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Abstract: This paper focuses on developing an adaptive heart rate monitoring algorithm for wrist-
based rehabilitation systems. Due to the characteristics of the wrist, the heartbeat measurements are
unstable. To improve the preprocessing efficiency and perform measurement calibration, a novel
joint algorithm incorporating automatic multiscale-based peak detection and fuzzy logic control
(AMPD-Fuzzy) is proposed. The monitoring approach consists of two phases: (1) Preprocessing
and (2) Detection and Calibration. Phase 1 explores the parameter settings, threshold, and decision
rules. Phase 2 applies fuzzy logic control and the Laplacian model to provide signal reshaping.
Experimental results show that the proposed algorithm can effectively achieve heart rate monitoring
for wearable healthcare devices.

Keywords: heart rate estimation; automatic multiscale-based peak detection; fuzzy logic control;
wearable device

1. Introduction

The use of photoplethysmography (PPG)-based systems is widespread in clinical
applications of heart rate (HR) tracking. In comparison to the various types of PPG-
based HR monitoring devices, the wristband-type PPG is considered the most popular
and preferred device [1]. The reason for its popularity is partly due to its remarkable
properties such as being inexpensive, highly portable, and very convenient to wear by its
users. Esfahani [2] presented that for the placement of an inertial measurement unit (IMU),
the wrist is one of the most frequently selected locations, with 55.6 percent preference.
Accordingly, the features of wristband-type placement may be utilized to design more
convenient and comfortable healthcare systems. Following this concept, we developed a
pulmonary rehabilitation (PR) system, evolving from a biosensor module-based approach
(Figure 1 (left)) [3] to an arm bag-based way (Figure 1 (right)) [4] to a wrist-based wearable
system (Figure 1 (bottom)). Note that PR is widely regarded as an effective therapy [5,6]
for patients with pulmonary disease, considering the overload principle (e.g., the training
intensity) and safety concerns (e.g., heart rate). Since the heart rate measurement is critical
in the PR operation, this work focuses on the HR monitoring.

Figure 2a–c show the finger and wrist PPG signals. Observe that the wrist measure-
ments are unstable. Even with a heartbeat bracelet on the market [7], Figure 2d shows
the fluctuation of PPG signals on the dynamic wrist. This is because the measurement
accuracy is subject to noise introduced by the variation of skin contact on the patient, device
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movement, or environmental conditions [8]. Therefore, this work aims to develop an HR
tracking mechanism for healthcare applications with wrist-based wearable devices.
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Figure 2. (a) Photoplethysmography (PPG) Signal (Finger); (b) PPG Signal (Static wrist); (c) PPG Signal (Dynamic wrist); 
and (d) Estimated heart rate without preprocessing (Dynamic wrist). Note that the axis names for PPG signals and esti-
mated HRs are (PPG (arbitrary unit) vs. Time (samples)) and (HR (bpm) vs. Time (s)), respectively. 

Heart rate tracking from a wrist-type PPG signal during physical activities is a chal-
lenge. The commonly used motion artifact rejection methods are incapable of achieving 
satisfactory tracking performance. To solve the above problem, several algorithms have 

Figure 1. Pulmonary rehabilitation: a biosensor module-based system (top left) [3]; an arm bag-based
system (top right) [4]; the proposed wrist-based wearable system; the prototype (bottom left); and
the system size (bottom right).
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Heart rate tracking from a wrist-type PPG signal during physical activities is a chal-
lenge. The commonly used motion artifact rejection methods are incapable of achieving sat-
isfactory tracking performance. To solve the above problem, several algorithms have been
developed to refine the heart rate estimates, such as adaptive filtering [9], wavelet-based
denoising [10], independent component analysis [11], empirical mode decomposition [12],
time frequency analysis, and signal decomposition [13]. However, their performances are
highly dependent on heuristic thresholds or parameters tuned for specific scenarios, which
makes them impractical in natural environments where a user performs a wide range of
physical activities in daily life [14].

In consideration of tackling the above challenge, the major contributions and features
of this work are as follows: (1) the proposition of a novel HR monitoring algorithm,
integrating the properties of automatic multiscale-based peak detection (AMPD) [15] and
fuzzy logic control (AMPD-Fuzzy); (2) the development of parameter settings, thresholds,
and decision rules to improve the preprocessing efficiency; (3) the construction of a fuzzy
logic control to determine the value of an adaptive parameter for adjusting the signal
index range of overlap and calibration; (4) the use of the Laplacian model to perform
periodic offset calibration and remove noise interference. The performance comparison of
the existing and proposed systems is detailed in Section 2.4.

The rest of the paper is organized as follows. Section 2 reviews the literature and
background information. In Section 3, we describe the proposed AMPD-Fuzzy algorithm.
Section 4 evaluates the system performance. Section 5 concludes this study and describes
future work.

2. Background and Related Work

This section introduces background information and related work, including the
wristband-type PPG-based devices, the sources of measurement inaccuracy, the learning
models, and the time-frequency analysis.

2.1. Wristband-Type PPG-Based Devices

Although the wristband-type PPG is considered the most popular and preferred
device, these devices have their own limitations [16] related to signal quality. Lee [17]
presented a wristwatch PPG probe positioned on the ulnar and radial arteries around the
patient’s wrist instead of the blood capillaries, which is the common measurement site. The
proposed device improved sensitivity and accuracy of the PPG signal by using an array
of sensors, IR-LEDs, and photo transistors. Thomas [18] proposed a method to mitigate
the effects of motion artifacts on the quality of the PPG signal with an inertial sensor along
with green LEDs.

