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Abstract: Single-image super-resolution (SISR) techniques have been developed rapidly with the
remarkable progress of convolutional neural networks (CNNs). The previous CNNs-based SISR
techniques mainly focus on the network design while ignoring the interactions and interdependen-
cies between different dimensions of the features in the middle layers, consequently hindering the
powerful learning ability of CNNs. In order to address this problem effectively, a residual triplet
attention network (RTAN) for efficient interactions of the feature information is proposed. Specifically,
we develop an innovative multiple-nested residual group (MNRG) structure to improve the learning
ability for extracting the high-frequency information and train a deeper and more stable network.
Furthermore, we present a novel lightweight residual triplet attention module (RTAM) to obtain the
cross-dimensional attention weights of the features. The RTAM combines two cross-dimensional in-
teraction blocks (CDIBs) and one spatial attention block (SAB) base on the residual module. Therefore,
the RTAM is not only capable of capturing the cross-dimensional interactions and interdependencies
of the features, but also utilizing the spatial information of the features. The simulation results and
analysis show the superiority of the proposed RTAN over the state-of-the-art SISR networks in terms
of both evaluation metrics and visual results.

Keywords: image super-resolution; attention mechanism; convolutional neural networks; deep
learning

1. Introduction

Single-image super-resolution (SISR) is a well-known technique in computer vision
which is used to reconstruct degraded low-resolution (LR) images and convert them
into high-resolution (HR) images. However, this is an ill-posed problem, since there are
numerous HR outputs for one LR image. In the literature, there are various efficient
methods presented to address this issue, such as the interpolation-based method [1], sparse
representation methods [2,3], and learning-based methods [4–13].

With the gradual maturity of deep-learning technologies, image super-resolution has
also made a significant breakthrough. The convolutional neural networks (CNNs) possess
powerful learning capabilities in different application scenarios [14,15], which enable us
to complete end-to-end training of image super-resolution. Dong et al. [5] proposed the
Super-Resolution Convolutional Neural Network (SRCNN) which consists of three-layer
CNN and learns the non-linear mapping from LR image to its corresponding HR output.
Since then, a variety of CNNs-based techniques [16–21] were applied to tackle SR tasks by
designing deeper or wider networks.

Although impressive results have been achieved in SISR, the existing methods based
on CNNs still face several challenges. First, very deep, and very wide networks are
usually accompanied by large number of parameters, which is not beneficial to practical
applications. Second, most super-resolution models are unable to exploit the advantages
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of CNNs to further extract the information in the LR image. Third, stacking the complex
modules usually ignores the interdependence between different dimensions of the features.

To address these problems effectively, we propose a residual triplet attention network
(RTAN), which considers the cross-dimensional interdependence and interaction of the
features for more powerful feature representations. Specifically, inspired by the effect of
the residual structure which contains the convolution layer, the RELU function and the
shortcut connection [6,11,17,22], we propose the multiple nested residual group (MNRG)
structure to reduce model degradation and reuse more informative LR features. In MNRG,
we adopt the global shortcut connection (GSC) which serves as the first-layer structure to
complete the rough learning of LR image. The local shortcut connection (LSC) and the
third-layer residual module are further employed to alleviate the training difficulty causing
by the network depth and learn abstract residual features. Moreover, motivated by the
attention mechanism demonstrated in [23–25], a residual triplet attention module (RTAM)
is proposed to improve the interactions and interdependencies of the deep residual features.
The RTAM mainly contains two cross-dimensional interaction blocks (CDIBs) and one
spatial attention block (SAB). The CDIB has the ability to capture the interaction information
between the channel dimension C and spatial dimension (W and H) of the features. This
mechanism enables the proposed network to acquire more blending cross-dimensional
feature information. Meanwhile, the SAB further extracts the spatial information and
helps the network to discriminate the spatial locations of the features. The RTAM explores
the interdependencies and interactions across the dimensions of the features without
introducing too many parameters. By stacking the RTAM, we further bypass most of the
low-frequency part in the input LR and fully exploit the feature information from the
intermediate layers of the network.

The main contributions of the proposed RTAN are summarized below.

(1) A residual triplet attention network (RTAN) is proposed to make full use the advan-
tages of CNNs and recover clearer and more accurate image details. The compre-
hensive simulations demonstrate the effectiveness of the proposed RTAN over other
chosen SISR models in terms of both evaluation metrics and visual results.

(2) We design the multiple nested residual group (MNRG) structure which reuses more
LR features and diminishes the training difficulty of the network.

(3) A residual triplet attention module (RTAM) is proposed to compute the cross-dimensional
attention weights by considering the interdependencies and interactions of the fea-
tures. The RTAM uses the inherent information between the spatial dimension and
channel dimension of the features in the intermediate layers, thus achieving sharper
SR results and further applying to actual scenes.

This paper is organized as follows. In Section 2, related works on the image-super-
resolution and attention mechanism are introduced. In Section 3, the proposed methods
are presented. In Section 4, some discussions on RCAN and RTAN are provided. In
Section 5, the experimental results and analysis on different benchmark datasets and the
ablation study on the proposed network are given. Model complexity comparisons are also
included. In Section 6, the conclusions of the paper are drawn.

