
electronics

Article

Improving the Quality Degradation of Dynamically
Configurable Approximate Multipliers via Data Correlation

Fabio Frustaci

����������
�������

Citation: Frustaci, F. Improving the

Quality Degradation of Dynamically

Configurable Approximate

Multipliers via Data Correlation.

Electronics 2021, 10, 2063. https://

doi.org/10.3390/electronics10172063

Academic Editor: Sunggu Lee

Received: 16 July 2021

Accepted: 23 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Modelling, Electronics and Systems, DIMES, University of Calabria,
87100 Rende, Italy; f.frustaci@dimes.unical.it

Abstract: In the last few years, dynamically configurable approximate multipliers have been explored
to tune the energy-quality trade-off in error-tolerant applications at runtime. Typically, the multiplier
accuracy is adjusted by adding a constant correction factor equal to the multiplier mean error to the
result, which is found offline assuming a predetermined input distribution. This paper describes a
simple approach to update the correction term at runtime, thus adapting it to the actual incoming
inputs. It takes advantage of the spatial and/or temporal correlation typically shown by input data in
error-tolerant applications, such as image and video processing. When applied to a typical case study
implemented with a commercial UTBB FDSOI 28 nm technology, the proposed approach shows an
energy reduction of up to 34% at iso-quality and a quality improvement of up to +9 dB, −4× and
+35% at iso-energy, in terms of peak-to-noise ratio (PSNR), normalized error distance (NED) and
structural similarity index metric (SSIM) respectively, compared to the traditional technique based
on a constant correction factor.

Keywords: energy-quality scaling; approximate computing; multiplier; low-power design; VLSI

1. Introduction

Approximate computing consists in relaxing the constraint of an exact computation
in order to trade the quality of the result with speed, area and power consumption [1,2].
As fundamental arithmetic blocks in signal processing, approximate multipliers have
been widely explored in the last few years [3–15]. Several approximate techniques have
been proposed, such as column truncation [5,6], approximate compressors [7,8], the use
of error-tolerant adders [9], input truncations [10], vertical and horizontal cut [12] and
input encoding [13,14]. Generally, all these techniques exploit a simple error-correction
technique, such as adding an error compensation constant to the approximate result in
order to increase the accuracy [15]. The value of the correction constant is chosen at
design time and it is equal to the mean error of the approximate multiplier, assuming
a certain statistical distribution (typically uniform) of the inputs [6]. It follows that the
correction constant is fixed, and it may not coincide with the optimum value, which changes
dynamically over time as the input sequence continues. Moreover, the performance of the
approximate arithmetic circuit is strongly dependent on the statistical distribution of the
inputs, as shown in [16], which is generally either very difficult or impossible to know a
priori. Among the previously mentioned approximate multipliers, few of them have the
essential ability to dynamically configure their approximation level at runtime, according
to the variable accuracy bound imposed by the application [5,6,10,17].

This paper investigates the ability to exploit the dynamic configurability of such
multipliers in order to dynamically adapt the error compensation constant to the incoming
inputs over time. This is carried out by periodically switching the multiplier operation
mode between two different accuracy levels and updating the correction factor in each
period. The choice of the accuracy levels as well as the updating period can be used to
leverage the energy-quality trade-off. The proposed approach takes advantages of the
typical spatial correlation of consecutive inputs in error-tolerant applications, such as

Electronics 2021, 10, 2063. https://doi.org/10.3390/electronics10172063 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10172063
https://doi.org/10.3390/electronics10172063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10172063
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10172063?type=check_update&version=1

Electronics 2021, 10, 2063 2 of 17

image and video processing. As a case study, the proposed technique has been applied to
a multiply-accumulate (MAC)-based image processing application, such as the Gaussian
filter, and implemented with a commercial UTBB FDSOI 28 nm technology. Simulation
results showed that it can reduce the energy dissipation of the multiplier by up to 55% at
the parity of the output quality, compared to the traditional approaches. When the entire
MAC circuit is considered, the proposed approach reduces the energy consumption by up
to 35% at iso-quality.

The remainder of the paper is organized as follows. Section 2 furnishes a brief
background about dynamically configurable approximate multipliers, Section 3 describes
the proposed approach, Section 4 reports the error analysis of the new technique, Section 5
deals with the quality analysis when the proposed approach is applied to a case study
(Gaussian filter), the energy-quality trade-off is described in Section 6, and finally, Section 7
outlines the conclusions.

2. Related Works

Recently, some approximate multipliers with the ability to dynamically tune their
energy-quality trade-off have been proposed [5,6,10,17]. Such an ability has been shown
to save energy consumption by leveraging the typical variable accuracy bound imposed
by the error-tolerant applications. Indeed, this class of multipliers does not have a fixed
accuracy loss, but the latter can be dynamically increased (reduced) in order to save more
energy (to obtain a more accurate result) depending on the current application context
and/or the system energy budget. The work described in [17] proposes the design of
dual-quality compressors to be placed in the least-significant part of the partial-product
reduction stage of the multiplier. The dual-quality compressors can be configured with
two different accuracy thresholds by means of an external signal that disables some tristate
buffers and isolates a circuit portion by power gating. A higher-accuracy threshold is
selected when the application requires a more accurate operation. Obviously, such a
configuration leads to a result that is closer to the true value, but this results in a higher
energy consumption. Conversely, in those moments when the accuracy bound of the
application is lower, the low-accuracy threshold can be set in order to further relax the
constraint of the exact computation and to save extra energy. The desired energy-quality
trade-off can be obtained by tuning the number of compressors with the highest (and
lowest) accuracy threshold.

The research described in [10] proposes a perforation and rounding technique that
consists of setting some least-significant bits (LSBs) of the multiplier’s inputs to 0. The
effect of such a strategy is to reduce the number of non-zero partial products and to set a
certain number of LSBs of the result to the constant 0 value. The energy-quality trade-off
can be tuned at runtime by selecting the appropriate number of LSBs of the inputs to be set
at 0. For this purpose, a layer of multiplexers is placed at the top of the multiplier, whose
selection signals are driven by a ROM-based table, which stores the allowed approximation
configurations.