2.2. Sources of Inaccuracy—Motion Artifacts

Due to the high probability of the proximity of HR and motion artifact spectral
peaks and spectral peak randomness, the removal of motion artifacts is an important
preprocessing step in classical signal processing to calculate the HR from PPG. In [19], HR
calculations were divided into four phases, including pre-filtering, motion artifact removal,
peak detection, and peak tracking. Zong [20] addressed the HR tracking problem in two
distinct stages: pre-filtering and peak tracking. The pre-filtering stage focused on noise
and movement artifact removal. The peak tracking stage contained the peak detection
and tracking operations. Sources of inaccuracy in wearable optical heart rate sensors were
further investigated in [21,22].

2.3. Learning Models

Very recently, several deep-learning-based approaches have been proposed to estimate
the HR from contaminated PPG signals, such as CorNET [23] and Deep PPG [24], which
were trained for each different individual and rely on the HR derived from electrocar-
diography (ECG) signals as the labels. Chang [14] proposed DeepHeart, an approach
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for HR estimation from contaminated PPG signals using deep-learning-based denoising
and spectrum analysis, which generated clean PPG signals from ECG signals based on a
training data set. DeepHeart applied deep convolutional neural networks ensemble for
denoising the PPG signals. To obtain the labels of the contaminated PPG signals, a method
to generate clean PPG signals from ECG signals was designed. With the contaminated
PPG signals and their labels, denoising convolutional neural networks were trained for
denoising. As a result, most of the motion artifacts were removed from the contaminated
PPG signals. Then, a spectrum-analysis-based HR calibration algorithm was applied to the
processed PPG signals.

2.4. Time-Frequency Analysis

Cicone [25] argued that despite the popularity of the noninvasive, economic, com-
fortable, and easy-to-install PPG, it was still lacking a mathematically rigorous and stable
algorithm which can simultaneously extract information from a single-channel PPG sig-
nal. Two nonlinear time-frequency analysis techniques, the de-shape short time Fourier
transform and the synchrosqueezing transform, were applied to extract the instantaneous
physiological information from the PPG signal in a reliable way. Masinelli [26] proposed a
spectral peak recovery algorithm for the pulsewave reconstruction of PPG signals, exploit-
ing the local semiperiodicity of the pulsewave signal, together with the information about
the cardiac rhythm provided by an available simultaneous ECG.

In the frequency domain, Temko [27] used Wiener filtering to filter the motion artifacts
noise of the three-axis acceleration in motion, refined the estimated heart rate data through
a phase vocoder, used linear regression for instance calibration, and finally performed
the post-processing through a Viterbi decoder. Yang [28] applied an adaptive spectrum
noise cancellation algorithm to estimate the heart rate data. However, the complicated
operations made the algorithm not suitable for wearable systems. In the time domain, the
AMPD-BL algorithm in [29], jointly integrating the AMPD [15] and Bayesian learning (BL)
approaches, was used to estimate the heart rate data.

Considering the capabilities of the wearable device, this work adopts the AMPD-
based scheme for heart rate monitoring. For the purpose of performance comparison,
the AMPD-BL algorithm is used to explore the feasibility of the proposed AMPD-Fuzzy
algorithm. To provide background on peak detection, the following subsection explores the
characteristics of heartbeat signals and briefly describe the AMPD algorithm, considering
the Laplacian distribution and the Bayesian learning scheme.

Table 1 depicts the performance comparison of existing and proposed systems, con-
sidering features and limitations of time-frequency analysis. Most of the existing methods
applied pre/post-processing techniques to remove noise interference to recover the signal
peak, which may lead to limitations and challenges ranging from device architecture, time
consumption, and computational operations to data acquisition methods. In contrast,
the proposed AMPD-Fuzzy is able to perform noise filtering, adaptive parameter setting,
and real-time heart rate monitoring, which achieves heart rate monitoring for wearable
healthcare devices with a low intensity activity.

2.5. Background-AMPD Schemes

This section introduces the background information, including on the AMPD and
Bayesian learning (BL) approaches.
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Table 1. The performance comparison: features and limitations.

Methods Features Limitations

Masinelli [26] • spectral peak recovery • using multimodal sensors

Temko [27]
• using pre/post-processing to predict

heart rhythms
• noise reduction

• time consuming
• not a real-time prediction

Yang [28] • adaptive spectrum noise cancellation
• complicated operations
• not suitable for wearable systems

AMPD-BL [29] • using lightweight processing,
• static heart rhythm measurement.

• preprocessing is only valid for the static wrist
• tending to have heart rate prediction offset

Proposed AMPD-Fuzzy

For a low intensity activity, the proposed
algorithm achieves:
• noise filtering
• adaptive parameter settings
• real-time heart rate monitoring

For an intensive exercise, a large variation of heart rate
prediction is observed

2.5.1. Heart Rate Detection

The standard unit for calculating heart rate is beats per minute (BPM). With the
duration of 60 s, one alternative for calculating the BPM is to divide 60 by the timestamp
difference of two adjacent detected peaks, PeakInterval, as described in Equation (1). Thus,
we reshape the problem to finding the timestamps of the detected peaks of the heartbeat
signal as follows:

Heart rate =
60

PeakInterval
(bpm). (1)

Note that the sampling period of the PPG signal is set to be 0.1 s. Similar to the
operations of the AMPD algorithm, a window size (e.g., 15 samples) is used for the control
of data blocks, considering the minimum detectable heart rate value 40 BPM. Accordingly,
Equation (2) describes the relationship between the window size and the heart rate BPM,
which yields:

Heart rate =
60

0.1 ∗ PTD
, (2)

where PTD is the sample index difference of two adjacent detected peaks.

