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Abstract: The OS kernel is typically preassumed as a trusted computing base in most computing
systems. However, it also implies that once an attacker takes control of the OS kernel, the attacker
can seize the entire system. Because of such security importance of the OS kernel, many works have
proposed security solutions for the OS kernel using an external hardware module located outside
the processor. By doing this, these works can realize the physical isolation of security solutions
from the OS kernel running in the processor, but they cannot access the inner state of the processor,
which attackers can manipulate. Thus, they elaborated several methods to overcome such limited
capability of external hardware. However, those methods usually come with several side effects,
such as high-performance overhead, kernel code modifications, and/or excessively complicated
hardware designs. In this paper, we introduce RiskiM, a new hardware-based monitoring platform to
ensure kernel integrity from outside the host system. To deliver the inner state of the host to RiskiM,
we have devised a hardware interface architecture, called PEMI. Through PEMI, RiskiM is supplied
with all internal states of the host system essential for fulfilling its monitoring task to protect the
kernel. To empirically validate our monitoring platform’s security strength and performance, we
have fully implemented PEMI and RiskiM on a RISC-V based processor and FPGA, respectively. Our
experiments show that RiskiM succeeds in the host kernel protection by detecting even the advanced
attacks which could circumvent previous solutions, yet suffering from virtually no aforementioned
side effects.

Keywords: security; integrity monitor; RISC-V

1. Introduction

Operating system (OS) kernels typically take the role of the trusted computing base
(TCB) in a system. However, most OS kernels follow a monolithic design that all software
components run in a single address space, so an attacker can seize the entire system by
exploiting a single vulnerability. For example, an attacker, who can exploit a software
vulnerablity in the device driver, can also manipulate the core kernel services, such as file
system and scheduler. Worryingly, the number of reported kernel vulnerabilities is steadily
increasing in recent years [1], rendering kernel protection a critical problem in practice.

To protect the kernel against kernel-level attacks and rootkits [2], many researchers
have devised mechanisms to monitor the integrity of the OS kernel in a secure execution
environment that is isolated from the monitored kernel. To implement an SEE, several
studies have proposed software-based techniques that mandate either the instrumentation
of kernel code [3–6] or the introduction of a higher privileged layer [7,8] (i.e., hypervisor).
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Since they can be implemented without adding a special hardware module, they are com-
patible with many computing systems. However, they commonly suffer from considerable
performance overhead due to the frequent and expensive context switches between the
kernel and SEE [5]. Even worse, being implemented in software, their SEE itself may also
be susceptible to software vulnerabilities. Inserting further padding in a software layer
for security may temporarily patch or mitigate vulnerabilities, but this does not provide a
fundamental solution.

Hardware-based techniques [9–12] have been proposed in the hope of overcoming
the innate limitations that software-based ones have, as mentioned above. In particular,
many attempts incorporate building security-dedicated hardware, which is physically
isolated from the host processor and attached to the outside of the host. For example, by
leveraging such physical isolation, several commodity devices [13,14] provide hardware-
based security services such as cryptography in the SEE. However, implementing a monitor
for kernel integrity protection requires that the external hardware must not only provide
the foundation for an SEE, but be also able to monitor the various system events during
kernel execution. According to our preliminary analysis, it should be possible to monitor
three types of events. First, the integrity monitor should be aware of the updates for kernel
memory since the kernel uses the memory to hold its status information and sensitive
data structures, such as page tables and process credentials in OS kernel. Second, the
monitor should be aware of updates for the control and status registers (CSRs), which
are essential for understanding the current system’s configuration as they set up critical
resources like the memory management unit (MMU) and cache. Lastly, the monitor should
also be aware of the control transfer events, such as indirect calls and returns, during the
kernel execution. Otherwise, the monitor cannot detect the control-flow hijacking attacks
such as return-oriented programming (ROP) attack [15] against OS kernel. An external
hardware monitor should verify these events, or attackers might bypass the monitor by
exploiting its ignorance of the host internal details.

Consequently, external hardware monitors for kernel protection [9,10,12,16] have
made efforts to extract the internal events from the host. However, some of them [16,17]
only provide a limited monitoring functionality by only extracting some of the three types
of events. For example, our previous work [16] does not extract control transfer events, so
it is not possible to detect control-flow hijacking attacks. Otherwise, for this, they [9,10,12]
had to endure serious adverse side effects, such as high-performance overhead, kernel code
modifications, and/or excessively complicated hardware designs. For example, Kargos [10]
obtains the control flow information directly from the ARM’s Embedded Trace Macrocell
(ETM) [18]. However, since ETM does not provide the information for the call site’s address
whenever the control transfer event occurs, they have to instrument every call site in
the kernel code to inform their hardware of the address. Similarly, to extract the CSR
update information, they have to modify the kernel code. These modifications to the kernel
imposed extra performance overhead on the host processor and made the design of Kargos
became more complicated. Even worse, despite such efforts, existing works have provided
limited security capabilities due to the lack of hardware support. In Kargos, to retrieve
the memory update events, it snoops the interconnection between processor and physical
memory. However, Kargos manages to observe only the write values upon certain memory
events. In other words, they cannot pinpoint the address of memory store instruction for
every memory write event, so Kargos is not able to detect whether the monitored memory
region is modified by legitimate code or not.