The dynamic column truncation is described in [5,6]. Here, the multiplier’ energy-
quality trade-off is tuned by nullifying the switching activity of the compressors in the
partial-product reduction stage belonging to a selected number of least-significant columns.
With kmax being the maximum number of columns that can be truncated, all the 2-input
AND gates typically employed in the multiplier partial-product generation stage and
belonging to the least kmax columns are replaced with 3-input AND gates. With A[n−1]
and B[n−1] being the two n-bit multipliers’ inputs, the (i, j)-th 3-input AND gate computes
Ai·Bj·th, with h = i + j and 0 ≤ h < kmax, where the control signal th drives all the AND
gates in the h-th column. The value of the control signals dictates the number of truncated
columns. If NT < kmax columns need to be truncated, the signals th are set as described in
Equation (1):

th =

{
0, f or 0 ≤ h < NT
1, f or NT ≤ h < kmax

(1)

Electronics 2021, 10, 2063 3 of 17

In this way, all the bits of the partial products belonging to the least NT columns are
set to 0 regardless of the value of A and B. Therefore, the switching activity of the following
compressors employed in the partial-reduction stage of the multiplier and belonging to the
least NT columns is zero, and the multiplier energy consumption is reduced. The value of
NT entails the energy-quality trade-off: the higher (lower) the NT , the lower (higher) the
energy consumption and the result accuracy. Figure 1 depicts the principle of the dynamic
column truncation technique applied to an 8 × 8 Wallace multiplier. In the same way as
described in [10], different values of the control signal th, corresponding to a number of
predetermined allowed accuracy configurations, can be stored in a ROM-based table and
inputted to the multiplier according to the desired energy-quality trade-off.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 17

𝑡ℎ = {
0, 𝑓𝑜𝑟 0 ≤ ℎ < 𝑁𝑇

1, 𝑓𝑜𝑟 𝑁𝑇 ≤ ℎ < 𝑘𝑚𝑎𝑥
 (1)

In this way, all the bits of the partial products belonging to the least 𝑁𝑇 columns are

set to 0 regardless of the value of A and B. Therefore, the switching activity of the follow-

ing compressors employed in the partial-reduction stage of the multiplier and belonging

to the least 𝑁𝑇 columns is zero, and the multiplier energy consumption is reduced. The

value of 𝑁𝑇 entails the energy-quality trade-off: the higher (lower) the 𝑁𝑇 , the lower

(higher) the energy consumption and the result accuracy. Figure 1 depicts the principle of

the dynamic column truncation technique applied to an 8 × 8 Wallace multiplier. In the

same way as described in [10], different values of the control signal 𝑡ℎ, corresponding to

a number of predetermined allowed accuracy configurations, can be stored in a ROM-

based table and inputted to the multiplier according to the desired energy-quality trade-

off.

Figure 1. The dynamically truncated approximate multiplier [5].

All the above-described techniques plan to add a correction factor that depends on

the adopted accuracy configuration. Its value is chosen at design time and it is found

through an error analysis of the approximate multiplier considering a particular statistical

distribution of the inputs A and B, typically supposed to be uniformly distributed.

The following section presents a possible approach to update the correction factor at

runtime that is particularly suitable when the inputs are spatially and/or temporally cor-

related, as usually occurs in error-tolerant applications such as image processing [18].

3. The Proposed Technique and Motivation

Dynamically configurable approximate multipliers can be smartly used in error-tol-

erant applications whose data show spatial and/or temporal correlation. Figure 2 depicts

the proposed methodology. Let us consider an input stream incoming to one of the mul-

tipliers’ input port. We can suppose that the other multiplier’s input port is receiving some

coefficients (e.g., in the typical convolutional operation [9]) or another input stream (e.g.,

in image multiplication [7]). Each input is labeled with an increasing number according

to its arrival order. As an example of application, we can suppose that each input is a pixel

of an image or video frame that is scanned in raster order. The computational task requires

an elaboration that may involve the single input and/or a group of its neighbors. The con-

ventional approach consists in setting the quality level of the approximate multiplier and

processing the stream one input at a time. Possibly, the approximation mode can be

changed during the task execution if required by the particular context of the running

Figure 1. The dynamically truncated approximate multiplier [5].

All the above-described techniques plan to add a correction factor that depends on
the adopted accuracy configuration. Its value is chosen at design time and it is found
through an error analysis of the approximate multiplier considering a particular statistical
distribution of the inputs A and B, typically supposed to be uniformly distributed.

The following section presents a possible approach to update the correction factor
at runtime that is particularly suitable when the inputs are spatially and/or temporally
correlated, as usually occurs in error-tolerant applications such as image processing [18].

3. The Proposed Technique and Motivation

Dynamically configurable approximate multipliers can be smartly used in error-
tolerant applications whose data show spatial and/or temporal correlation. Figure 2
depicts the proposed methodology. Let us consider an input stream incoming to one
of the multipliers’ input port. We can suppose that the other multiplier’s input port is
receiving some coefficients (e.g., in the typical convolutional operation [9]) or another
input stream (e.g., in image multiplication [7]). Each input is labeled with an increasing
number according to its arrival order. As an example of application, we can suppose
that each input is a pixel of an image or video frame that is scanned in raster order. The
computational task requires an elaboration that may involve the single input and/or a
group of its neighbors. The conventional approach consists in setting the quality level of
the approximate multiplier and processing the stream one input at a time. Possibly, the
approximation mode can be changed during the task execution if required by the particular
context of the running application. The approximation level also dictates the value of the
correction factor, which is typically found by an offline statistical analysis of the multiplier
based on a supposed input distribution.

The proposed approach consists in updating the correction factor dynamically with an
update period that can be tuned according to the energy-quality requirements. In Figure 2,
the update period is indicated with F, which is defined as the number of consecutive

Electronics 2021, 10, 2063 4 of 17

inputs between two consecutive updates. The inputs involved in the updating processes
are highlighted in grey. The dynamic configurability of approximate multipliers, such as
in [5,6,10,17], can be exploited to periodically calculate the correction factor. A possible
strategy can consist in performing two computations on the inputs highlighted in grey
in Figure 2 and labeled with In(i−1)F+1, with i being the index of the updating period,
one selecting an appropriate approximation threshold and the other one selecting the
accurate mode. This is possible since the selected multipliers can dynamically switch
among different accuracy configurations. The difference between the results of the two
computations can be used as a correction factor for the following F − 1 multiplication.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 17

application. The approximation level also dictates the value of the correction factor, which

is typically found by an offline statistical analysis of the multiplier based on a supposed

input distribution.