2. Related Work

In the past few decades, the image super-resolution has made remarkable progress
in computer vision. The researchers have proposed numerous of techniques to address
the ill-posed issue in single image SR. There are two categories of the proposed solutions,
namely, traditional methods and CNN-based techniques. Owing to the effective learning
ability of the CNNs, SISR has been developed rapidly. In this section, we firstly present
the related techniques considering the SISR based on CNNs. Then, we briefly discuss the
attention mechanism, which inspires our work.
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2.1. CNNs-Based Single Image Super-Resolution Network

Dong et al. [5] applied the CNN to present the pioneering work in image super-
resolution. The SRCNN that comprises a three-layer convolutional neural network was
firstly proposed by the authors to perform end-to-end learning of image super-resolution.
As compared with the traditional solutions, this method shows prominent performance.
Kim et al. applied the residual learning strategy to image SR, proposed VDSR by increasing
the network depth [12] and DRCN which constructs a very deep recursive layer [26].
Tim et al. presented DRRN by using the recursive learning [27] to control the model
parameters and adopted the memory blocks in MemNet [28]. These SR networks first
perform interpolation on LR input images to get coarse HR images with the desired size
before the feature extraction layer and reduce the learning difficulty, while having relatively
large memory and computational overhead. In order to address this issue, Shi et al. [29]
designed the sub-pixel layer. This layer is a learnable up-sampling layer and performs
the convolution and reshaping operations. Inspired by the technique of sub-pixel layer,
an increasing number of excellent SR models were proposed. Lim et al. [17] developed
the EDSR which significantly improved SR performance. The authors removed the batch
normalization in the original residual blocks and the modified residual module consists of
two convolution layers, the ReLU function and the shortcut connection. Other works, such
as ESRGAN [30], MemNet [28], and RDN [16], utilize the dense connections by using all the
hierarchical features of the convolutional layers. Some recent networks focus on handing
the trade-off between performance of the SR and memory consumption. For example,
Lai et al. [18] presented LapSRN by reconstructing the sub-band residuals of HR image
progressively. Ahn et al. [31] proposed CARN, which uses the group convolution to make
the image SR network lightweight and efficient. A few networks further explore the feature
correlations in spatial or channel dimensions, such as NLRN [32], and RCAN [6]. Moreover,
several works aim to exploit more efficient networks to improve SR performance, such
as IMDN [33], OISK [34], NDRCN [35], SMSR [36], FALSR [37] and ACNet [38]. Recently,
some researchers adopted the graph convolution network [39] and proposed IGNN [40].

Most of the forementioned techniques only consider the design of architecture of the
network to achieve better SR results by making the network deeper or wider. However,
most of these methods do not consider the correlation between different dimensions of the
features and do not fully utilize the advantages of CNNs, which are good at extracting the
inherent features.

2.2. Attention Mechanism

The well-known attention mechanism is an effective means of biasing the distribution
of available computing resources to the most useful part of the input signals [23]. The
attention mechanism is widely applied in many tasks of computer vision, such as image
classification [23,41], semantic segmentation [42], human posture estimation [43], and scene
parsing [44]. Some tentative works have been proposed which achieve good performance in
high-level computer tasks [45]. Wang et al. [41] exploited an effective bottom-up top-down
attention mechanism for image classification. Hu et al. [23] proposed the block by squeezing
and exciting to obtain the relationship between feature channels. The squeezing operation
is completed by using global average pooling and the exciting operation is finished by
adopting the MLP and sigmoid function. This technique improves the performance of the
existing CNNs. More recently, Wang et al. [46] proposed a novel non-local block, which
computes the response at a position as a weighted sum of the features at all possible
positions in the input feature maps. Woo et al. [25] proposed a lightweight module (CBAM)
with the channel and spatial attention mechanism.

Recently, some researchers have proposed attention-based models to improve the
SR performance. Several works, such as RCAN [6], SAN [21], MCAN [47], A2F [48],
LatticeNet [49], and DIN [50], introduce the channel attention (CA) mechanism to SR
which makes the network learn more useful features. To learn more discriminative fea-
tures, some researchers utilize both the channel attention and spatial attention, such as
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HRAN [51], MIRNet [52], CSFM [53], and BAM [54]. Additionally, SAN [21], NLRN [32],
and RNAN [55] use the non-local attention to capture the long-term dependencies between
pixels in the image. Mei et al. [56] proposed the CSNLN which combines the recurrent
neural network with the cross-scale non-local attention to explore the cross-scale feature
correlations. Liu et al. [57] proposed the enhanced spatial attention (ESA) which adopts
a strided convolution with a larger stride followed by the max-pooling operation. This
method can enlarge the receptive field effectively. Muqeet et al. [58] proposed the efficient
MAFFSRN by modifying the ESA with the dilated convolutions to refine the features. Zhao
et al. [59] introduced the pixel attention mechanism to SR and designed the effective PAN.
Mei et al. [60] designed the pyramid attention network (PANet) to capture multi-scale
feature correspondences. Huang et al. [61] proposed the DeFiAN to recover high-frequency
details of the images by introducing a detail-fidelity attention mechanism. Wu et al. [62]
proposed the multi-grained attention network (MGAN) by measuring the importance of
every neuron in a multi-grained way. Chen et al. [63] proposed the attention dropout
module in A2N to adjust the attention weights dynamically.

Although this method of computing the channel attention weight is proven to be
effective, it results in a major loss of spatial information due to the global average pooling.
Other methods usually bring huge computation overhead and complicated operations. In
this work, a residual triplet attention network (RTAN) is proposed to exploit the internal
relations across different dimensions of the features in an effective way.

3. Proposed Methods
3.1. Network Architecture

The overall architecture of RTAN comprises four parts, namely the shallow feature
extraction module, the multiple nested residual deep feature extraction part, the upscale
module and reconstruction section, as shown in Figure 1, where Ilr and Isr represent the
input and output of RTAN, respectively.
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A 3 × 3 convolutional layer of 64 filters is applied to extract the shallow features from
the LR input.

M0 = HSF(Ilr), (1)

where HSF(·) denotes the function of feature extraction. M0 denotes the input of MNRG
structure to achieve the deeper feature extraction. Thus,

Md f = HMNRG(M0), (2)

where HMNRG(·) denotes the MNRG structure, which is stacked from series of nested
residual groups (NRGs). The proposed MNRG structure not only enlarges the size of the
receptive field, but also performs substantially by learning the local residuals of the input.
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Then, the extracted deep feature Md f is passed to the upscale module. The subsequent
procedure is expressed as follows.

