DSM strategy, DSM can
be divided into two classes: incentive-based and price-based [196]. Some incentive-based
approaches are the following: direct load control (DLC) [197], interruptible/curtailed (I/C)
load programs [198], demand bidding/buyback (DB) [199], capacity markets (CM) [200],
ancillary service markets (ASM) [201], and emergency demand response (EDR) [202].
For price-based approaches, the following approaches are used: fixed pricing, time-of-Use
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(ToU) [203], dynamic time-of-use (dToU) [204], critical peak pricing (CPP) [205], real-time
pricing (RTP) [206], and Vickrey–Clarke–Groves (VCG) [207].

Flexible loads and distributed energy resources can contribute to a distribution net-
work in voltage management. In the decongestion of a distribution network, the manage-
ment of electrical losses by reducing the distance between loads and source generation
increases service reliability [208] and system resilience [209]. Different resources can be
also considered as ’flexible loads’, such as storage systems, heating, ventilation, and air
conditioning (HVAC) systems that are used in residences and businesses [210], water heater
systems, refrigeration units, and electric vehicles are also considered ’flexible loads’ [211].
Among the different strategies, load shifting is considered the most relevant load manage-
ment procedure, shifting loads from peak to valley hours, which can be carried out automat-
ically or manually [212]. Loads can be divided into four types [213]: (i) critical loads, being
essential to the system and must always be connected to the grid; (ii) controllable loads,
which correspond to a flexible demand with variable profiles; (iii) price-sensitive loads,
whose demand depends on the price of energy and the hours of connection to the grid; and
(iv) thermal loads, related to thermal comfort conditions or boiler control for established
conditions. MGs can then reduce the maximum demand values in distribution networks
through a coordinated dispatch of generation and demand. Consequently, different DSM
strategies are applied to coordinate available renewable resources and demand require-
ments. This coordination gives those in charge of the distribution network the ability to
postpone future expansions within the electrical infrastructure connected to MGs [214].

7. Discussion

According to the contributions reviewed in previous sections, we deduce the follow-
ing points:

• The integration of electrical MGs into LV distribution networks presents a remarkable
acceptance among both supply-side and demand-side sectors. Different benefits
are identified by end-users, also known as ‘prosumers’. Additional benefits are
also apparent regarding the environment by reducing fossil fuel dependence and
optimizing the use of renewable energy resources. Most LV MG projects integrate
a relevant number of PV installations and storage system technologies. However,
in turn, these complement other types of distributed generation technologies that
could be integrated into the energy supply systems of distribution network users.

• In terms of forecasting approaches, we analyze machine learning, deep learning,
and assembly learning solutions. Other methods are based on satellite and numerical
predictions, but only minor contributions have currently focused on these methods.
Current trends are characterized by the use of machine learning models for both
demand and resource forecasting.

• Authors propose different modeling approaches for generation resource or demand
forecasting, which means that at least two models are required for an MG. It would
be more efficient to propose a single model to forecast both demand and supply-side.
Note that such models based on artificial intelligence require a large amount of data
for their learning processes. Therefore, it is proposed to evaluate alternative method-
ologies to achieve more efficient learning processes with reduced data volumes.

• Energy management in MGs also tends to converge on the use of a modern learning
tool through programming and the optimal use of energy resources, thus minimizing
the use of interconnected networks for energy consumption. Management systems
based on known techniques—such as droop control or frequency control—are still
being developed to manage resources.

• The results present current trends of residential users as prosumers of small-scale
MG integration. It is also possible to integrate multiple prosumers, so-called MG
communities or clusters. Note that hybrid MGs and plug-in electric vehicles, as dy-
namic storage network elements, would allow for integrating these solutions by using
V2G technologies.
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• DSM approaches applied to electrical MGs are used as a response strategy to demand
profiles, providing a more flexible control focused on the electrical loads of the cor-
responding MGs. Different studies outline some benefits of DSM control strategies.
They propose that different services should be provided by distribution network
operators and MG users. When applied to MGs, DSM solutions commonly divide
electrical loads into critical, controllable, price-sensitive, and thermally controlled
categories. This categorization can optimize the application of DSM in relation to
different MG configurations.

• Regarding inverters for MG control, modern power systems often integrate recent tech-
nologies into their operations. These solutions include IoT and blockchain, among oth-
ers. The Multiagent System (MAS) control method [215,216] can respond to current
computational challenges through omnipresent, intelligent, autonomous, human-
oriented, and supportive attributes. It is based on foundation for intelligent physical
agents standards by representing each major autonomous component in the microgrid
as an intelligent software agent [217]. Both relevant characteristics and aptitudes
improve the extension and flexibility of future power systems by allowing recon-
figuration options and the integration of new agent communication technologies.
Furthermore, MAS improves robustness and reliability of the system due to the ability
to tolerate uncertainties [218], capability to improve the efficiency of computations,
and ability to cooperate, negotiate, or compete with other agents at the stage of
decision-making processes.

• Nowadays, some protocols explain the issues of electrical MGs. However, there
is currently a need to integrate the standards of electronic MGs with standards of
distributed generation (DG) in the distribution network levels and with resistance
standards. This integration is necessary since the electrical MGs will allow distributed
generation to be integrated on a larger scale on the LV distribution network, which will
address a transition from passive electrical networks to active distribution networks.

8. Conclusions and Future Challenges

This paper reviews current trends in electrical microgrids in Low-Voltage distribution
networks. The integration of microgrids has increased considerably due to end-users at
distribution networks using Low-Voltage renewable generation as a way to manage their
demand and significantly reduce their energy bills. Consequently, the power distribution
systems are undergoing a process of transition from passive electrical networks to active
networks. This transition requires large investments, which will allow for optimizing the
operation of the system (such as reducing energy losses, improving the voltage profile,
being a more resilient system) as well as improving reliability through the automation and
integration of distributed generation resources and electrical microgrids. Under this frame-
work, it is necessary to discuss in detail how these active elements are changing the way of
analyzing, planning, and operating the distribution network market, as well as to evaluate
the control strategies and the reliability of these networks. In this paper, the relevance of
renewable energy resources and demand forecasting solutions in microgrids connected
at Low-Voltage distribution networks are discussed. A balance between generation and
demand is necessary to maintain, maximizing energy resources of micro-reservoirs and
reducing their consumption from the grid. Forecasting models of renewable resources and
demand for end-users provide relevant information, depending on the accuracy of such
predictions and the time period being considered. Although there are several forecasting
models and proposals in the specific literature, it is still necessary to continue working on
these forecasting approaches. Indeed, very short-term prediction models typically focused
on 10 min time intervals should be improved due to the stochastic nature of renewable
resources—mainly wind and solar, and their rapid oscillations.

Depending on the type of configuration and distributed generation technology used
for integration, microgrids push conventional distribution networks to use integration
technologies that allow for energy transitions. Many end-users can become prosumers,
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which affects a distribution network operator’s current technical standards and config-
urations. Additionally, different types of controls need to be explored for application in
Low-Voltage microgrids, as do their main characteristics and advantages. Subsequently,
this paper highlights the need to propose alternative and more coordinated solutions
of microgrids (and clusters of multiple microgrids) in Low-Voltage networks, since the
dynamic behavior of end-users of such networks varies over time and produces conditions
that microgrids must detect in order to maintain grid reliability and service availability.
The implementation of microgrids in distribution networks thus requires more studies
focused on innovative systems that allow for increased interaction with future electrical
networks. This paper thus encourages the development of alternative coordinated and
combined microgrid applications in Low-Voltage networks to enhance grid resilience and
flexibility under the current energy transition.
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