Figure 2. The proposed correction factor updating strategy.

The proposed approach consists in updating the correction factor dynamically with

an update period that can be tuned according to the energy-quality requirements. In Fig-

ure 2, the update period is indicated with F, which is defined as the number of consecutive

inputs between two consecutive updates. The inputs involved in the updating processes

are highlighted in grey. The dynamic configurability of approximate multipliers, such as

in [5,6,10,17], can be exploited to periodically calculate the correction factor. A possible

strategy can consist in performing two computations on the inputs highlighted in grey in

Figure 2 and labeled with In(i−1)F+1, with i being the index of the updating period, one se-

lecting an appropriate approximation threshold and the other one selecting the accurate

mode. This is possible since the selected multipliers can dynamically switch among dif-

ferent accuracy configurations. The difference between the results of the two computa-

tions can be used as a correction factor for the following F − 1 multiplication.

The proposed strategy is motivated by the fact that input data show a temporal/spa-

tial correlation in typical error-tolerant applications, such as image processing. In such a

case, the exact correction factor found for the input In(i−1)F+1 can also be applied to the fol-

lowing inputs belonging to the same update period, with a reasonable degree of accuracy.

Obviously, such a property cannot be strictly demonstrated since the scenario depends on

the actual image being processed, but a useful insight can be drawn by an analysis of some

benchmarks that are often used to evaluate image processing techniques [19]. Figure 3

depicts an analysis performed on three 512 × 512 8-bit grayscale benchmark images: air-

plane, lake and dark woman. Each image row has been divided into groups of F consecu-

tive pixels (P1, P2, …, PF), with F = 4, 8 and 16. In the histograms of Figure 3, Di denotes the

average difference between the values of pixels Pi and P1, with i = 2 … F.

(a) (b) (c)

Figure 3. Analysis of the pixel value differences for different values of F and for the analyzed benchmarks: (a) airplane,

(b) dark woman, (c) lake.

Figure 2. The proposed correction factor updating strategy.

The proposed strategy is motivated by the fact that input data show a temporal/spatial
correlation in typical error-tolerant applications, such as image processing. In such a
case, the exact correction factor found for the input In(i−1)F+1 can also be applied to the
following inputs belonging to the same update period, with a reasonable degree of accuracy.
Obviously, such a property cannot be strictly demonstrated since the scenario depends
on the actual image being processed, but a useful insight can be drawn by an analysis
of some benchmarks that are often used to evaluate image processing techniques [19].
Figure 3 depicts an analysis performed on three 512 × 512 8-bit grayscale benchmark
images: airplane, lake and dark woman. Each image row has been divided into groups of
F consecutive pixels (P1, P2, . . . , PF), with F = 4, 8 and 16. In the histograms of Figure 3, Di
denotes the average difference between the values of pixels Pi and P1, with i = 2 . . . F.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 17

application. The approximation level also dictates the value of the correction factor, which

is typically found by an offline statistical analysis of the multiplier based on a supposed

input distribution.

Figure 2. The proposed correction factor updating strategy.

The proposed approach consists in updating the correction factor dynamically with

an update period that can be tuned according to the energy-quality requirements. In Fig-

ure 2, the update period is indicated with F, which is defined as the number of consecutive

inputs between two consecutive updates. The inputs involved in the updating processes

are highlighted in grey. The dynamic configurability of approximate multipliers, such as

in [5,6,10,17], can be exploited to periodically calculate the correction factor. A possible

strategy can consist in performing two computations on the inputs highlighted in grey in

Figure 2 and labeled with In(i−1)F+1, with i being the index of the updating period, one se-

lecting an appropriate approximation threshold and the other one selecting the accurate

mode. This is possible since the selected multipliers can dynamically switch among dif-

ferent accuracy configurations. The difference between the results of the two computa-

tions can be used as a correction factor for the following F − 1 multiplication.

The proposed strategy is motivated by the fact that input data show a temporal/spa-

tial correlation in typical error-tolerant applications, such as image processing. In such a

case, the exact correction factor found for the input In(i−1)F+1 can also be applied to the fol-

lowing inputs belonging to the same update period, with a reasonable degree of accuracy.

Obviously, such a property cannot be strictly demonstrated since the scenario depends on

the actual image being processed, but a useful insight can be drawn by an analysis of some

benchmarks that are often used to evaluate image processing techniques [19]. Figure 3

depicts an analysis performed on three 512 × 512 8-bit grayscale benchmark images: air-

plane, lake and dark woman. Each image row has been divided into groups of F consecu-

tive pixels (P1, P2, …, PF), with F = 4, 8 and 16. In the histograms of Figure 3, Di denotes the

average difference between the values of pixels Pi and P1, with i = 2 … F.

(a) (b) (c)

Figure 3. Analysis of the pixel value differences for different values of F and for the analyzed benchmarks: (a) airplane,

(b) dark woman, (c) lake.
Figure 3. Analysis of the pixel value differences for different values of F and for the analyzed benchmarks: (a) airplane, (b)
dark woman, (c) lake.