From the existing studies, we have learned that their monitor can neither completely
nor efficiently enough protect the host kernel due mainly to limited support to extract
the host execution information. Based on this, we have concluded that the most effec-
tive way to protect the kernel without side effects would be proper support from the
underlying hardware. In this paper, we present RiskiM, a new hardware-based external
monitoring platform that, backed by strong hardware support, ensures kernel integrity
more completely and efficiently than any previous work. Specifically, in comparison with
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others, RiskiM performs its task with relatively compact hardware architecture and no
code instrumentation, thus achieving lower hardware cost and higher performance. We
ascribe this achievement primarily to our new interface architecture, called the program
execution monitor interface (PEMI). Being defined by our analysis on previous works, PEMI
is a description of the minimal hardware support necessary to provide RiskiM with all
internal host states for kernel integrity verification.

We have fully implemented it for an existing host kernel running on the RISC-V
processor to evaluate our monitoring platform’s effectiveness and practicality. RiskiM is
implemented on an FPGA and is attached externally to the host processor via PEMI, which
is realized as a new security extension to RISC-V. When building PEMI into RISC-V, we
have modified the RISC-V based processor. But, to make our design more acceptable by
RISC-V systems in the present and future generations, we have endeavored to minimize
the modifications by inserting just a few lines to the original core description code for
RISC-V processor. At the same time, we maintain the same RISC-V ISA and hardware
abstraction layers for the existing software (including the kernel) running on top of RISC-V.
Our performance and power analysis experiments exhibit that RiskiM and PEMI incur
almost zero overhead on the system while capturing several advanced attacks that existing
external monitors fail to detect.

2. Background

Since PEMI and RiskiM are designed based on top of RISC-V processor, in this section,
we give background information related to the RISC-V before explaining our design.

RISC-V provides 32 general-purpose registers x1-x31 for holding integer values. x0
register is a zero register that is hardwired to the constant zero. According to the docu-
mentation, x1 is used for holding return address in the standard calling convention in
RISC-V [19]. RISC-V has memory load and store instructions to transfer a value between
the registers and memory. For example, LW instruction loads a 32-bit value from the memory
to the destination register, and SW instruction stores a 32-bit value in the source register to
the memory. Table 1 shows control transfer instructions in RISC-V. The jump and link (JAL)
instruction is used for direct call operation (i.e., the target address is encoded in the jump
instruction, not in the register or the memory). JAL uses two operands: immediate offset
and destination register. When JAL is executed, the offset is added to the address of the
JAL instruction to obtain the target address. Typically, the destination register is configured
to use x1. Consequently, after JAL instruction is executed, the address of the instruction
following the JAL instruction is stored at x1 register. For indirect call operation that the
target address is varied according to the value in a register, the jump and link register
(JALR) instruction is used. JALR uses three operands: immediate offset, base register, and
destination register. The target address is calculated by adding the address in base register
and immediate offset. Like JAL, x1 register is used for destination register to hold return
address in JALR. JALR instruction is also utilized when a function is returned. However,
unlike the indirect call operation, x0 register is used for the destination register because
there is no need to hold the return address after executing the JALR instruction.

RISC-V has three privilege levels (in increasing order of the privilege): user mode,
supervisor mode, and machine mode (Recently, RISC-V announced a hypervisor extension
that supports additional privilege level for it, i.e., hypervisor mode. However, when this
paper has been written, there was a just draft proposal for the hypervisor extension, no
concrete information for it [20]. Thus, we focused on the system without the hypervisor
extension). The later stated mode has a higher privilege than the previous one. OS kernel
is typically working on the supervisor mode. In RISC-V, according to these privilege
mode, the configurable system settings are different, and special registers represent each
system setting, called control and status registers (CSRs). For example, the supervisor
CSRs manage various critical system settings such as trap configuration and page table
translation. CSRs can be updated through special CSR update instructions (CSRRW, CSRRS,
CSRRC). Each of which denotes for write, set bits, and clear bits in CSR.
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Table 1. The list of instructions for call and return in RISC-V.

Transfer Type Instructions

CALL
jal
jalr

x1, offset
x1, rs, 0

RET jalr x0, x1, 0

BRANCH

beq
blt
jal
jalr

rs, x0, offset
rt, rs, offset
x0, offset
x0, rs, 0

etc.

3. Threat Model

Our threat model and assumptions are not much different from existing works for
kernel integrity monitor. We assume that the kernel and our hardware modules are safely
loaded at boot time by leveraging secure boot mechanisms such as AEGIS [21] or UEFI [22].
Our assumed attacker can arbitrarily modify the kernel code region or data region by
exploiting vulnerabilities in the kernel at runtime. Any physical attacks, such as denial-of-
service (DOS) attacks and side-channel attacks are out-of-scope for this paper.

4. Design and Implementation

In this section, we firstly explain the design principles and overall architecture of our
approach. Then, we explain how we implement PEMI to extract internal processor state
and how RiskiM ensures the kernel integrity with the extracted state. Lastly, we analyze
whether our approach can be used to protect the kernel against various attacks.

4.1. Design Principles

The design principles of our approach are as follows:

• P1. Compatible with existing architecture and software: The design of our approach
should be compatible with existing architecture and software running on it. Other-
wise, it will require a tremendous amount of effort in porting it to those architecture
and software.

• P2. Comprehensive integrity verification mechanism: As described in Section 3, we
assume that attackers can attempt to thwart the integrity of the kernel in various ways.
Therefore, for a complete integrity verification mechanism, RiskiM has to perform
comprehensive checks on various kernel events to detect all of these attacks.

• P3. Non-bypassable monitoring mechanism: In our approach, RiskiM verifies the
kernel integrity based on the information delivered by PEMI. Thus, if the extracted
information can be forged, an attacker can bypass RiskiM and successfully perpetrate
the attack. Therefore, our approach should provide a non-bypassable monitoring
mechanism of the kernel behavior.