2.5.2. AMPD Algorithm

This subsection briefly introduces the AMPD algorithm, which aims to detect the peak
positions in a heartbeat signal. Denote myHeartXi = {X1, X2, X3, . . . , XN} as a vector
to record periodic or quasi-periodic peaks in a sampled signal, and let the moving win-
dow length wk

(
wk = 2k|k=1,2, ..., L

)
be a tunable parameter to calculate the local maxima

scalogram, where L = [N/2] − 1 and [z] is the ceiling function that rounds up z to an
integer.

By comparing the neighboring samples in the moving window, we can determine
whether Xi is a local maximum, which suggests that with the varied scale k of the signal,
we can detect the maximum PPG signal in different BPMs. Given i = k + 2, . . . , N − k + 1,
the operations of Equation (3) result in an k × N matrix M with element mk,i, as follows:

mk,i =

{
1, Xi−1 > Xi−k−1 and Xi−1 > Xi+k−1
0, otherwise

(3)

Afterwards, the probability of Xi is given by dividing the sum of the elements in
column i with L, which yields the probability P(i)

1 that point i is the peak:

P(i)
1 =

∑L
n=1 mn,i

L
(4)
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Figure 3 shows a PPG signal, which is further applied to form a signal vector for
heart rate detection. Observe that the signal vector in the moving window consists of
overlapping and non-overlapping peaks. Referring to the operations of Equation (3),
the matrix M is calculated from the PPG signal vector. A typical example is shown in
Equation (5), which provides a way to describe the relationship among the sample point i
and its neighboring samples. Accordingly, based on the probability P(i)

1 (Figure 4 (left)),
an appropriate threshold can be determined for signal preprocessing. Equation (5) is
calculated as follows:

M =



1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,


(5)
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2.5.3. Laplacian Distribution

Since a heartbeat is a periodic continuous-time signal, Quer [30] proved that the
Laplacian model could be used to analyze the heart rate data for predicting the next peak
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of the signal. Denote tm as the mth instant of time corresponding to a heartbeat. The
process Y is defined by the timestamp difference of two adjacent detected peaks, which is
calculated as:

Ym = tm+1 − tm. (6)

Moreover, define process d as the timestamp difference between consecutive peak
intervals, which is:

dm = Ym+1 −Ym. (7)

Ismail [19] showed that the Laplacian model exhibited the best fit for analyzing the d
process. Based on the analytical results, the probability density function P(i)

2 is given by
the following:

P(i)
2 =

1
2b

exp
(
−|Di − µ|

b

)
, (8)

where Di = Yi −Ylast, Yi represents the difference between sample i and the last detected
peak, Ylast represents the last recorded timestamp difference of two adjacent detected peaks
from the last window cycle, µ is defined as the median, and the parameter b is:

b =
1

Nd

Nd

∑
j=1

∣∣dj
∣∣. (9)

where Nd is the number of records of the process d. Note that in the PPG signal, we can
reasonably let µ be zero. Since a heartbeat is periodic, this leads to a smaller value of b and
a larger value of P2. Figure 4 (right) shows the Laplacian probability of the PPG signal, as
depicted in Figure 5. Observe that in Figure 4 (right), since a peak is detected in sample
i = 4, the P2 value turns to zero in sample i = 5. The calculation process is detailed in
Section 3.
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2.5.4. AMPD-BL Algorithm

With probabilities P(i)
1 and P(i)

2 , a probability value adjustment may be applied by a
Bayesian learning approach, integrating the AMPD and Laplacian algorithms, to refine the
possibility of sample point i for being a local peak. Assume that the probability of having
a peak at sample i is P(i)

2 , which can be initially calculated using Equation (9). Since the
adjusted probability Padjust(i) is related to the output of the AMPD (i.e., AMPDoutput(i) = 1

or 0) and the probability density function P(i)
2 , the adjusted probability can be written as:

Padjust(i) = P
(

AMPDoutput(i)

∣∣∣P(i)
2

)
P
(

P(i)
2

)
prior

. (10)
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Alqaraawi [29] addressed that the Beta function can be used to model P
(

P(i)
2

)
prior

that initially considers the probability computed in Equation (8) as the expected value for
this distribution, which is given by:

P
(

P(i)
2

)
prior

=
Γ(α + β)

Γ(α)Γ(β)
∗
(

P(i)
2

)α−1 (
1− P(i)

2

)β−1
(11)

with E
[

P
(

P(i)
2

)
prior

]
= α

α+β , where the symbol Γ is Gamma function and Γ(α+β)
Γ(α)Γ(β)

is a

normalized constant to ensure that the total probability integrates to 1. α and β are
hyper-parameters that control the shape of the distribution. Assume that (α + β) is a

constant, and set the expectation value to be E
[

P
(

P(i)
2

)
prior

]
= P(i)

2 . Therefore, to obtain

the desired parameters α and β for sample i, we have P
(

P(i)
2

)
prior

∼ B(α + β) with

P(i)
2 = α

α+β . As shown in Figure 6, a small value of P(i)
2 generates a positively skewed

probability distribution and a gradually increasing value of P(i)
2 generates a negatively

skewed probability distribution. This output is consistent with the heartbeat signal.
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Based on the threshold setting and the output of AMPD, P(i)
1 can be further set to 1

and 0 (i.e., if P(i)
1 is greater than the threshold, change it to 1; otherwise, change it to 0),
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which implies that the output of the AMPD can be considered as a Bernoulli experiment.
Therefore, P