Intuitively, pixels that are spatially close to each other have a similar value, whereas
the higher their distance, the higher their difference. To further analyze the proposed
approach, let us consider the simple multiplication operation between the pixel Pi within
the interval (P1, P2, . . . , PF) by a constant m. The error obtained on the i-th multiplication
can be expressed by Equation (2):

εi = m·Pi − m̃·Pi (2)

Electronics 2021, 10, 2063 5 of 17

where m·Pi and m̃·Pi are the exact and the approximate results, respectively. According to
the proposed approach, the correction factor, CF, is calculated as:

CF = m·P1 − m̃·P1 (3)

The correction factor is then added to the results of all the F multiplications and the
i-th error becomes:

εi =

{
0

m·Pi −
[
m̃·Pi + m·P1 − m̃·P1

] i = 1
i ∈ [2, . . . , F]

(4)

From Equation (4), it can be deduced that a possible case when εi → 0 is F → 1 . This
corresponds to update the correction factor for each Pi, which implies an exact multiplica-
tion for each input. Obviously, such a scenario is not practical since it does not consider
the energy benefits of the approximate computing paradigm. On the other hand, εi → 0
also when Pi → P1 . This case occurs when the value of the generic input, Pi, differs from
the value of input P1 by a very small amount. This is the scenario of typical error-tolerant
applications, such as image processing depicted in Figure 3. Clearly, the condition Pi → P1
depends on the value of F: as revealed in Figure 3, the higher the F value, the smaller the
probability that the input Pi may have a value close to the one of P1. The value of F can
be used as a further knob to tune the energy-quality trade-off. Indeed, the lower the F
value, the higher the probability to have Pi ≈ P1 and a smaller εi. However, a low value of
F entails a more frequent correction factor updating and, hence, a higher number of exact
operations, and this results in a higher energy consumption.

Updating the correction factor as described in Figure 2 requires two operations on the
input In(i−1)F+1, an exact and an approximate one. This implies that the input streaming has
to be stalled after each window of F inputs to perform such a double operation. For small
values of F, this drawback may not be tolerable. Moreover, performing two operations
for the same input obviously entails an extra energy consumption. In order to overcome
the above-mentioned limitations, the approach described in Figure 2 can be simplified
as follows:

Simplification (1): the correction factor for the i-th interval CFi can be calculated as the
difference between the result of the exact computation on the input In(i−1)F+1 and the result
of the approximate one on the previous input In(i−1)F.

In order to exploit the spatial/temporal locality of input data, the result of the approx-
imate computation on In(i−1)F should not consider the correction factor CFi calculated in
the previous i-th interval. The only exception is represented by the first input I1, since it
does not have any predecessor. Consequently, a double computation is required just for I1,
thus the resulting drawbacks can be well-tolerated. Finally, the proposed approach can be
further simplified:

Simplification (2): the computation accuracy on the input In(i−1)F+1 can be relaxed.
Indeed, instead of setting the multiplier to the exact operation mode, the latter can be

configured with a relatively low approximate threshold. As a consequence, the accuracy of
the value of CFi+1 is lower, but, in contrast, the energy dissipation of the computation on
In(i−1)F+1 decreases. Moreover, in order to increase the result accuracy, the computation on
In(i−1)F+1 is corrected by the static correction factor, CFstatic, found with an offline procedure
supposing that input data are uniformly distributed, as typically performed in previous
works. Ultimately, the proposed procedure can be summarized as described in Figure 4.

Electronics 2021, 10, 2063 6 of 17Electronics 2021, 10, x FOR PEER REVIEW 6 of 17

Figure 4. Summary of the proposed procedure.

4. Error Analysis of the Proposed Technique

As stated in the previous sections, the proposed approach relies on the temporal/spa-

tial correlation that is typically found in data involved in error-tolerant applications, such

as images. Hence, the error performance of the new strategy cannot be analyzed by fur-

nishing a random input sequence to the approximate multipliers, as is generally the case

when the multipliers are designed for general applications [5,6,10,17]. Instead, an actual

image should be used, as one of the 8-bit benchmarks analyzed in Figure 3. In the follow-

ing analysis, the convolution operation between an image and a filtering kernel has been

considered as representative of the typical image processing applications. Moreover, in

order to draw general considerations, the coefficients of the kernel have been randomly

generated in the range [−128, 127], and a signed 8 × 8 approximate multiplier has been

exploited. Although the proposed strategy can be applied to any approximate multiplier

whose accuracy can be dynamically tuned, for the sake of brevity, all the following con-

siderations will be related to the approximate multiplier based on the dynamic truncation

scheme [5,6]. The reason for such a choice is that the dynamically truncated multiplier has

been found to have a better energy-quality performance compared to other configurable

approximate multipliers, such as those based on perforation/rounding and dual-quality

compressors [6]. As described in Section 2, the energy-quality trade-off of the dynamically

truncated approximate multiplier can be tuned by selecting an appropriate number 𝑁𝑇

of columns to be truncated. According to the proposed strategy, the multiplier should

switch between two approximate configurations, characterized by a number of truncated

columns equal to 𝑁𝑇1 and 𝑁𝑇2, with 𝑁𝑇2 < 𝑁𝑇1. With (In(i−1)F+1, …, IniF) being the pixels

belonging to the i-th update interval, the most accurate configuration (i.e., the one with

𝑁𝑇2 truncated columns) is selected when the convolution operation is centered on In(i−1)F+1.

On the contrary, the more aggressive approximate configuration (i.e., the one with

𝑁𝑇1 truncated columns) is selected in the other cases. In the following, this configuration

of the multiplier will be indicated with (𝑁𝑇1 − 𝑁𝑇2). Figure 5 depicts the updating of the

correction factor when the proposed technique is applied to the convolution of the 512 ×

512 8-bit grayscale airplane benchmark, for F = 4 and a random 7 × 7 filtering kernel. Dif-

ferent (𝑁𝑇1 − 𝑁𝑇2) multiplier configurations have been analyzed and the correction factor

found by the proposed procedure (CFdyn) has been compared with the exact (ideal) correc-

tion factor (CFexact) and the one obtained by the typical offline error analysis (CFstatic), sup-

posing 𝑁𝑇1 truncated columns in both cases. For the sake of clarity, Figure 5 shows the

results obtained for a randomly selected group of 300 consecutive pixels of the output

image. It is worth noting that CFdyn results to be much more accurate compared to CFstatic.

In particular, it is clearly visible that the behavior of CFdyn tends to follow the same outline

Figure 4. Summary of the proposed procedure.