• P4. Low hardware and performance overhead: To make our approach applicable
even on resource-constrained systems, we designed PEMI and RiskiM to minimize the
performance and hardware overhead caused by them.

4.2. Architecture Overview

Figure 1 illustrates the overall design of our approach. PEMI extracts internal processor
states to generate the necessary dataset and delivers it to RiskiM. The details of PEMI are
explained in Section 4.3. RiskiM is located outside the processor to provide an SEE to
the security solution. RiskiM verifies the received dataset based on whitelist register sets,
which is configured by the security solution and kernel code analysis. Specifically, the
security solution provides the range of the monitored data regions and the allowed values
for them. In addition, the solution provides the range of the legitimate code regions that are
originally intended to access the monitored data regions by developers. On the other hand,
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the range of the immutable kernel memory region (i.e., read-only data and code region)
and the CSR configurations of the monitored system are provided by the static analysis of
the kernel code. If an attack is detected during the verification process in RiskiM, RiskiM
sends an interrupt signal to PEMI. Then, PEMI halts the processor to stop the attack. The
details for the verification process will be presented in Section 4.4.

RISC-V  Kernel Integrity Monitor 

(RiskiM)

Host System Bus

RISC- V Processor

Program Execution

Monitoring Interface

(PEMI) Whitelist Register Set

Figure 1. The architecture overview of our approach.

4.3. Program Execution Monitor Interface

As a security extension to RISC-V processor, PEMI extracts internal processor states,
which are indispensable to RiskiM for verifying kernel integrity, comprehensively. In
particular, PEMI extracts the execution information for the memory write instruction, CSR
update instruction, and control transfer instruction. As described in Section 1, since these
instructions change the current state of the kernel, so it is essential to verify the changes
caused by these instructions to ensure kernel integrity. PEMI represents the extracted
information as a 3-tuple dataset and sends it to RiskiM. Three datasets are as follows:

• Memory write dataset = {Instruction address, Data address, Data value}
• CSR update dataset = {CSR number, CSR update type, CSR data value}
• Control transfer dataset = {Instruction address, Target address, Transfer type}

The elements constituting each dataset are extracted from the associated pipeline
stage of the processor as highlighted in red, blue and orange dotted lines in Figure 2,
respectively. First, in the case of a memory write dataset, instruction address denotes the
memory address of the memory write instruction (e.g., SW) currently being processed in
the processor. data address and data value indicate the memory address and value to update
through the instruction. In case of CSR update dataset, CSR number indicates the kind of
CSR being updated by the instruction (i.e., sstatus, sptbr, etc.). CSR update type (i.e., write,
set, clear) shows how the instruction updates CSR data value. All components of the CSR
update dataset are extracted at the write-back stage of the processor. Similar with memory
write dataset, instruction address of the control transfer dataset refers to the memory address
of the currently executed control transfer instruction. target address and transfer type mean
the address to jump and the type of this instruction (e.g., call and return), respectively.
Notably, to extract the instruction address and target address in the processor, we extract
the related information. At the write-back stage, if the address of the currently processing
instruction is changed more than the length of the previously executed instruction (i.e.,
4-byte), we decide that the address of the previously executed instruction as an instruction
address and the address of the currently processing instruction as a target address. When
RiskiM detects an attack, PEMI receives an interrupt signal from RiskiM. It delivers it to the
processor to stop the execution, as highlighted in purple with the dotted line in Figure 2.
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RISC-V Processor

PEMI
EX

pc

MEM

pc

WB

pc

Data Cache

A
L

U

MEM

wdata

WB

wdata

MEM

rs2

MEM

rs2

RegFile

CSR

RegFile

dataset

TLB

WB

inst

MEM

inst

EX

inst

EX 

Stage

MEM 

Stage

Dataset

Generator

Dataset

Buffer
Data address

Instruction address

Data value

CSR data value

CSR number

/ CSR update type

selector

WB

Stage

interrupt

…

valid

dataset

Transfer type

Instrucstion/Target address

Figure 2. Microarchitecture of PEMI.

By being more tightly coupled to the host processor than other processor trace interface
(e.g., ARM ETM [18] and Intel PT [23]), PEMI can provide internal states of the processor
that conventional interfaces do not. Concretely, PEMI synchronously extracts the instruction
address, data address, and data value of the memory write instruction. And it also provides
the CSR data value and control transfer information. The support of PEMI increases
the monitor’s visibility of the processor (P2). Nevertheless, our approach does not lose
compatibility with RISC-V architectures, which is possible since we have endeavored to
extract the states without modifying any existing components of the processor as shown in
Figure 2 (P1). Besides, our approach does not require any instrumentation or modification
of the kernel code (P1), which are compelled in existing external monitor techniques [10].

4.4. RISC-V Kernel Integrity Monitor

To verify kernel integrity in an SEE, our approach introduces a hardware-based
external monitoring platform, called RiskiM. This subsection discusses the kernel integrity
verification mechanism of RiskiM and the operation of each submodule in RiskiM.

4.4.1. Kernel Integrity Verification Mechanism

As illustrated in Figure 3, RiskiM provides three kernel integrity verification mech-
anisms according to datasets. If an abnormal behavior is found during the verification,
RiskiM signal to the PEMI. The details of each mechanisms are as follows.
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What is the type of 
this control transfer?

Yes

No

Memory Write 
Dataset

A dataset is 
received

Is this 
data address

in the monitored 
data region?