(
AMPDoutput(i)

∣∣∣P(i)
2

)
is given by:

P
(

AMPDoutput(i)

∣∣∣P(i)
2

)
=
(

P(i)
2

)n (
1− P(i)

2

)1−n
, n ∈ {0, 1} (12)

Substituting Equations (11) and (12) into Equation (10) yields:

Padjust(i) =
Γ(α + β)

Γ(α)Γ(β)

(
P(i)

2

)n+α−1 (
1− P(i)

2

)β−n
. (13)

In Equation (13), as AMPD’s output equals to n = 1, let α = α + 1 and β = β, having
the Beta distribution close to the negatively skewed probability distribution (i.e., sample
i is close to the next expected peak). On the other hand, when AMPD’s output equals to
n = 0, let α = α and β = β + 1, having the Beta distribution close to the positively skewed
probability distribution (i.e., sample i is close to the last detected peak). Accordingly, we
integrate the adjusted probability Padjust(i) from the threshold to 1 to obtain the probability

of the peak P(i)
3 , which is:

P(i)
3 =

∫ 1

threshould
Padjust(i)dP(i)

2 . (14)

Note that the threshold is based on the AMPD output. Based on the above analysis,
the peak position is determined by the index with the maximum value of the product of
P(i)

1 and P(i)
3 for all samples within the index range of a window, which is given by:

Peaki = argmax
i

[
P(i)

1 P(i)
3

]
. (15)

Figure 7 shows the block diagram of the AMPD-BL. Readers may refer [29] for details.
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2.5.5. Performance Discussion

Figure 8a shows the heart rate measurements by using a static fingertip. Observe
that the thin skin on the fingers, which causes less interference, leads to good detection
performance with the AMPD-BL approach. However, when measuring the PPG signal on
the dynamic or static wrist (the symbol “b” in Figure 7), Figure 8b,c show the performance
degradation due to the much larger effect of interference in wrist PPG measurement. As
shown in Figure 8d, the peak values are calibrated to better positions with the AMPD-BL
the symbol “c” in Figure 7, but a part of the peak values are missing or calibrated to the
wrong positions. To resolve the above problem, this work aims to develop a novel joint
algorithm, incorporating the concepts of automatic multiscale-based peak detection and
fuzzy logic control, for adjusting the signal index range of overlap and performing offset
calibration.
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3. The Adaptive Heart Rate Detection System

This section describes the proposed AMPD-Fuzzy algorithm, incorporating the AMPD
algorithm with fuzzy logic control. Due to the measurement interference of the wrist
PPG signal (e.g., movement or swinging of the hand), a data processing operation is
implemented. Moreover, since the heartbeat is a continuous instant signal, considerably
reducing the calculations is essential for balancing the overall system computing time.
The following subsections describe the design principles of the proposed AMPD-Fuzzy
algorithm, including a window protocol, data processing, the fuzzy control mechanism,
and the signal calibration. Figure 9 shows the block diagram of the proposed AMPD-Fuzzy
algorithm.
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3.1. Design of a Sliding Window Protocol

Based on the AMPD, the design of a sliding window protocol and the method of data
overlap are developed. In the proposed scheme, the parameter L for sample comparison
in Section 2.2 is set to 1, which means that sample Xi only compares the previous and the
next samples. Referring to the description of the AMPD in Section 2, if the sample Xi is
greater than the previous and the next samples, then the sample Xi is compared with the
entire myHeartXi vector such that the probability of Xi for being a local maximum can be
calculated (Equations (16) and (17)). In contrast, in order to reduce the data processing
time, the probability of Xi for being a local maximum is calculated only when the sample
Xi is larger than the previous and the next samples. Equations (16) and (17) are calculated
as follows:

AMPDi =

{
1, Xi ≥ Xk
0, otherwise

(16)
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P(i)
1 =

∑
Window_Length
k=1 AMPDi

Window_Length
(17)

where Window_length = HR_data + HR_fuzzy.
Figure 10 shows that a window (previous HR_Fuzzy = 6, HR_Fuzzy = 8) consists of

two parts: (1) the range of sample indices for HR_Data, including the range of sample
indices determined by the previous HR_Fuzzy parameter, and the range of sample indices
for heart rate samples, which is equal to a fixed size (e.g., 15 heart rate samples, ranging
from X25 to X39 in Figure 10) and (2) the range of sample indices for latest heart rate
samples (i.e., the updated HR_Fuzzy value). Accordingly, the window length is equal
to the sum of the range of sample indices of HR_Data and the value of the HR_Fuzzy
parameter, which makes the window length adaptive. Given the heart rate samples within
a window, if sample Xi is larger than the previous and the next samples, the heart rate
samples (i.e., the heart rate samples within the sliding window) are applied to generate a
signal vector for calculating P(i)

1 .
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1 .

Because of the characteristics of the sensor, the baseline level of a PPG signal is varied.
Based on the above window structure, the P1 value can be calculated for determining
a peak position. The procedures of data processing and the selection of the HR_Fuzzy
parameter are detailed in Section 4.2.