4. Error Analysis of the Proposed Technique

As stated in the previous sections, the proposed approach relies on the tempo-
ral/spatial correlation that is typically found in data involved in error-tolerant applications,
such as images. Hence, the error performance of the new strategy cannot be analyzed by
furnishing a random input sequence to the approximate multipliers, as is generally the
case when the multipliers are designed for general applications [5,6,10,17]. Instead, an
actual image should be used, as one of the 8-bit benchmarks analyzed in Figure 3. In the
following analysis, the convolution operation between an image and a filtering kernel has
been considered as representative of the typical image processing applications. Moreover,
in order to draw general considerations, the coefficients of the kernel have been randomly
generated in the range [−128, 127], and a signed 8 × 8 approximate multiplier has been
exploited. Although the proposed strategy can be applied to any approximate multiplier
whose accuracy can be dynamically tuned, for the sake of brevity, all the following con-
siderations will be related to the approximate multiplier based on the dynamic truncation
scheme [5,6]. The reason for such a choice is that the dynamically truncated multiplier has
been found to have a better energy-quality performance compared to other configurable
approximate multipliers, such as those based on perforation/rounding and dual-quality
compressors [6]. As described in Section 2, the energy-quality trade-off of the dynamically
truncated approximate multiplier can be tuned by selecting an appropriate number NT
of columns to be truncated. According to the proposed strategy, the multiplier should
switch between two approximate configurations, characterized by a number of truncated
columns equal to NT1 and NT2, with NT2 < NT1. With (In(i−1)F+1, . . . , IniF) being the pixels
belonging to the i-th update interval, the most accurate configuration (i.e., the one with NT2
truncated columns) is selected when the convolution operation is centered on In(i−1)F+1.

On the contrary, the more aggressive approximate configuration (i.e., the one with
NT1 truncated columns) is selected in the other cases. In the following, this configuration
of the multiplier will be indicated with (NT1 − NT2). Figure 5 depicts the updating of
the correction factor when the proposed technique is applied to the convolution of the
512 × 512 8-bit grayscale airplane benchmark, for F = 4 and a random 7 × 7 filtering kernel.
Different (NT1 − NT2) multiplier configurations have been analyzed and the correction
factor found by the proposed procedure (CFdyn) has been compared with the exact (ideal)
correction factor (CFexact) and the one obtained by the typical offline error analysis (CFstatic),
supposing NT1 truncated columns in both cases. For the sake of clarity, Figure 5 shows
the results obtained for a randomly selected group of 300 consecutive pixels of the output
image. It is worth noting that CFdyn results to be much more accurate compared to CFstatic.
In particular, it is clearly visible that the behavior of CFdyn tends to follow the same outline
shown by CFexact. Consequently, the proposed correction strategy is able to adapt itself to
the actual distribution of the input data. On the contrary, the value of CFstatic is always the

Electronics 2021, 10, 2063 7 of 17

same for all the computed convolutions, thus resulting very different from CFexact in many
cases. Figure 6 depicts the mean relative error distance (MRED) of the correction factor, i.e.,

the average value of the percentage errors |CFexact−CFdyn|
|CFexact | and |CFexact−CFstatic |

|CFexact | calculated over
all the pixels of the whole 512 × 512 filtered output. It is worth noting that the proposed
technique greatly reduces the MRED of the correction factor compared to the conventional
static correction procedure. As an example, such a reduction is almost 90%, for NT1 = 15,
F = 4 and the multiplier configuration set to (15, 10). Another interesting consideration can
be drawn from the analysis of Figure 6: as NT1 decreases, the MREDs of CFdyn and CFstatic
tend to be equal. This consideration suggests that the proposed dynamic correction strategy
is more suitable when an aggressive multiplier approximation, and hence energy-saving
configuration, is enabled. Therefore, the proposed technique represents an effective way to
make the quality degradation of the dynamically configurable approximate multiplier more
graceful. Figure 6 also demonstrates the validity of simplifications (1) and (2) described
in Section 3. Indeed, let us focus on the bars labeled with A and B in Figure 6. The bar
A refers to the case when the new value of CFdyn for the i-th update period is calculated
by two operations on the input In(i−1)F+1, an exact and an approximate one. The bar B,
instead, is the result of adopting simplification (1), i.e., the new value of CFdyn for the i-th
update period is calculated as the difference between the result of the exact computation
on the input In(i−1)F+1 and the result of the approximate one on the previous input In(i−1)F.
It is worth noting that simplification (1) leads to an increase of the MRED of CFdyn that
is always lower than 3.5%. Moreover, simplification (2) also seems to be well-justified.
Indeed, relaxing the accuracy of the convolution centered on In(i−1)F+1 leads to an increase
of the MRED of CFdyn. However, such a percentage error can be tuned by varying the value
of NT2: as an example, setting NT2 = NT1 − 5 entails a percentage error increase that is not
higher than 2%, in comparison with the ideal case NT2 = 0 (exact computation).

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17

shown by CFexact. Consequently, the proposed correction strategy is able to adapt itself to

the actual distribution of the input data. On the contrary, the value of CFstatic is always the

same for all the computed convolutions, thus resulting very different from CFexact in many

cases. Figure 6 depicts the mean relative error distance (MRED) of the correction factor,

i.e., the average value of the percentage errors
|𝐶𝐹𝑒𝑥𝑎𝑐𝑡−𝐶𝐹𝑑𝑦𝑛|

|𝐶𝐹𝑒𝑥𝑎𝑐𝑡|
 and

|𝐶𝐹𝑒𝑥𝑎𝑐𝑡−𝐶𝐹𝑠𝑡𝑎𝑡𝑖𝑐|

|𝐶𝐹𝑒𝑥𝑎𝑐𝑡|
 calcu-

lated over all the pixels of the whole 512 × 512 filtered output. It is worth noting that the

proposed technique greatly reduces the MRED of the correction factor compared to the

conventional static correction procedure. As an example, such a reduction is almost 90%,

for NT1 = 15, F = 4 and the multiplier configuration set to (15, 10). Another interesting con-

sideration can be drawn from the analysis of Figure 6: as NT1 decreases, the MREDs of

CFdyn and CFstatic tend to be equal. This consideration suggests that the proposed dynamic

correction strategy is more suitable when an aggressive multiplier approximation, and

hence energy-saving configuration, is enabled. Therefore, the proposed technique repre-

sents an effective way to make the quality degradation of the dynamically configurable

approximate multiplier more graceful. Figure 6 also demonstrates the validity of simpli-

fications (1) and (2) described in Section 3. Indeed, let us focus on the bars labeled with A

and B in Figure 6. The bar A refers to the case when the new value of CFdyn for the i-th

update period is calculated by two operations on the input In(i−1)F+1, an exact and an ap-

proximate one. The bar B, instead, is the result of adopting simplification (1), i.e., the new

value of CFdyn for the i-th update period is calculated as the difference between the result

of the exact computation on the input In(i−1)F+1 and the result of the approximate one on the

previous input In(i−1)F. It is worth noting that simplification (1) leads to an increase of the

MRED of CFdyn that is always lower than 3.5%. Moreover, simplification (2) also seems to

be well-justified. Indeed, relaxing the accuracy of the convolution centered on In(i−1)F+1

leads to an increase of the MRED of CFdyn. However, such a percentage error can be tuned

by varying the value of NT2: as an example, setting NT2 = NT1 − 5 entails a percentage error

increase that is not higher than 2%, in comparison with the ideal case NT2 = 0 (exact com-

putation).