Is this 
Instr. address in 

the legitimate code 
region?

Is the data value 
benign?

Is this 
data address

in the kernel code 
region?

No

Attack

Yes

Yes

Benign

Yes Is CSR value 
benign?

CSR Update
Dataset

Control Transfer
Dataset

Is the return address 
equal to the value in 
the shadow stack?

Is this 
Instr. address in the 
kernel code region?

Benign

Benign

No No

RET

No

Yes

Yes

Store the 
return 

address 
to the 

shadow 
stack 

No

Yes

CALLetc.

No

: Memory Write : CSR Update : Control Transfer

Figure 3. The Flowchart of RiskiM.

1. Check for the memory write datasets. For the memory write datasets, we first check
the data address. If the data address is within the kernel immutable regions such as
kernel code and read-only data, we identified it as an attack (e.g., code manipulation
attack). Because the kernel immutable region should not be changed during the normal
kernel execution. Moreover, it is noteworthy that this protection is also essential in
preventing attacks from bypassing our monitoring mechanism (P3). For example,
suppose an attacker manipulated the sensitive kernel code, which originally uses the
monitored data, to make it use the attacker-controlled data. In that case, the attacker
could take control of the sensitive kernel code without tempering the monitored data.
Second, we check if the data address is within the monitored data regions. If not, it
means that the dataset is not subject to verification and the check routine terminates.
If yes, we proceed to further integrity verification routines for instruction address and
data value. To be specific, we compare the data value and instruction address with
the corresponding whitelists that define the monitored data’s allowed values and the
ranges of the legitimate code regions, respectively. If there is no matched entry in
the whitelist, it is considered as an attack and RiskiM propagates the attack signal to
PEMI. In specific, when the data value is not matched, we judge that the monitored
data is manipulated with malicious value. If the instruction address is not valid, it
implies that the monitored data is modified by unallowed code such as vulnerable
kernel drivers. Note that no external hardware-based works perform the verification
of the instruction address because they do not have the capability to monitor the data
value and instruction address synchronously. However, in our approach, thanks to
PEMI, RiskiM can verify the monitored data is accessed by the legitimate code.

2. Check for the CSR update datasets. As described in Section 2, CSRs take an important
role in the system, such as memory management and privilege mode. Thus, if these
registers are maliciously modified, the integrity of OS kernel could be tampered. For
example, a developer may want to verify that sstatus register holds a valid value.
For example, MPRV bit in sstatus provides the ability to change the privilege level
for a memory load/store, which allows an attacker to gain an unauthorized memory
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access. In addition, it is important to ensure the integrity of sptbr which defines the
physical base address of the root page table. The verification method for sptbr is
described in Section 5. Consequently, RiskiM compares whether the CSR data value
is equal to the legal value of the corresponding CSR. If not, RiskiM recognizes it as
an attack and propagates the attack signal to PEMI; otherwise the verification process
terminates normally.

3. Check for the control transfer datasets. Along with the sensitive data structures
and CSRs, the control data, such as return address in the stack, should be protected.
Otherwise, the attacker can take control of the kernel. For example, if an attacker
can change the control flow of the kernel, she can launch a code reuse attack (e.g.,
return-oriented programming (ROP) attack). To prevent this, we implemented shadow
stack [24], a well-known protection mechanism for attacks to return address. The
shadow stack itself refers to a separate stack that is designed to store return addresses
only. At the function prologue, the return address is stored in both call stack and
shadow stack. Then, at the function epilogue, two return addresses are popped from
both stacks and compared to detect whether the return address in the call stack is
tampered by an attacker or not. RiskiM implements the shadow stack using the
control transfer datasets received from PEMI. First, RiskiM identifies whether the
dataset represents the behavior of the OS kernel. In other words, RiskiM checks
whether the instruction address in the dataset is in the kernel code region. If yes,
RiskiM performs the operations for the shadow stack (Figure 4a). If the transfer
type is CALL type, the return address (i.e., Instruction address + 4) is stored in the
shadow stack. In the current implementation, the shadow stack in RiskiM can hold
one thousand entries. Then, if the transfer type is RET type, the latest return address
stored in the shadow stack is popped and compared with the target address. Thus
when the two addresses do not match, RiskiM signals PEMI to notify the occurrence
of the attack. Figure 4b shows the change of the shadow stack when RiskiM receives
a series of control transfer datasets ( 1© CALL- 2© CALL- 3© RET- 4© RET). Note that
the control transfer dataset includes information about branches other than call and
return. Therefore, RiskiM can be configured to defend against attacks that use indirect
branch (e.g., jump-oriented programming).

(b) An example of the shadow stack when a series of control transfer dataset has been received 

Shadow Stack
inst_addr0 + 0x4 inst_addr0 + 0x4

inst_addr1 + 0x4

inst_addr0 + 0x4

{inst_addr0, tar_addr0, CALL}

① Push “inst_addr0 + 0x4”

{inst_addr1, tar_addr1, CALL} {inst_addr2, tar_addr2, RET} {inst_addr3, tar_addr3 , RET}

② Push “inst_addr1 + 0x4”
③ Pop “inst_addr1 + 0x4”

tar_addr2 = tnst_addr1 + 0x4?

④ Pop “inst_addr0 + 0x4”

tar_addr3 = inst_addr0 + 0x4?