Mup = HUP

(
Md f

)
= PS

(
WL−1 ∗Md f + bL−1

)
, (3)

where HUP(·) denotes the function of upscale module. PS(·) denotes the operation of
periodic shuffling. WL−1 and bL−1 denote the weights and biases of the upscale module,
respectively. The symbol “*” denotes the convolution product. L denotes the number of
RTAN layers. Please note that Mup denotes the upscaled feature maps. As investigated
in [29], we utilize the sub-pixel layer as the upscale module. The mathematical expression
is as follows.

PS(T)x,y,c = Tb x
r c ,b

y
r c ,c·r·mod(y,r)+c·mod(x,r) , (4)

where PS(·) is a periodic shuffling operator which can rearrange the input features maps
H ×W × r2 × C to the output with the shape of C × rH × rW, r denotes the scale factor.
x, y denote the output pixel coordinates in the HR image space. c denotes the number of
channels. mod(y,r) and mod(x,r) denotes the different sub-pixel location. T denotes the
input tensor. The symbol b·c denotes the rounding-down operation.

Afterwards, we reconstruct the upscaled features Mup via one 3 × 3 convolutional
layer. The process of the final module is formulated as

Isr = HRE
(

Mup
)
= HRTAN(Ilr), (5)

where HRE(·) and HRTAN(·) denote the reconstruction layer and the function of RTAN,
respectively.

Then, the RTAN will be optimized with a certain loss function. There are various
loss functions used in previous SR works, such as L1 [5,12], L2 [17,18], perceptual and
adversarial losses [11]. We train the proposed RTAN with the L1 loss function. Given the
training datasets

{
Ii
LR, Ii

HR
}N

i=1 with N LR images ILR and their HR counterparts IHR, the
aim of training RTAN is to minimize the mathematical expression as follows.

L(θ) =
1
N

N

∑
i=1
‖HRTAN

(
Ii
LR − Ii

HR

)
‖

1

, (6)

where θ denotes the parameter set of the proposed RTAN.

3.2. Multiple Nested Residual Group (MNRG) Structure

Here, we present the details regarding the proposed multiple nested residual group
(MNRG) structure (see Figures 2 and 3), which consists of M nested residual group (NRG)
structure with a global shortcut connection (GSC). Each NRG further contains N RTAMs
and a local shortcut connection (LSC). Several works [17,22] demonstrate that stacking
the residual blocks achieves accuracy gains due to increased depth. However, there is a
higher training difficulty as the depth increases. Inspired by previous works presented
in [6,11,17], we propose the NRG structure as the fundamental unit. The input and output
feature maps Mm−1, Mm of the m-th NRG satisfy the following expression.

Mm = FNRG,m(Mm−1) = FNRG,m(FNRG,m−1(· · · FNRG,1(M0) · · ·)), (7)

where FNRG,m represents the function of m-th NRG.
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Since the LR and HR image have a highly similar structure, we only need to learn
the residual feature mapping to recover the losing high-frequency image information. As
discussed in [12], we use global shortcut connection (GSC). Thus, the computation and the
learning difficulty of the model are substantially reduced. This procedure is expressed as

Md f = M0 + WGSC MM = M0 + WGSC(FNRG,m(FNRG,m−1(· · · FNRG,1(M0) · · ·))), (8)

where Md f denotes the deep feature maps. WGSC represents the set of weight parameters
for the convolutional layer at the end of the final NRG in the MNRG structure.

We further present the RTAM to learn more abstract features and reduce the training
difficulty. Each NRG structure comprises N stacked RTAMs. The n-th RTAM in the m-th
NRG is represented as

Mm,n = FRTAM,m,n(Mm,n−1) = FRTAM,m,n(FRTAM,m,n−1(· · · FRTAM,m,1(Mm−1) · · ·)), (9)

where Mm,n−1 and Mm,n represent the input and output feature maps of the n-th RTAM in
the m-th NRG. FRTAM,m,n denotes the corresponding function.

Image information can be divided into high-frequency components (i.e., edges, texture,
and other details.) and low-frequency components (i.e., flat area). Since the residual
structure can learn the mapping from LR to HR, it bypasses plenty of redundant low-
frequency parts in the input LR image. In order to further improve the learning ability of
the representational features and ease the difficulty of training, the local shortcut connection
(LSC) is further employed to generate the m-th NRG output via

Mm = Mm−1 + Wm Mm,N = Mm−1 + WmFRTAM,m,N(FRTAM,m,N−1(· · · FRTAM,m,1(Mm−1) · · ·)), (10)

where Wm represents the weight of the convolutional layer behind the final RTAM.
The GSC along with the LSC encourages the network to learn more residual informa-

tion which contains more high-frequency features of the LR. In addition, they also alleviate
the network degradation caused by the ever-increasing network depths.
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3.3. Triplet Attention Module (TAM)
3.3.1. Cross-Dimensional Interaction Block (CDIB)

As discussed in [23–25], a CDIB is proposed to compute the attention weights by
capturing the cross-dimensional interaction by using a two-branch module. The two
branches help the CNNs to make better use of the existing feature information, and fully
explore the correlation and dependence between the features. As presented in Figure 3, the
input Xi ∈ RC×W×H , i = 1, 2 is sent to two CDIBs simultaneously. In CDIB1, the height H
and the channel C interact with each other. We exchange dimension C and dimension W of
the input feature maps. Then, the exchanged input is denoted as

X̃1 = HEXC(X1), (11)

where HEXC(·) denotes the permutation operation, X̃1 ∈ RW×H×C.
We further reduce the dimension W of the X̃1 to 2 by concatenating the average pooled

and max pooled feature maps across that dimension. We obtain the output X̃∗1 ∈ R2×H×C

as follows.
X̃∗1 = HCAT

(
HMP0d

(
X̃1

)
, HAP0d

(
X̃1

))
, (12)

where HCAT represents the concatenation of the given input sequences in the specified
dimension. HMP0d and HAP0d represent the max-pooling and the average-pooling function
in the zero-th dimension, respectively.