(a) (b) (c)

Figure 5. The correction factor updating process for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15,

(b) NT1 = 14, (c) NT1 = 10.
Figure 5. The correction factor updating process for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15,
(b) NT1 = 14, (c) NT1 = 10.

Figure 7 shows the normalized error distance (NED) [17] defined by Equation (5),
with N being the pixels’ number, Outmax is the maximum value of the output pixels, and
Outi and Õuti are the exact and the approximate i-th output pixel, respectively:

NED (%) =
1
N
·

N

∑
i=1

∣∣∣Outi − Õuti

∣∣∣
Outmax

(5)

The effectiveness of the proposed approach is clearly visible since it can reduce
the NED by more than 140% in comparison with the standard static correction strategy.
Moreover, the validity of the proposed design simplifications is also confirmed. Indeed,
simplification (1) leads to a maximum NED increase of only 3%, whereas adopting simplifi-

Electronics 2021, 10, 2063 8 of 17

cation (2) entails an extra NED increase that can be lower than 4%, in conjunction with a
tuning of the value of NT2. The above-described analysis has also been carried out for F = 8.
Figure 8 shows the updating process of CFdyn for F = 4 and F = 8 and several (NT1 − NT2)
multiplier configurations. The value of CFdyn is further from the exact value for F = 8: this
is an expected result since, as previously pointed out in Figure 3, the larger the value of
F, the lower the probability that the pixels belonging to the same update window have
similar values. Figures 9 and 10 depict the MRED of the correction factor and the NED of
the output for F = 8, respectively. It is worth noting that all the previous considerations
that have been drawn for the case F = 4 are still valid. In particular, the validity of the two
simplifications is also confirmed for the case F = 8. As expected, the CF MRED and the
output NED for the case F = 8 are higher than the values obtained for F = 4; as discussed
above, this is the consequence of a larger error correction window update.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 17

(a) (b) (c)

Figure 6. MRED (mean relative error distance) of CFdyn and CFstatic for a 7 × 7 convolution applied on the airplane bench-

mark: (a) NT1 = 15, (b) NT1 = 14, (c) NT1 = 10. F = 4. A: Proposed approach with NT2 = 0 and double computation on the same

pixel to update CFdyn. B: Proposed approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2

= NT1 − 2. D: Same as B, with NT2 = NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional

static correction with NT = NT1 truncated columns.

Figure 7 shows the normalized error distance (NED) [17] defined by Equation (5),

with N being the pixels’ number, Outmax is the maximum value of the output pixels, and

Outi and 𝑂𝑢𝑡̃ i are the exact and the approximate i-th output pixel, respectively:

𝑁𝐸𝐷 (%) =
1

𝑁
∙ ∑

|𝑂𝑢𝑡𝑖 − 𝑂𝑢𝑡𝑖̃|

𝑂𝑢𝑡𝑚𝑎𝑥

𝑁

𝑖=1

 (5)

The effectiveness of the proposed approach is clearly visible since it can reduce the

NED by more than 140% in comparison with the standard static correction strategy. More-

over, the validity of the proposed design simplifications is also confirmed. Indeed, sim-

plification (1) leads to a maximum NED increase of only 3%, whereas adopting simplifi-

cation (2) entails an extra NED increase that can be lower than 4%, in conjunction with a

tuning of the value of NT2. The above-described analysis has also been carried out for F =

8. Figure 8 shows the updating process of CFdyn for F = 4 and F = 8 and several (𝑁𝑇1 − 𝑁𝑇2)

multiplier configurations. The value of CFdyn is further from the exact value for F = 8: this

is an expected result since, as previously pointed out in Figure 3, the larger the value of F,

the lower the probability that the pixels belonging to the same update window have sim-

ilar values. Figures 9 and 10 depict the MRED of the correction factor and the NED of the

output for F = 8, respectively. It is worth noting that all the previous considerations that

have been drawn for the case F = 4 are still valid. In particular, the validity of the two

simplifications is also confirmed for the case F = 8. As expected, the CF MRED and the

output NED for the case F = 8 are higher than the values obtained for F = 4; as discussed

above, this is the consequence of a larger error correction window update.

(a) (b) (c)

Figure 7. Obtained NED (normalized error distance) for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 =

15, (b) NT1 = 14, (c) NT1 = 10. F = 4. A: Proposed approach with NT2 = 0 and double computation on the same pixel to update

the CFdyn. B: Proposed approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2 = NT1 − 2. D:

6.4 9.8 11.8 14.3
19.4

32.8

100.9

0

20

40

60

80

100

120

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 15

2.9 4.4 4.9 5.7 7.3
11.1

48.0

0

10

20

30

40

50

60

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 14

2.9

6.2 6.2 6.2 6.4 6.8

12.3

0

2

4

6

8

10

12

14

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 10

8.6 11.6 15.3 19.1
26.8

50.8

160.5

0

50

100

150

200

A B C D E F G

N
ED

 (
%

)

NT1 = 15

6.7 8.9 10.2 12.1 15.6
23.1

122.7

0

20

40

60

80

100

120

140

A B C D E F G

N
E

D
 (

%
)

NT1 = 14

1.0

1.7 1.7 1.8 1.8
2.1

4.7

0

1

2

3

4

5

A B C D E F G

N
E

D
 (

%
)