Control Transfer

Dataset Received
{Instruction address, 

Target address, 

Transfer type}

Push the Return address 

(=“Instruction address” + 0x4)

onto the Shadow Stack 

Pop the top value of

the Shadow Stack

and  compare

with the “Target address”“Target address”

= Top of the Shadow Stack

“Transfer type” == CALL

Attack

“Transfer type” = RET

“Target address”

≠ Top of the Shadow Stack

(a) The flowchart of our shadow stack

(a) {Inst_addr0, Tar_addr0, CALL} --> {Inst_addr1, Tar_addr1, CALL} --> {Inst_addr2, Tar_addr2, RET} --> {Inst_addr3, Tar_addr3, RET}

(b) An Example of Shadow Stack when a  

jal    x1, 1676 jalr    x1, x6, 0 jalr    x0, x1, 0 jalr    x0, x1, 0Instrucstion :

Dataset :

Figure 4. The Concept of Shadow Stack.
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4.4.2. RiskiM Hardware Components

As shown in Figure 5, RiskiM is composed of seven submodules: set configuration
controller (SCC), whitelist register set (WRS), data address checker, data region selector,
instruction address checker, value checker, CSR checker, shadow sack manager and RiskiM
controller. In this section, we describe the role of each submodule in detail.

Instruction address

Data value

Set Configuration Controller

Whitelist 
Regiser Set

Host System Bus

Data Address
Checker

Data Region
Selector

Instr. Address
Checker

Value
Checker

R
iskiM

C
ontroller

Data address

2-bit Selector
and Dataset

RiskiM

Kernel 
Immutable

Region

Monitored 
Data 

Regions

Legitimate
Code 

Regions

Benign
Values

Interrupt 
signal

Attack 
Signal

CSR
Invariants

CSR
Checker

CSR number, CSR update type, 
CSR data value

Shadow Stack
Manager

•••

Ret_addr2
Ret_addr1

Instruction address, Target address,
Control transfer type

Figure 5. Microarchitecture of RiskiM.

In RiskiM, SCC provides a pathway connecting to the host system bus. At boot time,
SCC initializes the WRS, which contains information defining the kernel immutable region,
monitored data regions, legitimate code regions, benign data values, and CSR invariants.
The range for each region is expressed as the base and bound addresses, and the value
information is just stored as itself. After completing WRS setup, SCC invalidates the
slave interface by blocking the connection to the host system bus. Thus, any attacks to
compromise RiskiM through the system bus are prevented in the kernel execution (P3).
While the kernel operates, the RiskiM controller receives datasets from PEMI. According
to the dataset type, the RiskiM controller follows the integrity verification mechanism in
Section 4.4.1, passing relevant data to each module and receiving the appropriate return
signal(s). Depending on these return signals, the RiskiM controller passes the data to the
subsequent module or sends an attack signal to PEMI.

4.5. Security Analysis

In this section, we categorize attacks against the OS kernel into mutable region attack
and immutable region attack, and explain how the proposed approach can defend each
of them.

Attacks on the kernel immutable region. The immutable region of the kernel refers
to a region that is not changed after the kernel boots normally. Therefore, if any changes to
this region occurs while the kernel is running, it can be judged as an attack. For example,
the kernel code and system call table of the kernel should not be changed after booting, so
tampering in these region can be viewed as an kernel code manipulation attack and system
call hooking attack, respectively. In our approach, if developers define bounds information



Electronics 2021, 10, 2068 10 of 18

of the immutable regions in RiskiM, RiskiM can detect any malicious attempts to modify
the immutable region. In other words, RiskiM can detect such attacks by checking the
data address in the memory write dataset is included in the kernel immutable region as
described in Section 4.4.1.

Attacks on the kernel mutable region. On the other hand, since the kernel mutable
region can be modified normally while the kernel is running, an attack cannot be identified
simply from an attempted memory write event for the region, as in the kernel immutable
region case. Therefore, existing external hardware-based solutions define benign memory
values, i.e., a whitelist, for the mointored region can have during the normal kernel execution.
And they check whether the modified value is one of the benign ones whenever there is
a memory write event to the region. If the value is not included, this implies an attack.
For example, virtual file system hooking attacks can be effectively defended using this
detection method [9]. RiskiM also uses this detection method (see Section 4.4.1).

However, some attacks cannot be detected by verifying the memory data value. For
example, It is difficult to protect kernel data structures that are difficult to define the
whitelist or are modified to one of the known good values by the attacker. To mitigate
these attacks, we propose a detection method that verifies the memory write instruction
address is included in the legitimate codes. Existing external hardware-based monitors do
not have this checking method. From the data integrity definition, i.e., data should not be
altered by unauthorized parties, monitored data region manipulation by unauthorized code is
also an attack even when the value is benign [4,25]. We expect this verification to detect a
significant number of kernel attacks, since many kernel data attacks tamper with critical
kernel data through vulnerable kernel code, e.g., a buggy device driver. The effectiveness
of this detection method will be described with a concrete example in Section 5.1.

On the other hand, for the complete kernel protection, not only the above data integrity
but also control flow integrity (CFI) must be guaranteed. The CFI solution ensures that the
execution flow of a program cannot be tampered with by an attacker. If the CFI solution is
absent, an attacker can attempt various code reuse attacks utilizing existing kernel code.
Notably, if CFI is not guaranteed, the defense strategy for data integrity that only allows
access to sensitive data from legitimate code can be invalidated. In other words, if an
attacker includes parts of sensitive code as code gadgets in her code reuse attack, she
can access the sensitive data maliciously without violating the strategy for data integrity.
So, due to such a critical role in security, we have implemented a shadow stack, one of
representative CFI solutions, as described in Section 4.4.1.