3.2. Principle of Signal Overlapping and Data Processing

Under normal circumstances, a peak rarely appears within the next few samples after
detecting a peak. Hence, based on the sampling rate and the BPM, denote the parameter
HR_Fuzzy as the range of sample indices that no peaks are detected. For example, if a
patient’s current average heart rate is 60 bpm, it is rare for his/her average heart rate to
jump to 100 bpm suddenly. Note that the peak interval of 60 bpm is 10 samples, and the
peak interval of 100 bpm is 6 samples, which means that, as a peak is detected, a signal peak
may not occur in the next 6 samples. Because of that, the sampled signals are overlapped
and cascaded in the heart rate vector.

According to the above principle, Figure 11 shows a sequence diagram of signal
overlapping and data processing with a heart rate vector. Observe that the samples in the
output sub-window are applied for the calculation process (detailed in Section 3.4) and the
samples in the input sub-window are used to determine the HR_Fuzzy data for the next
window cycle.
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heart rate, the corresponding triangular membership function is narrower. 

Table 2. The range of each membership function for input 1. 
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Figure 11. A sequence diagram of the heart rate vector.

Considering the HR_Fuzzy = 6, Figure 12 (left) shows the signal vector with the initial
setting of the previous HR_Fuzzy samples zero. Similarly, Figure 12 (right) shows the
second window with HR_Fuzzy = 6, where the first 6 samples of the heart rate vector are
set to be the last 6 samples of the previous window cycle. After briefly describing the
principle of signal overlapping, the fuzzy control mechanism for determining the value of
the HR_Fuzzy parameter is presented in Section 3.3.
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3.3. Fuzzy Control Mechanism

This section describes the fuzzy control logic for adaptively determining the value of
the HR_Fuzzy parameter with two fuzzy inputs, the current heart rate and the trend of the
heart rate.

3.3.1. Fuzzy Inputs

Fuzzy input 1 is based on the current heart rate, where the membership functions of
different heart rate ranges are shown in Table 2. The classification criterion is based on
the heart rate value calculated by the peak interval. Compared with a high heart rate (say,
120~140 bpm), a change of the peak interval causes an obvious change of the heartbeat
with a low heart rate (say, 60~80 bpm), as shown in Figure 13 (left). Therefore, with a lower
heart rate, the corresponding triangular membership function is narrower.

Table 2. The range of each membership function for input 1.

Heart Rate Range Min Max

‘Trapezoid’, [0 0 60 70] 0 65
‘Triangle’, [60 70 85] 65 77.5
‘Triangle’, [70 85 100] 77.5 92.5

‘Triangle’, [85 100 120] 92.5 110
‘Triangle’, [100 120 150] 110 135

‘Trapezoid’, [130 150 180 180] 135 180
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Fuzzy input 2 considers the heart rate tendency through the change of latest heart
rates and the maximum difference of the previous k heart rates. Table 3 describes the
relationship between heart rate and peak interval. Denote the Difference Ratio (DR) as the
ratio of the change of latest heart rates, HRti −HRti−1 , to the maximum difference of the
previous k heart rates, τti , which yields:

DR =
HRti −HRti−1

τti

(18)

τti = max
{∣∣HRtl −HRtl−1

∣∣ : i− k− 1 < l < i− 1
}

(19)

Table 3. The heart rate vs. peak interval.

Peak Interval (the Range of Sample Indices) Heart Rate (bpm)

10 60
9 66.6
8 75
7 85.7
6 100
5 120
4 150
3 200

The membership function of the DR is depicted in Figure 13 (right).

3.3.2. Fuzzy Output

A fuzzy rule-based model is defined with fuzzy conditional statements. Table 4
summarizes the proposed fuzzy rule-based system to determine the value of the HR_Fuzzy,
which is associated with 18 rules, considering heart rate and difference ratios (DR). Note
that since the heart rate rarely jumps or drops 2 or more intervals in 1.5 s, a single-interval
adjustment is performed for setting the value of the HR_Fuzzy. Figure 14 shows the output
of the center of area (COA) defuzzification method.
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Table 4. A fuzzy rule-based model.

HR
DR

Down Maintain Up

Very slow 9 8 7
Slow 8 7 6

General 7 6 5
General fast 6 5 4

Fast 5 4 3
Very Fast 4 3 3
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3.4. Detection Threshold

Under the above circumstance, the threshold of P1 is dynamically adjusted according
to the current heartbeat value. Observe that although the baseline is varied, the peak
value is set to be the local maximum sample of the heartbeat signal and the sample index
difference from two adjacent peaks is at least the value of HR_Fuzzy. That is, the adjacent
peaks are at least the value of HR_Fuzzy away in the sample index. Thus, the threshold is
given by:

P(i)
1 =

∑
Window_Length
k=1 AMPDi

Window_Length
>

HR_fuzzy
Window_length

(20)

That is:
∑ AMPDi > HR_fuzzy (21)

Through the characteristics of the peak, the peak value is larger than the previous and
the next samples. Moreover, because the heartbeat value is examined in units of windows,
it may make the first and last data incomparable. To solve this problem, we apply the
parameter HR_Fuzzy to include part of the data in the previous window and process the
HR_Data to increase the detection accuracy.

Accordingly, Equation (22) shows a new generated vector AMPD_Out, which com-
pletes the preprocessing procedure after sample comparison. As shown in Figure 15a, the
desired heartbeat output vector is formed for detection.