NT1 = 10

Figure 6. MRED (mean relative error distance) of CFdyn and CFstatic for a 7 × 7 convolution applied on the airplane
benchmark: (a) NT1 = 15, (b) NT1 = 14, (c) NT1 = 10. F = 4. A: Proposed approach with NT2 = 0 and double computation on
the same pixel to update CFdyn. B: Proposed approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B,
with NT2 = NT1 − 2. D: Same as B, with NT2 = NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5.
G: Conventional static correction with NT = NT1 truncated columns.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 17

(a) (b) (c)

Figure 6. MRED (mean relative error distance) of CFdyn and CFstatic for a 7 × 7 convolution applied on the airplane bench-

mark: (a) NT1 = 15, (b) NT1 = 14, (c) NT1 = 10. F = 4. A: Proposed approach with NT2 = 0 and double computation on the same

pixel to update CFdyn. B: Proposed approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2

= NT1 − 2. D: Same as B, with NT2 = NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional

static correction with NT = NT1 truncated columns.

Figure 7 shows the normalized error distance (NED) [17] defined by Equation (5),

with N being the pixels’ number, Outmax is the maximum value of the output pixels, and

Outi and 𝑂𝑢𝑡̃ i are the exact and the approximate i-th output pixel, respectively:

𝑁𝐸𝐷 (%) =
1

𝑁
∙ ∑

|𝑂𝑢𝑡𝑖 − 𝑂𝑢𝑡𝑖̃|

𝑂𝑢𝑡𝑚𝑎𝑥

𝑁

𝑖=1

 (5)

The effectiveness of the proposed approach is clearly visible since it can reduce the

NED by more than 140% in comparison with the standard static correction strategy. More-

over, the validity of the proposed design simplifications is also confirmed. Indeed, sim-

plification (1) leads to a maximum NED increase of only 3%, whereas adopting simplifi-

cation (2) entails an extra NED increase that can be lower than 4%, in conjunction with a

tuning of the value of NT2. The above-described analysis has also been carried out for F =

8. Figure 8 shows the updating process of CFdyn for F = 4 and F = 8 and several (𝑁𝑇1 − 𝑁𝑇2)

multiplier configurations. The value of CFdyn is further from the exact value for F = 8: this

is an expected result since, as previously pointed out in Figure 3, the larger the value of F,

the lower the probability that the pixels belonging to the same update window have sim-

ilar values. Figures 9 and 10 depict the MRED of the correction factor and the NED of the

output for F = 8, respectively. It is worth noting that all the previous considerations that

have been drawn for the case F = 4 are still valid. In particular, the validity of the two

simplifications is also confirmed for the case F = 8. As expected, the CF MRED and the

output NED for the case F = 8 are higher than the values obtained for F = 4; as discussed

above, this is the consequence of a larger error correction window update.

(a) (b) (c)

Figure 7. Obtained NED (normalized error distance) for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 =

15, (b) NT1 = 14, (c) NT1 = 10. F = 4. A: Proposed approach with NT2 = 0 and double computation on the same pixel to update

the CFdyn. B: Proposed approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2 = NT1 − 2. D:

6.4 9.8 11.8 14.3
19.4

32.8

100.9

0

20

40

60

80

100

120

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 15

2.9 4.4 4.9 5.7 7.3
11.1

48.0

0

10

20

30

40

50

60

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 14

2.9

6.2 6.2 6.2 6.4 6.8

12.3

0

2

4

6

8

10

12

14

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 10

8.6 11.6 15.3 19.1
26.8

50.8

160.5

0

50

100

150

200

A B C D E F G

N
ED

 (
%

)

NT1 = 15

6.7 8.9 10.2 12.1 15.6
23.1

122.7

0

20

40

60

80

100

120

140

A B C D E F G

N
E

D
 (

%
)

NT1 = 14

1.0

1.7 1.7 1.8 1.8
2.1

4.7

0

1

2

3

4

5

A B C D E F G

N
E

D
 (

%
)

NT1 = 10

Figure 7. Obtained NED (normalized error distance) for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1

= 15, (b) NT1 = 14, (c) NT1 = 10. F = 4. A: Proposed approach with NT2 = 0 and double computation on the same pixel to
update the CFdyn. B: Proposed approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2

= NT1 − 2. D: Same as B, with NT2 = NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G:
Conventional static correction with NT = NT1 truncated columns.

Electronics 2021, 10, 2063 9 of 17

Electronics 2021, 10, x FOR PEER REVIEW 9 of 17

Same as B, with NT2 = NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional static

correction with NT = NT1 truncated columns.

(a) (b) (c)

Figure 8. The correction factor updating process for a 7 × 7 convolution applied on the airplane benchmark for F = 4 and F

= 8: (a) (NT1, NT2) = (15, 10), (b) (NT1, NT2) = (14, 9), (c) (NT1, NT2) = (10, 6).

(a) (b) (c)

Figure 9. MRED of CFdyn and CFstatic for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15, (b) NT1 = 14, (c)

NT1 = 10. F = 8.

(a) (b) (c)

Figure 10. Obtained NED for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15, (b) NT1 = 14, (c) NT1 = 10.

F = 8. A: Proposed approach with NT2 = 0 and double computation on the same pixel to update the CFdyn. B: Proposed

approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2 = NT1 − 2. D: Same as B, with NT2 =

NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional static correction with NT = NT1

truncated columns.

Finally, the effect of the kernel size has also been investigated. Table 1 summarizes

the MRED of the correction factor and the output NED obtained when a 3 × 3 kernel with

randomly generated coefficients in the range [−128, 127] has been used for the convolu-

tion. The meaning of the configurations in the first column of Table 1 is the same as de-

scribed in the caption of Figure 6. Additionally, for the 3 × 3 convolution kernel, the pro-

posed approach has shown significant advantages compared to the conventional solution

15.1 18.6 20.2 22.3
27.0

39.2

100.9

0

20

40

60

80

100

120

A B C D E F G

C
F

M
R

ED
 (

%
)

NT1 = 15

6.6 7.9 8.3 9.0 10.4
13.8

48.0

0

10

20

30

40

50

60

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 14

5.0

7.5 7.5 7.5 7.5 7.8

12.3

0

5

10

15

A B C D E F G
C

F
 M

R
E

D
 (

%
)

NT1 = 10

17.6 20.5 23.7 27.2 34.4

57.4

160.5

0

50

100

150

200

A B C D E F G

N
E

D
 (

%
)

NT1 = 15

13.5 15.7 16.7 21.4 21.4
28.2

122.7

0

20

40

60

80

100

120

140

A B C D E F G

N
E

D
 (

%
)

NT1 = 14

1.7

2.4 2.4 2.4 2.4 2.6

4.7

0

1

2

3

4

5

A B C D E F G

N
E

D
 (

%
)

NT1 = 10

Figure 8. The correction factor updating process for a 7 × 7 convolution applied on the airplane benchmark for F = 4 and F
= 8: (a) (NT1, NT2) = (15, 10), (b) (NT1, NT2) = (14, 9), (c) (NT1, NT2) = (10, 6).