5. Evaluation

To evaluate our approach, we have implemented the SoC prototype including the
hardware components as described in Section 4. The prototype used the Xilinx ZC706
board [26] and RISC-V Rocket core version 1.7 [20] parameterized by FPGA configuration
DefaultFPGAConfig as the host processor. Linux 4.1.17 is used for our RISC-V kernel.

5.1. Security Case Study

To demonstrate the proposed approach’s feasibility, we built two kinds of feasible
attacks and tested the proposed PEMI and RiskiM can detect those attacks. The first attack
tampers the integrity of the page table and the second one launches a control flow hijacking
to the OS kernel.

5.1.1. Data Attacks to Kernel Page Table

The page table is one of the data structures managed by the OS kernel. We chose
the page table as the example data structure to be protected since the page table is the
foundation for many kernel protection approaches [8,10,27]. To protect the page table, we
implemented a security solution by using RiskiM as follows. First, in the perspective of
data value, we verified whether W⊕X policy is enforced whenever each page table entry
is modified. Next, we also checked that the page table is updated with legitimate code.
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Fortunately, the Linux kernel updates the page table with only a few APIs after booting
the kernel normally, i.e., set_pte, set_pmd, and set_pud, hence we can easily obtain the
ranges of the legitimate code regions for the security solution (In Linux kernel, these APIs
are defined as inline functions. Therefore, it is necessary to analyze the kernel code and
set the inlined code as the legitimate code regions. However, for the sake of convenience,
we make these APIs as non-inline functions and set them to the legitimate code regions).
To confirm these protection mechanisms of RiskiM, we considered two attack scenarios
that compromise the integrity of the page table by a malicious data value and with an
unintended code.

• Manipulation by a malicious data value. In this attack, we modified the page table
entry to a malicious value using valid kernel code. Specifically, we tampered with a
page table entry to allow a corresponding memory page to have read + write + execute
(RWX) permission. RiskiM successfully detected this attack by confirming that the
value is not legitimate in the W⊕X policy. To detect this, we configured RiskiM as
follows. First, we set the monitored data region of RiskiM to the memory region
containing the kernel page table and the benign data value as the legitimate value of
the page table entry, which the W⊕X policy was applied. As a result, we confirmed
that RiskiM under the described setting can detect the attack. Precisely, when the
memory store instruction to modify the page table entry is executed in the processor,
the corresponding internal information of the processor is transmitted to RiskiM as
a memory write dataset. Then, RiskiM first checks whether the data address in the
dataset is included in the monitored data region, and it detects an attack by comparing
data value with the legitimate page table entry value.

• Manipulation with an unintended code. We also designed an attack that modifies
the page table using the unintended kernel code, e.g., a buggy device driver. Note
that, even if the modified value is benign, this attack can be considered as a data-only
attack where an attacker modifies sensitive data through a kernel vulnerability [28].
For example, through this attack, attackers can make the payload appear as a normal
kernel code by modifying the page table entry of the payload page to hold from read +
write(RW) to read + execute (RX) permission. Notably, since RW and RX permissions
are legitimate in the W⊕X policy, verifying the value is not enough to detect such
an attack. Thus, we configured RiskiM to monitor the memory region containing
the kernel page table to detect this attack. Then we made the legitimate kernel APIs
as the legitimate code region in RiskiM. As a result, we confirmed that RiskiM can
be utilized to detect this attack because the instruction address in the memory write
dataset is not included in the legitimate code region.

5.1.2. Control Flow Hijacking Attacks

To test RiskiM can detect control hijacking attack, we conducted the following experi-
ment. Specifically, we performed a vulnerable kernel function (i.e., vuln()) that exploits a
stack buffer-overflow vulnerability to modify the return address stored in the stack. Note
that modification of the return address is expected in control hijacking attacks such as ROP.
As a result of this experiment, we confirmed that RiskiM can detect this malicious behavior.
A detailed description of the detection process is as follows. First, when a call instruction
invokes the vulnerable function, the corresponding control transfer dataset is generated by
PEMI and is delivered to RiskiM. Then, RiskiM calculates the valid return address from the
instruction address in the dataset (i.e., instruction address + 4) and stores it in the shadow
stack. Afterward, when the return instruction is executed by using the modified return
address in the stack, the control transfer dataset is generated and passed to RiskiM. Finally,
the monitor detects the tampering of the return address by comparing the target address in
the dataset with the address popped from the shadow stack.
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5.2. Hardware Area and Power Analysis

We synthesized the proposed overall SoC design onto the prototype board based on
the parameters described above. There are five elements for each of the kernel code regions,
the monitored data regions, the legitimate code regions, the known good values and the
CSR invariants. To evaluate the hardware cost of PEMI and RiskiM, we measured the
utilization of FPGA resources in terms of look-up-tables (LUTs), registers, BRAMs, Muxes
and DSPs (Table 2). We also estimated the gate counts of our hardware components using
Synopsys Design Compiler [29] with a commercial 45 nm process library. Consequently,
the total gate count of the proposed modules is 40,438, which is 1.55% compared to the
baseline Rocket system (2,607,004). To measure our approach’s static power consumption
overhead, we used Vivado Power Analysis tools with the default setting. The measured
power overhead introduced by our approach is about 10mW, which represents 0.59% of
the power consumption in the baseline system.

Table 2. FPGA utilization report of our platform.