AMPD_Outi =

{
1, (Xi ≥ Xi−1)&(Xi ≥ Xi+1)&

(
P(i)

1 ≥ threshold
)

0, otherwise
(22)
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Figure 15. (a) The first window cycle of AMPD_Out vector with HR_Fuzzy = 6; (b) The second
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Similar to the sliding window protocol in Section 3.1, the AMPD_Out vector con-
sists of two parts: AMPD_Out[HR_Data] and AMPD_Out[HR_Fuzzy]. Note that the
AMPD_Out[HR_Fuzzy] obtained in the first window cycle is applied to construct the
AMPD_Out vector of the second window cycle. Figure 15b shows the AMPD_Out vec-
tor of the second window cycle with HR_Fuzzy = 8. The preprocessing and threshold
determination procedures of the AMPD-Fuzzy are depicted in Algorithm 1.

Algorithm 1. Comparison procedures of the AMPD-Fuzzy.

1. Let the window length N = HR_Data + HR_Fuzzy.
2. Sample the heart rate signal and overlap myHeart vector with the parameter HR_Fuzzy.

myHeart Xi = {X1, X2, X3, . . . , XN}.
XN+1= first data of next window.

3. Calculate the threshold of AMPD.

AMPD_Threshold = HR_fuzzy
N

4. Determine whether the sample i is larger than the previous and the next samples.
for (n = HR_Fuzzy; n ≤ N; n ++)

if ((Xn > Xn−1) & (Xn > Xn+1))
� Compare the value of each sample, and calculate P1

for (j = 1; j ≤ N; j ++)
if (Xn ≥ Xj)
AMPD[n] = AMPD[n] + 1;

end for
� Whether P1 is greater than threshold.

Generate a new vector AMPD_Out to complete the preprocessing.
if ((AMPD[n]/(N)) > AMPD_Threshold)

AMPD_ Out [n] = 1;
else

AMPD_ Out [n] = 0;
end if

end if
end for
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3.5. Calibration and Detection

Referring to the description of Y and d processes in Section 2, the Laplacian analysis
is summarized in Algorithm 2. Note that Laplacian distribution’s parameter b and the
HR_Fuzzy parameter play key roles for describing the measurement characteristics and
detection mechanism. Through these two parameters, the preprocessed vector AMPD_Out
can be applied for further calibration. Note that the output vector in the current window cy-
cle consists of two sub-vectors, the AMPD_Out[HR_Data] and the AMPD_Out[HR_Fuzzy],
for the next processing window.

During the operation procedure, when AMPD_Out[i] = 1, the index of the sample i
will be multiplied by the weight, P(i)

2 , which can be derived by the Laplacian analysis in
Algorithm 2. Similarly, weight the sampled signals with AMPD_Out = 1 and add them
up. Then, divide this summed value by the sum of P(i)

2 and use the round function to
obtain a new index (Equation (23)). Since the calibration is a window-based operation, the
peak position of the heartbeat may run into the index range of the sub-vector AMPD_Out
[HR_Fuzzy], which carries this peak information to the next window cycle as the part of
data overlap:

inew = [A/B + 0.5], (23)

where A = ∑
i+HRFuzzy
i i× P(i)

2 , B = ∑
i+HRFuzzy
i P(i)

2 , and [ ] is a floor function.

Figure 16a shows P(i)
2 of each sample point. With a new peak in i = 6, observe

that when i = 7, the P(i)
2 reduces to 0. Figure 16b shows a typical example AMPD_Out

with HR_Fuzzy = 6. As shown in Figure 16c, since the noise has been filtered, samples
i = 1, 2 are removed and sample i = 15 is carried over into the AMPD[HR_Fuzzy] vector.
Therefore, this peak will be considered and calibrated in the next cycle heart rate calculation
with next HR_Fuzzy samples. Figure 16d shows that based on the next cycle of AMPD_Out,
the previous calibrated AMPD_Out[HR_Fuzzy] will be used in the next cycle.
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2 of each sample point; (b) an example of a heart rate output vector; (c) an example of a
calibrated heart rate output vector; (d) next cycle of heart rate output vector.
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Algorithm 2. Laplacian distribution procedure.

1. Record the last j heart rate peak interval

Yi =
{

Y1, Y2, . . . , Yj

}
.

2. Use (2.10) to calculate Laplacian’s parameter b
for (n = 1; n ≤ j− 1; n ++)

S = S + |Yn+1 −Yn|.
end for with b = S

(j−1)

3. The parameter b will be used in the next subsection to calculate P(i)
2 = 1

2b exp
(
− |Di−Y1|

b

)
Figure 17 shows the flow chart of calibration, calibrating the AMPD_Out data within

the range of HR_Data and then generating the heart rate of this cycle.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 28 
 

 

Algorithm 2. Laplacian distribution procedure. 
1. Record the last j heart rate peak interval 𝑌௜ = ൛𝑌ଵ, 𝑌ଶ, … , 𝑌௝ൟ. 
2. Use (2.10) to calculate Laplacian’s parameter b 

for (n = 1; n ൑ j − 1; n + +)  𝑆 = 𝑆 + |𝑌௡ାଵ − 𝑌௡|. 
end for with b = ௌ(௝ିଵ) 

3. The parameter b will be used in the next subsection to calculate 𝑃ଶ(௜) = ଵଶ௕ 𝑒𝑥𝑝 (− |஽೔ ି ௒భ|௕ ) 

Figure 17 shows the flow chart of calibration, calibrating the AMPD_Out data within 
the range of HR_Data and then generating the heart rate of this cycle. 

 
Figure 17. Calibration flow chart. 