The pooling layer contributes to preserve the rich information of the original features
while reducing the computations. Then, X̃∗1 is passed through one convolutional layer with
the filter size 7 × 7 followed by a batch normalization layer.

X̃∗∗1 = HBN

(
f 7×7

(
X̃∗1
))

, (13)

where f 7×7 denotes the convolutional layer with the filter size 7 × 7. HBN(·) represents
the batch normalization.

As discussed in [6,23,24], we use the sigmoid activation function δ as the gating
mechanism to compute the resultant attention weight. The computed attention weight
maps are subsequently used to rescale X̃1, and then dimension swapping was performed
to restore the same dimensional order as the original input X1. Now, we obtain the final
output, i.e.,

X̃∗∗∗1 = HEXC

(
δ
(

X̃∗∗1

)
· X̃1

)
, (14)

Similar to CDIB1, in CDIB2, we create interactions between the channel dimension C
and the width dimension W. The input X2 is also exchanged between dimension C and
dimension H. The exchanged feature maps are denoted as X̃2 ∈ RH×C×W . Then, X̃2 is
input into the pooling layer. We further get the output X̃∗2 ∈ R2×C×W . X̃∗2 is input into
the convolutional layer with the filter size 7 × 7 followed by a batch normalization layer.
Then, we also apply the sigmoid function on the output X̃∗∗2 of the last step to obtain the
attention weight, which is used for rescaling the feature maps X̃2. The dimension order
of the rescaled feature maps is exchanged to retain the same shape as input X2. The final
output of second module is X̃∗∗∗2 .

3.3.2. Spatial Attention Block (SAB)

The previous literature of SR only focuses on the inter-channel relationship of the
features. As discussed in [25], we use the spatial attention module (see Figure 3) to
complement with CDIB for exploiting the inter-spatial correlations of the features. The
spatial attention tells the network which pivotal part should be focused or suppressed.
The spatial attention maps are further generated by the following operations. First, we
apply the max-pooling and average-pooling operations on the feature maps X3 ∈ RC×W×H

along the zero-th dimension and concatenate the outputs to generate a useful feature map.
The combined output is convolved with the convolutional layer with the filter size 7 × 7.
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The above output is also passed through a batch normalization layer. In brief, the spatial
attention weight is expressed as follows.

X∗3 = SIGMOID
(

HBN

(
f 7×7

(
HCAT

(
HMP0d

(
X̃1

)
, HAP0d

(
X̃1

)))))
, (15)

where SIGMOID denotes the sigmoid function, HBN(·) denotes the batch normalization,
f 7×7 represents the convolutional layer with the filter size 7 × 7, HCAT represents the func-
tion which concatenates the given input sequences in the specified dimension, HMP0d and
HAP0d represent the max-pooling and average-pooling function in the zero-th dimension,
respectively.

The spatial attention weight is applied to the input for obtaining the final output.

X∗∗3 = X∗3 · X3, (16)

3.3.3. Feature Aggregation Method

The refined outputs of CDIB1, CDIB2, and SAB are further aggregated by assigning
the appropriate scale factor. Then, we get the output of the triplet attention module.

Y = αX̃∗∗∗1 + βX̃∗∗∗2 + γX∗∗3 , (17)

Please note that we adopt the simple averaging aggregation, where α = β = γ = 1
3 .

3.4. Residual Triplet Attention Module (RTAM)

As discussed in Section 3.2, the residual learning and shortcut connections ease the
difficulty of learning between the LR and HR image. Similarly, inspired by the successful
application of the residual blocks in [22], we use this module in SR. As shown in Figure 3,
we embed the TAM in the basic residual module and propose the RTAM. The mathematical
expression for the n-th RTAM in m-th NRG is expressed as

Mm,n = FTAM,m,n(Xm,n) + Mm,n−1, (18)

where Mm,n and Mm,n−1 denote the output and input of the RTAM. FTAM,m,n denotes the
corresponding function of the triplet attention. Xm,n denotes the residual part which is
formulated as

Xm,n = W2(RELU(W1(Mm,n−1))), (19)

where W1 and W2 denote the weights of the two convolutional layers in RTAM, respectively.
RELU denotes the RELU function.

4. Discussion
4.1. Difference between RTAN and RCAN

Zhang et al. [6] proposed the RCAN by introducing the channel attention mechanism,
which made a significant improvement in SR performance. The main differences between
the RCAN and the proposed RTAN are listed as follows. First, although both RCAN
and RTAN adopt residual learning, RCAN builds a very deep network (more than 400
layers), while the network depth of our proposed RTAN is much shallower than that of
RCAN (about 240 layers). Second, the most crucial module of the RCAN is the stacked
residual channel attention blocks, RCAN only considers the interdependencies among
feature channels. While the key part of our RTAN is the residual triplet attention module
(RTAM). The RTAM can explicitly model the cross-dimensional feature interdependencies
and interactions. Finally, the advantage of RCAN is that it introduces an effective channel
attention mechanism and constructs a very deep network to improve the quality of image
reconstruction. However, RCAN also has some disadvantages. It is too complex to be used
in practice and it only explores feature information in the channel dimension.
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4.2. Advantages of the RTAN over RCAN

The advantages of our RTAN over RCAN lie in the following aspects. First, for the
real-world image super-resolution, the number of parameters of RTAN is 9.6M, far smaller
than 16M in RCAN, which is more conducive to the practical applications. Moreover, the
parameter of the channel attention module is about 624 K, while the parameter of the
residual triplet attention module is only about 354 K. Second, for RCAN, the operation of
global average pooling in the channel attention module leads to the loss of spatial informa-
tion. While our RTAM uses both the average-pooling and the max-pooling operations to
preserve the spatial information. Third, the RTAM utilizes the inherent information of the
features by blending different dimensional information with less parameters. In addition,
the RTAM introduces the spatial attention auxiliary branch to further enhance the spatial
discrimination ability of the network.