Components LUTs Regs BRAMs F7 Muxes F8 Muxes DSPs

Our platform

PEMI

RiskiM

APB Controller

CSR Checker

Shadow Stack

Others

3160
14

3146
2536

12
591

7

6939
165

6774
6212

5
359
198

0
0
0
0
0
0
0

822
0

822
768

0
54
0

327
0

327
306

0
21
0

0
0
0
0
0
0
0

We also measured gate count and static power consumption in the same way for
Kargos [30], which is a representative external hardware-based work. As a result, the gate
count and static power consumption of Kargos are measured as 82,317 and 29 mW, respec-
tively. In Kargos, it takes up a significant amount of hardware area and power consumption
to analyze all traces generated by ARM’s ETM. On the other hand, in our approach, since
PEMI efficiently extracts the necessary information, so more efficient implementation is
possible. These results confirm that our approach shows better performance than existing
external hardware-based works in terms of the hardware and power consumption (P4).

5.3. Performance Evaluation

To evaluate the runtime overhead of our approach, we consider three configurations:
baseline, SW-only, and our approach. Baseline represents the baseline hardware and the
original kernel. SW-only is the case where the hardware is still not changed but the kernel
is instrumented to realize the security solution for the page table protection described
in Section 5.1 using the virtual address space isolation technique [3]. To be specific, in
this scheme, we created two different address spaces with different memory permissions
for physical pages containing page tables; one has read-and-write permission and the
other has read-only permission. And, we enforce that only when the page tables need
to be legitimately modified, the OS kernel is forced to operate as an address space with
read-and-write permission for the page tables. Otherwise, the OS kernel is modified to
operate with an address space that has read-only permission for the page tables, so we
can protect the integrity of the page table. Lastly, in our approach, all security solutions are
implemented with RiskiM.

To measure the performance overhead that our approach imposes on the kernel, we
ran the LMbench benchmark suite [31], as shown in Table 3. On average, our approach and
the SW-only case incur 0.73% and 8.55% of the performance overhead, respectively. The SW-
only case shows performance degradation for several kernel operations, i.e., stat, fork, exec,
and page fault, which include the modification for the page tables. Because, in the SW-only,
whenever the page tables are modified, the additional code for changing the address space
is executed. Moreover, the current implementation of SW-only does not provide the same
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security guarantee RiskiM provides since it does not protect the return address stored in the
stack. If SW-only protects the return address in the same way as it does for the page table,
SW-only will undergo considerable performance overhead like existing works [32]. Because
the more kernel data structures are protected in the SW-only case, the more performance
overhead is inevitable because it requires additional code instrumentation for the OS kernel.
Meanwhile, our approach exhibits almost the same performance as the baseline (P4) since
kernel integrity verification is performed out in the external hardware with no kernel code
instrumentation. In addition to the kernel operations, we also ran several application
benchmarks (i.e., SPEC CPU2000, dhrystone, whetstone, hackbench, iozone, and tar) to
evaluate the performance impact of our approach on user-level applications. As shown in
Table 4, our approach imposes virtually zero performance degradation.

Table 3. Performance overhead for kernel operations.

Test Baseline Our Approach SW-Only

syscall null 0.60 us 0.60 us (00.00%) 0.60 us (00.00%)

syscall open 10.11 us 10.24 us (01.29%) 10.39 us (02.77%)

syscall stat 4.58 us 4.63 us (01.09%) 5.30 us (15.72%)

signal install 1.03 us 1.04 us (00.97%) 1.06 us (02.91%)

signal catch 5.52 us 5.52 us (00.00%) 5.57 us (00.91%)

pipe 18.38 us 18.46 us (00.44%) 18.65 us (01.47%)

fork 641.07 us 650.13 us (01.41%) 721.63 us (12.57%)

exec 704.71 us 706.92 us (00.31%) 797.05 us (13.10%)

page fault 1.13 us 1.15 us (01.77%) 1.47 us (30.09%)

mmap 241.00 us 241.00 us (00.00%) 263.67 us (09.41%)

GEOMEAN 0.73% 8.55%

Table 4. Performance overhead for application benchmarks.

Benchmark Spec. Dhry. Whet. Hack. Iozone Tar

Overhead 0.50% 0.55% 0.05% 0.01% 0.45% 0.38%

6. Related Work

Much effort has been given to developing techniques for efficient and secure ker-
nel integrity monitoring. According to how they implement the integrity monitor, these
techniques can be classified as software-based, internal hardware-based, and external
hardware-based. Table 5 shows a brief comparison with these approaches with our ap-
proach in terms of several criteria.

Table 5. Comparison with existing approaches.

Software Internal Hardware External Hardware Proposed Approach

Software
Compatibility highly compatible not compatible compatible compatible

Performance overhead
on host system slow fast fast fast

Hardware Cost None low high low

Security of SEE may vulnerable secure secure secure
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6.1. Software-Based Kernel Integrity Monitor