3.6. System Implementation 
As shown in Figure 18, GY-521 (InvenSense Inc., San Jose, CA, USA) [32] is used for 

measuring human walking speed and Max30105 (SparkFun Electronics, Niwot, CL, USA) 
detects SpO2 and heart rate through red, green, and IR LED [33,34]. These sensors and 
components are integrated with a small device strapped to the patient’s wrist. Arduino 
delivers the processed date to a smartphone using Bluetooth (Figure 19a,b). The 
smartphone saves the data to SQLite and then uploads the rehabilitation information to a 
database through the Internet (Figure 19c). On the patient side, their rehabilitation history 
can be displayed on their smartphone. On the hospital side, patient’s rehabilitation pro-
cedures can be illustrated on the website. 

Figure 17. Calibration flow chart.

3.6. System Implementation

As shown in Figure 18, GY-521 (InvenSense Inc., San Jose, CA, USA) [32] is used for
measuring human walking speed and Max30105 (SparkFun Electronics, Niwot, CL, USA)
detects SpO2 and heart rate through red, green, and IR LED [33,34]. These sensors and
components are integrated with a small device strapped to the patient’s wrist. Arduino de-
livers the processed date to a smartphone using Bluetooth (Figure 19a,b). The smartphone
saves the data to SQLite and then uploads the rehabilitation information to a database
through the Internet (Figure 19c). On the patient side, their rehabilitation history can be
displayed on their smartphone. On the hospital side, patient’s rehabilitation procedures
can be illustrated on the website.
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4. Performance Evaluation

This section presents the system performance with the hardware and prototype de-
scribed in Section 3.6. Three experiments are conducted to assess the system feasibility.
Experiment 1 explores the preprocessing performance. Experiment 2 explores the perfor-
mance of AMPD-BL tracking. Experiment 3 quantitatively analyzes the AMPD-BL, the
AMPD-Fuzzy, and a referenced system [7]. As depicted in Section 2.2, for the AMPD-BL
algorithm [20], the symbol “a” represents the preprocessing output, the symbol “b” repre-
sents the estimation output with Laplacian distribution, and the symbol “c” represents the
final estimation output. For the AMPD-Fuzzy algorithm, the symbol “d” represents the
preprocessing output, and the symbol “e” represents the final estimation output.
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4.1. Experiment 1: Preprocessing

As shown in Figure 20a, it is the heartbeat signal detected on the wrist. In Figure 20b,
red samples are the local maxima through AMPD-BL algorithm by threshold = 6/L with
L = 7. As depicted in Figure 20c, when the threshold value decreases, the region of local
maxima will increase. As shown in Figure 20d, red samples are the local maxima through
the AMPD-Fuzzy algorithm with L = 1. Comparing Figure 20c,d, we can see that in the
preprocessing phase, the difference between the results of these two algorithms is not
obvious.
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PPG signal with AMPD-Fuzzy (L = 1).

4.2. Experiment 2: AMPD-BL Tracking

This section describes the estimation performance of the AMPD-BL, which predicts
the heartrate in three ways: Method 1 (Based on P2, use P1 to adjust P2), Method 2 (Based
on P1, determine whether the P(i)

2 value is greater than the threshold), and Method 3 (Based
on P2, apply Bayesian learning to derive P3).

4.2.1. Method 1

After the preprocessing phase, the value of P2 is used to mark the peak value of the
local maximum, referring to the symbol “b” in Figure 7. As shown in Equation (24), we
adjust P2 according to the value of P1, and set a threshold to decide whether the local
maximum sample is a peak value. Figure 21a shows the estimated peak values through this
decision, where the peak positions seem to be periodic, but not at the peak positions of the
PPG signal. As shown in Figure 21b, the heart rate value is about 75 bpm. This is because
the previous few heart rates are 75 bpm, and the P2 value for the next heart rate may be too
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high to be adjusted through P1. For the heart rate value about 83 bpm, Figure 22a,b show
similar conditions, not at the peak positions of the PPG signal.{

P2 = P2 + 0.1 P1 = 1
P2 = P2 − 0.1 P1 = 0

(24)
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4.2.2. Method 2

The second method is based on AMPD, performed with P1 = 1. First, set the threshold
of P2. If the value of P2 is greater than P2’s threshold, define this sample as a peak value.
As shown in Figure 23a, in the entire PPG signal, only a peak value is detected, due to
the measurement interference of the wrist PPG signal (e.g., movement or swinging of the
hand). Consequently, if the threshold of P1 is too high, most samples will be P1 = 0, which
means there are fewer samples that can be calculated. In Figure 23b, set P1 threshold to
2/L such that the number of the samples that greater than threshold increases. However,
the irregular signal, appeared in the major parts of the PPG signal, will be ignored because
the value of P2 is too small.
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4.2.3. Method 3

AMPD-BL calibrates the peak position with Bayesian learning approach. Since the
probability values are multiplied with indices, they are more sensitive to the unstable heart
rate. Figure 24a shows that in the sample 42, because of the change of the heart rate value,
the peak value is changed as well. In addition, due to baseline changes, the subsequent
peaks are lost. Figure 24b shows the peak sample through our AMPD-Fuzzy algorithm, in
which it can be seen that the irregular signal appearing in the major parts of the PPG signal
can also be applied to detects peaks and was calibrated to the estimation by P2 using the
previous heart rate signal.
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4.3. Experiment 3: AMPD-Fuzzy Tracking

This subsection presents a performance comparison of the three tracking methods
(i.e., AMPD-BL, AMPD-Fuzzy, and a referenced system) with respect to the placement of
wearable sensors and the tracking errors. Two tests are conducted to assess the system
feasibility and provide statistical analyses of the results. Test 1 compares the tracking
performance of AMPD-BL and AMPD-Fuzzy on the static wrist. Test 2 explores the tracking
error of AMPD-Fuzzy with respect to the referenced system. Note that the referenced
heart rate is obtained by the heartbeat bracelet on the market [7] with the right wrist in the
static manner. The left wrist is used to assess the tracking performance of AMPD-BL and
AMPD-Fuzzy. The number of repetitions of Tests 1 and 2 for each method is 50. The tests
are conducted by a man aged 24 years, of an average height, and a healthy weight.