5. Experiments and Analysis
5.1. Datasets and Evaluation Metrics
5.1.1. Datasets

In this paper, we use the DIV2K [64] dataset and the real-world [65] SR dataset for
training the proposed network. The DIV2K dataset comprises 1000 images for training,
validation, and testing. The real-world SR dataset comprises 595 pairs of HR-LR images
which are collected by two DSLR cameras. We use the real-world SR dataset version 1. For
testing the network performance, we use five commonly used benchmark datasets, namely:
Set5 [66], Set14 [67], BSD100 [68], Urban100 [13], and Manga109 [69]. Moreover, we also
use the test images which have 30 HR-LR image pairs from the real-world SR dataset.
The main characteristics of the datasets are present in Table 1. The bicubic (BI) [7], blur-
downscale (BD) [7], and the real-world degradation models [65] are adopted to perform
the experiments.

Table 1. The main characteristics of the public datasets.

Datasets Amount Format Key Category

DIV2K 1000 PNG animals, plants, architecture, scenery, outdoor
environment, etc.

Set5 5 PNG baby, bird, butterfly, head, woman

Set14 14 PNG animals, people, flowers, vegetables, boats,
bridges, slides, etc.

BSD100 100 PNG animals, plants, landscapes, buildings, etc.
Urban100 100 PNG buildings, city, etc.
Manga109 109 PNG manga volume

Real-world SR 178 PNG architecture, plants, environment, handmade
items, etc.

5.1.2. Evaluation Metrics

The reconstructed images are transformed to YCbCr space. Then, we evaluate the
results with two quantitative metrics, i.e., peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) [70] on Y channel.

5.2. Implementation and Training Details

During the training process, we perform data augmentation on all the training images.
This is accomplished by rotating the images by 90◦, 180◦, 270◦ randomly and by flipping
them horizontally. The LR and HR images are cropped into appropriate patches with
the size of 48 × 48 to enlarge the training datasets. We further set the mini-batch size as
16. The proposed RTAN is trained by adopting the ADAM [71] optimizer with β1 = 0.9,
β2 = 0.999, and ε = 10−8. We initialize the learning rate as 1× 10−4 and then the learning
rate decreases half every 200 epochs. For training the BI and BD degradation model, we
set NRG number as M = 10. Within each NRG, we set RTAM number as N = 15. While
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training the real-world degradation model, we set NRG number as M = 10 and RTAM
number N = 12. We set the maximum number of steps to 1 × 106. It takes about 11 days
and 10 days to train RTAN on DIV2K and real-world SR datasets, respectively. The models
are trained using the PyTorch [72] framework. All the experiments are conducted on an
Nvidia 2080Ti GPU.

5.3. Ablation Study

To demonstrate the effect of the RTAN, we perform a series of ablation experiments to
compare the effectiveness of different modules, including GSC, LSC, CDIB, and SAB. The
performance on Set5 × 4 is shown in Table 1.

5.3.1. GSC and LSC

To prove the effect of the MNRG structure, we remove the GSC or/and LSC from the
proposed network. Rbase is the base model which only contains over 300 convolutional
layers with 10 NRGs and 15 RTAMs in each NRG. As presented in Table 2, the PSNR in Rbase
is extremely low. This indicates that simply stacking the single-layer residual structure is
not sufficient to improve the SR performance effectively. In comparison, the PSNR from Ra
to Rc has a sustaining boost without introducing any extra parameters. Specifically, Ra and
Rb obtain 0.31 dB and 0.39 dB PSNR gain over Rbase, respectively. When both of GSC and
LSC are added to Rbase, the PSNR increases by 0.41 dB. The results show that the MNRG
structure results into a huge improvement in the SR performance and makes the network
training easier. This is because the GSC and LSC bypass the redundant low-frequency
information and reuse the lower layer information for very deep networks.

Table 2. The ablation results of the key components (i.e., CDIB1, CDIB2, SAB, GSC, and LSC). The
best PSNR (dB) is tested on Set5 (×4) in 100 epochs.

Rbase Ra Rb Rc Rd Re Rf Rg Rh

CDIB1 × × × × × ×
√ √ √

CDIB2 × × × × ×
√

×
√ √

SAB × × × ×
√

× × ×
√

GSC ×
√

×
√ √ √ √ √ √

LSC × ×
√ √ √ √ √ √ √

Params(K) 11,809 11,809 11,809 11,809 11,854 11,839 11,839 11,839 11,854
PSNR 31.79 32.10 32.18 32.20 32.21 32.21 32.23 32.26 32.27

5.3.2. SAB and CDIB

We further evaluate the effect of the spatial attention block and cross-dimensional
interaction block based on the above ablation investigations. The simulation results from
Rd to R f demonstrate the effectiveness of the individual module. We observe that Rd
performs better than Rc. Similarly, SAB slightly improves the performance from 32.20 dB
to 32.21 dB. Please note that both Re and R f achieve 0.01 dB and 0.03 dB PSNR gains,
respectively, in comparison with Rc by the introduction of 30 K parameters only. It is worth
noting that by using both CDIB1 and CDIB2, the performance of Rg improves significantly
as compared to the methods of Ra to R f . Besides, when all the components are added
to the base model (Rbase), the proposed RTAN (Rh) results in a huge improvement of
0.48 dB in PSNR as compared to Rbase. These comparisons firmly indicate that the cross-
dimensional interaction and the inter-spatial correlation of the features play a significant
role in improving the ability of image reconstruction.