To ensure the integrity of the kernel, several software-based approaches have been
proposed. They can be categorized according to how they provide SEE and monitoring
capability for the integrity monitor. First, the hypervisor, also called a virtual machine man-
ager (VMM), was used in several works [27,33–35]. They implemented SEE in the system
using the higher privilege of the hypervisor over the kernel and monitored the integrity of
the kernel by leveraging the trap-and-emulate feature and memory virtualization of the
hypervisor. Another piece of research used TrustZone [36], which is SEE in ARM architec-
ture, to protect the integrity of the normal kernel. Similar to hypervisor-based approaches,
they put the integrity monitor in the secure world of TrustZone. Since the secure world
has a higher privilege than the normal world in which the kernel operates, they can easily
realize the isolation between the kernel and the integrity monitor. Then, they inserted
secure monitor calls (SMCs), which are special instructions to transfer the control from the
normal world to the secure world, into the kernel code and verified the integrity of the
kernel in the secure world when SMCs are executed. Some approaches [3,5,6,37] hardened
the kernel itself without any supports of a higher privileged layer such as hypervisor and
TrustZone. Instead, to build an SEE in the kernel address space, they utilized features of
the processor architecture such as WP [6] in Intel x86 and TxSZ [5] in the ARM. They split
the kernel into the secure domain and non-secure domain, then put the higher privilege to
the secure domain than the non-secure domain by assigning sensitive kernel operations
such as page table and system control register management to the secure domain. As a
consequence, by putting the integrity monitor in the secure domain and using devised
domain switching mechanism, they verified the integrity of the kernel running at the
non-secure domain in the secure domain. However, even with these efforts, the use of
another software agent for kernel protection is still exposing the risk of having its own
vulnerabilities. In addition, since additional context switches between the kernel and the
integrity monitor are needed to verify the behavior of the kernel, the more kernel behaviors
are verified, the more performance overhead is inevitable.

6.2. Internal Hardware-Based Kernel Integrity Monitor

Some studies [38–41] have extensively modified microarchitecture and ISA to provide
an SEE, efficiently. And, they showed their approaches can be utilized for various security
solutions, such as taint tracking and memory safety. However, they have some compatibility
issues with the existing software stack. In other words, since they provide an instruction
set extension to support security solutions, developers should modify the software stack,
including OS kernel, to use such instructions. On the other hand, our approach is highly
compatible with the standard software and architectures in that it does not change any of
the ISA but instead adds few lines to construct the interface architecture (i.e., PEMI) that is
used to extract the internal processor states.

6.3. External Hardware-Based Kernel Integrity Monitor

External hardware [9–12,17,30,42,43] is free from such the compatibility problem in
the internal hardware-based approach because the solution requires virtually no change to
the existing processor architecture as the hardware is literally located outside the processor.
Based on the means to monitor kernel behaviors, they can be categorized as follows. First,
there have been works using the memory snapshot mechanism to verify the integrity of the
kernel. By using dedicated hardware [44] or GPU [11], they capture the snapshots of the
kernel memory periodically and analyze them to find out whether the abnormal memory
behaviors occur or not. However, they are known to be bypassed by the transient attack,
which manipulates the kernel memory momentarily without leaving persistent changes
to the system [45]. To address that, some works [9,17,45] have monitored the memory
access events by means of the system bus snooping. They examined the memory write
event which targets the monitored memory region, i.e., kernel code or sensitive kernel
data structure, to ensure the integrity of the kernel. This enables the protection against the
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transient attack since they can monitor the kernel in real-time rather than in a periodic way.
However, they cannot see the internal state of the kernel such as CSR and cache, so they can
be bypassed through a sophisticated attack to the kernel [46]. In contrast, others [10,16,30]
have observed the kernel’s behaviors by extracting the processor’s internal state with
the processor interface. However, as explained in Section 1, since the interface provides
limited information of the host processor, so they cannot protect the kernel from various
threats. Otherwise, to extract additional information for checking the integrity of the kernel,
they have to modify the kernel code and design complex external hardware architecture
while losing the benefits for the external hardware approach. Some [12] have proposed
a model in which external hardware and trusted software work together to complement
the drawbacks of the external hardware approach, but in this case, they still suffer from
problems of the existing software-based approach.

6.4. Architectural Supports for Security Solutions

There have been numerous studies using architectural supports to monitor the ma-
licious activities of the software running on top of the processor. Some works leveraged
hardware performance counters (HPC), which is a set of special-purpose registers holding
the counts of the hardware-related events such as cache hits and misses. According to
the monitored counts, they implemented detection solutions for malware, side-channel
attack and integrity attack [47]. However, these counters cannot provide more specific
information, such as the target addresses of executed indirect branch instructions. Intel
architecture [23] provides hardware features to extract internal information of the processor,
such as last branch record (LBR), branch trace store (BTS) and processor trace (PT). Many
works utilized these features to enforce the control flow integrity [48–53]. However, as
described in Section 4.5, since they can only trace the program execution, data-only attacks
cannot be detected through them. ARM architecture also provides embedded trace macro-
cell (ETM) [18]. Unlike hardware features in Intel architecture, ETM can be configured
to trace the data information (data address and value) as well as the program execution.
However, two traces are coming from different channels, complex hardware design is
inevitable to generate the memory write dataset unlike PEMI. In RISC-V, Rocket processor
provides a special processor interface to provide internal processor information to the
external coprocessor, called rocket chip coprocessor (RoCC) interface [54]. PHMon [43]
used RoCC to implement several security solutions in a separate hardware. However,
unlike RiskiM, PHMon is designed to protect the user application not the kernel, and the
kernel code should be modified in PHMon.

7. Conclusions

This paper proposes RiskiM, a new external hardware-based kernel integrity monitor.
To obtain the state of the kernel from the processor, we define the required information into
three datasets and introduce a dedicated processor interface (PEMI). Thanks to the obtained
information from PEMI, RiskiM can enforce a comprehensive verification of the kernel
integrity without severe side effects, such as complex design, high overhead, and kernel
code instrumentation, which are all shortcomings of previous works. Our experiments with
RiskiM realized for an existing RISC-V system evince the effectiveness of our approach by
showing that RiskiM aided by PEMI successfully ensures kernel integrity with almost zero
performance degradation.
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