For Test 1, Figure 25a,b show the AMPD-BL and AMPD-Fuzzy estimated heart rate
data, respectively, on the static wrist. In these typical runs, the average heart rates of
AMPD-BL, AMPD-Fuzzy, and the referenced system are 66.86 (bpm), 66.14 (bpm), and
65.86 (bpm), respectively. To further examine the monitoring behavior, Table 5 depicts the
tracking errors in terms of the mean absolute error (MAE) and the root mean squared error
(RMSE). The experimental result and the quantitative analysis imply that the estimation
performance of AMPD-Fuzzy is superior to that of AMPD-BL.



Electronics 2021, 10, 2092 26 of 28
Electronics 2021, 10, x FOR PEER REVIEW 26 of 28 
 

 

  
(a) (b) 

Figure 25. (a) A typical run of the estimated heart rate on the static wrist with AMPD-BL; (b) A typical run of the estimated 
heart rate on the static wrist with AMPD-Fuzzy. 

Table 5. The tracking errors on the static wrist. 

Methods Avg. MAE (bpm) Avg. RMSE (bpm) 
AMPD-BL 3.00 3.91 

AMPD-Fuzzy 0.29 0.76 

For Test 2, Figure 26 shows the typical runs of AMPD-Fuzzy on the finger and 
AMPD-Fuzzy on the dynamic wrist. The round-trip time of a swing with wrist movement 
is about one second. For the finger placement (Figure 26a), the average heart rates of 
AMPD-Fuzzy (Finger) and the referenced system are 75.63 (bpm) and 74.82 (bpm), respec-
tively. For the wrist placement (Figure 26b), the average heart rates of AMPD-Fuzzy (Dy-
namic Wrist) and the referenced system are 78.25 (bpm) and 79.25 (bpm), respectively. To 
characterize the performance, Table 6 depicts the deviations in terms of the mean absolute 
error (MAE) and the root mean squared error (RMSE). Figure 26a shows that AMPD-
Fuzzy has a good tracking capability for estimating the heart rate on the finger. Moreover, 
even for estimating the heart rate on the dynamic wrist, Figure 26b shows that AMPD-
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(a) (b) 

Figure 25. (a) A typical run of the estimated heart rate on the static wrist with AMPD-BL; (b) A typical run of the estimated
heart rate on the static wrist with AMPD-Fuzzy.

Table 5. The tracking errors on the static wrist.

Methods Avg. MAE (bpm) Avg. RMSE (bpm)

AMPD-BL 3.00 3.91
AMPD-Fuzzy 0.29 0.76

For Test 2, Figure 26 shows the typical runs of AMPD-Fuzzy on the finger and AMPD-
Fuzzy on the dynamic wrist. The round-trip time of a swing with wrist movement is about
one second. For the finger placement (Figure 26a), the average heart rates of AMPD-Fuzzy
(Finger) and the referenced system are 75.63 (bpm) and 74.82 (bpm), respectively. For the
wrist placement (Figure 26b), the average heart rates of AMPD-Fuzzy (Dynamic Wrist)
and the referenced system are 78.25 (bpm) and 79.25 (bpm), respectively. To characterize
the performance, Table 6 depicts the deviations in terms of the mean absolute error (MAE)
and the root mean squared error (RMSE). Figure 26a shows that AMPD-Fuzzy has a good
tracking capability for estimating the heart rate on the finger. Moreover, even for estimating
the heart rate on the dynamic wrist, Figure 26b shows that AMPD-Fuzzy still provides
acceptable heart rate accuracy (<±10%) [35].
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Table 6. The tracking errors of AMPD-Fuzzy.

Methods Avg. MAE (bpm) Avg. RMSE (bpm)

AMPD-Fuzzy (Finger) 0.82 0.90

AMPD-Fuzzy (Dynamic Wrist) 6.83 8.05

5. Conclusions

This paper proposes a new algorithm, the AMPD-Fuzzy algorithm, to monitor heart
rate for wearable healthcare devices. To reshape the signal and specify the range of cal-
ibration, an adaptive fuzzy logic control mechanism is designed to determine the value
of the HR_Fuzzy parameter for signal processing in the next window. With the proposed
sliding window approach and the signal overlap processing principle, Experiment 2 shows
that the noise interference and unstable heart rate measurements can be effectively pre-
processed and calibrated on the static wrist. Compared to the tracking performance of a
wearable monitor on the market, Experiment 3 illustrates that the proposed system is able
to provide an acceptable error rate on the dynamic wrist, which may be used in research
and clinical applications. Future issues will further explore preprocessing techniques, heart
rate tracking schemes, and the design of system prototypes to improve the PPG signal
quality and increase the accuracy of heart rate tracking.
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