The aforementioned ablation investigations demonstrate the rationality and necessity
of the components of the proposed network. The proposed RTAN model shows the
superiority in the SR performance.
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5.4. Comparison with State-of-the-Art
5.4.1. Results with Bicubic (BI) Degradation Model

The BI degradation model has been widely used to obtain LR images in the image
SR tasks. In order to demonstrate the effectiveness of the RTAN, we compared it with 16
state-of-the-art CNN-based SR methods, including SRMDNF [7], NLRN [32], EDSR [17],
DBPN [73], NDRCN [35], ACNet [38], FALSR-A [37], OISR-RK2-s [34], MCAN [47], A2F-
SD [48], A2N-M [63], DeFiANS [61], IMDN [33], SMSR [36], PAN [59], MGAN [62],
RNAN [55].

Table 3 shows all the quantitative results for ×2, ×3, ×4 scaling factors. In general, as
compared with all the methods presented in the literature, the proposed model shows the
best performance on most of the standard benchmark datasets for various scaling factors.
As the scaling factor increases from 2 to 4, the proposed RTAN performs significantly better
than other methods. Particularly when compared with MGAN, RTAN exceeds MGAN by
a margin of 0.31 dB PSNR on Urban100 × 4, while the number of parameters of the RTAN
is similar to that of MGAN. In addition, the PSNR and SSIM are higher than EDSR on most
benchmark datasets, while the number of parameters of RTAN (11.6M) is far smaller than
that of EDSR (43M). This competitive performance indicates that RTAN makes better use
of the limited feature information by employing the efficient network structure. This is
mainly because the RTAN adopts the spatial attention and cross-dimensional interaction
mechanism to enable the network to exploit the cross-dimensional interactive features and
spatial information.

Table 3. The quantitative comparison (i.e., average PSNR/SSIM) with BI degradation model on datasets Set5, Set14, BSD100,
Urban100, and Manga109. The best and second-best results are highlighted and underlined, respectively.

Methods Scale Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRMDNF 2 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761

NLRN 2 38.00/0.9603 33.46/0.9159 32.19/0.8992 31.81/0.9246 –/–
DBPN 2 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775
EDSR 2 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

NDRCN 2 37.73/0.9596 33.20/0.9141 32.00/0.8975 31.06/0.9175 –/–
FALSR-A 2 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 –/–

OISR-RK2-s 2 37.98/0.9604 33.58/0.9172 32.18/0.8996 32.09/0.9281 –/–
MCAN 2 37.91/0.9597 33.69/0.9183 32.18/0.8994 32.46/0.9303 –/–
A2F-SD 2 37.91/0.9602 33.45/0.9164 32.08/0.8986 31.79/0.9246 38.52/0.9767

DeFiANS 2 38.03/0.9605 33.63/0.9181 32.20/0.8999 32.20/0.9286 38.91/0.9775
A2N-M 2 38.06/0.9601 33.73/0.9190 32.22/0.8997 32.34/0.9300 38.80/0.9765
IMDN 2 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
SMSR 2 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
PAN 2 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273 38.70/0.9773

MGAN 2 38.16/0.9612 33.83/0.9198 32.28/0.9009 32.75/0.9340 39.11/0.9778
RNAN 2 38.17/0.9611 33.87/0.9207 32.32/0.9014 32.73/0.9340 39.23/0.9785

RTAN(Ours) 2 38.19/0.9605 34.07/0.9211 32.37/0.9016 33.18/0.9372 39.34/0.9779

Bicubic 3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRMDNF 3 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403

NLRN 3 34.27/0.9266 30.16/0.8374 29.06/0.8026 27.93/0.8453 –/–
EDSR 3 34.65/0.9282 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

NDRCN 3 33.90/0.9235 29.88/0.8333 28.86/0.7991 27.23/0.8312 –/–
OISR-RK2-s 3 34.43/0.9273 30.33/0.8420 29.10/0.8053 28.20/0.8534 –/–
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Table 3. Cont.

Methods Scale Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DeFiANS 3 34.42/0.9273 30.34/0.8410 29.12/0.8053 28.20/0.8528 33.72/0.9447
A2F-SD 3 34.23/0.9259 30.22/0.8395 29.01/0.8028 27.91/0.8465 33.29/0.9424
A2N-M 3 34.50/0.9279 30.41/0.8438 29.13/0.8058 28.35/0.8563 33.79/0.9458
IMDN 3 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
SMSR 3 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
PAN 3 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511 33.61/0.9448

MCAN 3 34.45/0.9271 30.43/0.8433 29.14/0.8060 28.47/0.8580 –/–
MGAN 3 34.65/0.9292 30.51/0.8460 29.22/0.8086 28.61/0.8621 34.00/0.9474

RTAN(Ours) 3 34.75/0.9288 30.60/0.8468 29.28/0.8093 28.88/0.8669 34.05/0.9474

Bicubic 4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRMDNF 4 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024

NLRN 4 31.92/0.8916 28.36/0.7745 27.48/0.7346 25.79/0.7729 –/–
DBPN 4 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137
EDSR 4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

NDRCN 4 31.50/0.8859 28.10/0.7697 27.30/0.7263 25.16/0.7546 –/–
OISR-RK2-s 4 32.21/0.8950 28.63/0.7822 27.58/0.7364 26.14/0.7874 –/–

DeFiANS 4 32.16/0.8942 28.63/0.7810 27.58/0.7363 26.10/0.7862 30.59/0.9084
A2F-SD 4 32.06/0.8928 28.47/0.7790 27.48/0.7373 25.80/0.7767 30.16/0.9038
A2N-M 4 32.27/0.8963 28.69/0.7842 27.61/0.7376 26.28/0.7919 30.59/0.9103
IMDN 4 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
SMSR 4 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
PAN 4 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854 30.51/0.9095

MCAN 4 32.33/0.8959 28.72/0.7835 27.63/0.7378 26.43/0.7953 –/–
MGAN 4 32.45/0.8980 28.74/0.7852 27.68/0.7400 26.47/0.7981 30.81/0.9131
RNAN 4 32.49/0.8982 28.83/0.7878 27.72/0.7421 26.61/0.8023 31.09/0.9149

RTAN(Ours) 4 32.61/0.8987 28.84/0.7873 27.77/0.7422 26.78/0.8068 31.11/0.9156

Figure 4 shows the visual comparisons of several recent CNN-based SISR methods.
The SR results of the “img_004” from Urban100 are presented. It is evident that the
outputs of most of the compared methods are prone to the heavy blurring of artifacts.
Additionally, most of these methods are unable to recover the detailed structure of metal
holes and green lines. In contrast, the proposed RTAN produces the clearest image, which
is more similar to the ground truth. Similar phenomena are evident in image “img_074”,
where other SR methods do not replicate the textures of the grids and cannot successfully
resolve the aliasing problems. Additionally, it is noteworthy that most of these methods
distort the original structures and generate blurred artifacts. However, as compared with
other methods, the RTAN alleviates blurred artifacts and achieves sharper results. These
results firmly prove the superiority of the RTAN, which not only shows the powerful
reconstruction ability, but also achieves better visual SR results with finer structures.
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5.4.2. Results with Blur-Downscale (BD) Degradation Model

In order to demonstrate the powerful reconstruction ability of the proposed method
with BD degradation model, we compare the RTAN with 14 state-of-the-art CNN-based
models, i.e., SPMSR [4], SRCNN [5], FSRCNN [74], VDSR [12], SRMD [7], EDSR [17],
RDN [16], IRCNN [75], SRFBN [76], RCAN [6], A2F-SD [48], IMDN [33], DeFiANS [61],
PAN [59], and MGAN [62].

Considering the work presented in [6,7], we compare the ×3 SR results with blur-
downscale (BD) degradation model. As shown in Table 4, in general, the proposed RTAN
obtains similar results to RCAN and outperforms other state-of-the-art methods. As
compared with RCAN, the proposed RTAN performs better in terms of PSNR for all
datasets, while the performance in terms of SSIM for the datasets, e.g., Set5, BSD100,
Manga109 is similar. Specially, the proposed RTAN achieves 0.09 dB PSNR gain over
RCAN on Urban100 dataset. The simulation results show that the proposed RTAN has a
greater ability to deal with more complex degradation models.

We also provide the visual comparisons on ×3 scaling factor with BD degradation
model in Figure 5. For reconstructing the detailed textures of zebras in image “253027”,
most of the other methods show aliasing effects and significantly blurred artifacts. In
contrast, the proposed RTAN recovers information closer to the ground truth. Particularly,
the RCAN generates intersecting zebra stripes, while the proposed method restores the
texture consistent with the ground truth. These results firmly demonstrate the superiority
of the proposed method in alleviating the blurring artifacts.
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Table 4. The quantitative comparison (i.e., average PSNR/SSIM) with BD degradation model
on datasets Set5, Set14, BSD100, Urban100, and Manga109. The best and second-best results are
highlighted and underlined, respectively.

Methods Scale Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 3 28.78/0.8308 26.38/0.7271 26.33/0.6918 23.52/0.6862 25.46/0.8149
SPMSR 3 32.21/0.9001 28.89/0.8105 28.13/0.7740 25.84/0.7856 29.64/0.9003
SRCNN 3 32.05/0.8944 28.80/0.8074 28.13/0.7736 25.70/0.7770 29.47/0.8924

FSRCNN 3 26.23/0.8124 24.44/0.7106 24.86/0.6832 22.04/0.6745 23.04/0.7927
VDSR 3 33.25/0.9150 29.46/0.8244 28.57/0.7893 26.61/0.8136 31.06/0.9234
EDSR 3 34.69/0.9278 30.58/0.8447 29.27/0.8083 28.64/0.8611 34.24/0.9470

IRCNN 3 33.38/0.9182 29.63/0.8281 28.65/0.7922 26.77/0.8154 31.15/0.9245
SRMD 3 34.01/0.9242 30.11/0.8364 28.98/0.8009 27.50/0.8370 32.97/0.9391
RDN 3 34.58/0.9280 30.53/0.8447 29.23/0.8079 28.46/0.8582 33.97/0.9465

SRFBN 3 34.66/0.9283 30.48/0.8439 29.21/0.8069 28.48/0.8581 34.07/0.9466
A2F-SD 3 33.81/0.9217 29.96/0.8337 28.84/0.7975 27.20/0.8285 32.54/0.9351
IMDN 3 34.35/0.9254 30.31/0.8392 29.08/0.8029 28.03/0.8472 33.66/0.9427

DeFiANS 3 34.34/0.9252 30.32/0.8396 29.08/0.8030 28.06/0.8478 33.68/0.9426
PAN 3 34.32/0.9260 30.33/0.8406 29.08/0.8037 27.93/0.8462 33.46/0.9431

RCAN 3 34.70/0.9288 30.63/0.8462 29.32/0.8093 28.81/0.8647 34.38/0.9483
MGAN 3 34.63/0.9284 30.54/0.8450 29.24/0.8081 28.51/0.8580 34.11/0.9467

RTAN(Ours) 3 34.76/0.9285 30.66/0.8462 29.33/0.8090 28.90/0.8649 34.39/0.9478
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5.4.3. Results with the Real-World Degradation Model

To further evaluate the performance of the RTAN, we provide the ×4 SR results with
the challenging real-world degradation model. Contrary to the simulated degradation
model, i.e., BI and BD degradation, which usually deviate from the complex real world,
the real-world degradation model is more applicable to the practical applications. We
compare the proposed RTAN with eight representative SR models of different sizes, in-
cluding CARN [31], RCAN [6], EDSR [17], RNAN [55], LP-KPN [65], DeFiANS [61], and
MIRNet [52].

As shown in Table 5, we observe that the RTAN achieves the best performance on
the two real-world test datasets. It is evident that the proposed RTAN obtains notable
performance gains and has the highest PSRN/SSIM as compared to other methods. Specifi-
cally, the PSNR gain of RTAN in comparison with RCAN and EDSR are up to 0.22 dB and
0.51 dB on Nikon dataset, respectively. As compared with the RCAN which introduces
the channel attention, the proposed RTAN achieves better results in terms of PSNR and
SSIM. Moreover, as compared with the RNAN and MIRNet, our RTAN exceeds them by a
margin of 0.25 and 0.23 PSNR on Nikon dataset, respectively. Furthermore, the proposed
method outperforms CARN by a large margin of 0.79 dB PSNR on Canon dataset. These
comparisons indicate that the proposed method has the ability to generalize for practical
applications under the complex real-world degradation.

Table 5. The quantitative results (i.e., average PSNR/SSIM) with real-world degradation model on
datasets Canon and Nikon. The best results are highlighted.

Methods Params Scale Canon
PSNR/SSIM

Nikon
PSNR/SSIM

CARN 1.59M 4 29.14/0.8336 28.42/0.7931
EDSR 43M 4 29.56/0.8249 28.35/0.7986
RCAN 16M 4 29.79/0.8473 28.64/0.8035
IMDN 0.72M 4 28.95/0.8371 28.50/0.7916
RNAN 9.3M 4 29.44/0.8408 28.61/0.8029

LP-KPN 5.73M 4 29.52/0.8430 27.54/0.7923
DeFiANs 1.06M 4 29.37/0.8390 28.60/0.7967
MIRNet 31.8M 4 29.86/0.8495 28.63/0.8034

RTAN(Ours) 9.6M 4 29.93/0.8504 28.86/0.8071

Figure 6 shows the visual SR results of RTAN and other competing methods for the
real-world task. For recovering the challenging and tiny texture in image “Canon 006”,
it is noteworthy that other methods recover some details of the contours to some degree;
however, they still suffer from the serious blurring of artifacts. Contrarily, the proposed
RTAN yields more convincing details which are clearer and comprise small number of
artifacts than other models. Similar observations are further shown in images “Nikon
014” and “Nikon 015”, where the compared methods fail to recover the minute details
from the target patterns. In contrast, the proposed method splits the gap of lines in a clear
manner. This indicates that the proposed RTAN has the ability to produce more accurate
information and reconstructs the texture which is faithful to the ground truth. Overall, the
consistent efficient SR results demonstrate the superiority of the RTAN which has a strong
reconstruction ability for the real-world degradation model.
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5.5. Model Complexity Comparison

We also compare the proposed RTAN with other representative models in terms of
the SR performance, model size, and computational cost. Considering [6,31], we measure
the size of the models with the number of parameters. FLOPs [77] and Mult-Adds are
two methods to measure the computational efficiency of the model. Following most
works [31,78], for evaluating the models in terms of computational cost, we use the number
of composite multiply accumulate operations (Mult-Adds) by assuming the resolution of
reconstructed image to be 720p (1280 × 720).

5.5.1. Model Size Analysis

Figure 7a,b show the size of models and SR performance of recent state-of-the-art deep
CNN-based SR algorithms under the BI and real-world degradation models, respectively.
In order to make comprehensive evaluation, the SR image quality metric is calculated by
the average of PSNR on four standard benchmark datasets, i.e., Set5, Set14, B100, Urban100
and two realistic test datasets, i.e., Canon, Nikon, respectively. In Figure 7a, it is obvious
that the RTAN outperforms all state-of-the-art models. Especially, the EDSR model which
has around 43M parameters has nearly four times more parameters than the proposed
RTAN (11.6M). While the PSNR of EDSR is much lower than the proposed RTAN on
four benchmark datasets. Similarly, the number of parameters of RTAN is less than RDN
(22.1M), but obtains better performance. In addition, the RTAN has similar number of
parameters to MGAN (11.7M) but the former achieves much higher PSNR. Considering the
importance of practical applications, we further reduce the size of the proposed model for
the real-world scenes. As shown in Figure 7b, it not surprising that the CARN and IMDN
contain significantly small number of parameters. However, this comes with performance
degradation. However, the proposed RTAN has fewer parameters (9.6M) than that of
RCAN (16M), MIRNet (31.8M), and EDSR (43M) but achieves much higher PSNR. This
implies that the RTAN maintains a better trade-off between model size and performance.
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5.5.2. Model Computation Cost Analysis

We further measure the computational efficiency of each method for different SR tasks,
as shown in Figure 8a,b. From Figure 8a, we observe that the proposed RTAN achieves
best performance with less Mult-Adds as compared to DBPN, DRRN, RDN, EDSR, and
DRCN. Similar comparisons are further presented in Figure 8b, which shows that the
proposed RTAN is more efficient than RCAN, MIRNet, and EDSR. As compared with other
larger models, the proposed RTAN attains the balance between the performance and the
computational complexity which is considerable from practical applications point of view.
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6. Conclusions

In this work, we propose a novel residual triplet attention network (RTAN) for image
super-resolution. Specifically, the multiple nested residual group (MNRG) structure allows
the proposed RTAN to stabilize the training process. Meanwhile, the MNRG structure
focuses on the high-frequency information of the input image and reuses low-layer feature
maps. Furthermore, in order to effectively utilize the advantages of CNNs and consider
the correlation between different dimensions of features, the residual triplet attention
module (RTAM) which captures the interactions and interdependencies between different
dimensions of features in the intermediate layers by using small number of parameters is
proposed. Comprehensive evaluations and ablation investigations on benchmark datasets
with BI, BD, and real-world degradation models demonstrate the effectiveness of the
proposed RTAN. In future research work, we plan to design a network which is more
efficient and lightweight to deal with the more complex degradation models of the images.
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