Electronics 2021, 10, x FOR PEER REVIEW 9 of 17

Same as B, with NT2 = NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional static

correction with NT = NT1 truncated columns.

(a) (b) (c)

Figure 8. The correction factor updating process for a 7 × 7 convolution applied on the airplane benchmark for F = 4 and F

= 8: (a) (NT1, NT2) = (15, 10), (b) (NT1, NT2) = (14, 9), (c) (NT1, NT2) = (10, 6).

(a) (b) (c)

Figure 9. MRED of CFdyn and CFstatic for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15, (b) NT1 = 14, (c)

NT1 = 10. F = 8.

(a) (b) (c)

Figure 10. Obtained NED for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15, (b) NT1 = 14, (c) NT1 = 10.

F = 8. A: Proposed approach with NT2 = 0 and double computation on the same pixel to update the CFdyn. B: Proposed

approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2 = NT1 − 2. D: Same as B, with NT2 =

NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional static correction with NT = NT1

truncated columns.

Finally, the effect of the kernel size has also been investigated. Table 1 summarizes

the MRED of the correction factor and the output NED obtained when a 3 × 3 kernel with

randomly generated coefficients in the range [−128, 127] has been used for the convolu-

tion. The meaning of the configurations in the first column of Table 1 is the same as de-

scribed in the caption of Figure 6. Additionally, for the 3 × 3 convolution kernel, the pro-

posed approach has shown significant advantages compared to the conventional solution

15.1 18.6 20.2 22.3
27.0

39.2

100.9

0

20

40

60

80

100

120

A B C D E F G

C
F

M
R

ED
 (

%
)

NT1 = 15

6.6 7.9 8.3 9.0 10.4
13.8

48.0

0

10

20

30

40

50

60

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 14

5.0

7.5 7.5 7.5 7.5 7.8

12.3

0

5

10

15

A B C D E F G
C

F
 M

R
E

D
 (

%
)

NT1 = 10

17.6 20.5 23.7 27.2 34.4

57.4

160.5

0

50

100

150

200

A B C D E F G

N
E

D
 (

%
)

NT1 = 15

13.5 15.7 16.7 21.4 21.4
28.2

122.7

0

20

40

60

80

100

120

140

A B C D E F G

N
E

D
 (

%
)

NT1 = 14

1.7

2.4 2.4 2.4 2.4 2.6

4.7

0

1

2

3

4

5

A B C D E F G

N
E

D
 (

%
)

NT1 = 10

Figure 9. MRED of CFdyn and CFstatic for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15, (b) NT1 = 14,
(c) NT1 = 10. F = 8.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 17

Same as B, with NT2 = NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional static

correction with NT = NT1 truncated columns.

(a) (b) (c)

Figure 8. The correction factor updating process for a 7 × 7 convolution applied on the airplane benchmark for F = 4 and F

= 8: (a) (NT1, NT2) = (15, 10), (b) (NT1, NT2) = (14, 9), (c) (NT1, NT2) = (10, 6).

(a) (b) (c)

Figure 9. MRED of CFdyn and CFstatic for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15, (b) NT1 = 14, (c)

NT1 = 10. F = 8.

(a) (b) (c)

Figure 10. Obtained NED for a 7 × 7 convolution applied on the airplane benchmark: (a) NT1 = 15, (b) NT1 = 14, (c) NT1 = 10.

F = 8. A: Proposed approach with NT2 = 0 and double computation on the same pixel to update the CFdyn. B: Proposed

approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2 = NT1 − 2. D: Same as B, with NT2 =

NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional static correction with NT = NT1

truncated columns.

Finally, the effect of the kernel size has also been investigated. Table 1 summarizes

the MRED of the correction factor and the output NED obtained when a 3 × 3 kernel with

randomly generated coefficients in the range [−128, 127] has been used for the convolu-

tion. The meaning of the configurations in the first column of Table 1 is the same as de-

scribed in the caption of Figure 6. Additionally, for the 3 × 3 convolution kernel, the pro-

posed approach has shown significant advantages compared to the conventional solution

15.1 18.6 20.2 22.3
27.0

39.2

100.9

0

20

40

60

80

100

120

A B C D E F G

C
F

M
R

ED
 (

%
)

NT1 = 15

6.6 7.9 8.3 9.0 10.4
13.8

48.0

0

10

20

30

40

50

60

A B C D E F G

C
F

 M
R

E
D

 (
%

)

NT1 = 14

5.0

7.5 7.5 7.5 7.5 7.8

12.3

0

5

10

15

A B C D E F G
C

F
 M

R
E

D
 (

%
)

NT1 = 10

17.6 20.5 23.7 27.2 34.4

57.4

160.5

0

50

100

150

200

A B C D E F G

N
E

D
 (

%
)

NT1 = 15

13.5 15.7 16.7 21.4 21.4
28.2

122.7

0

20

40

60

80

100

120

140

A B C D E F G

N
E

D
 (

%
)

NT1 = 14

1.7

2.4 2.4 2.4 2.4 2.6

4.7

0

1

2

3

4

5

A B C D E F G

N
E

D
 (

%
)

NT1 = 10

Figure 10. Obtained NED for a 7× 7 convolution applied on the airplane benchmark: (a) NT1 = 15, (b) NT1 = 14, (c) NT1 = 10.
F = 8. A: Proposed approach with NT2 = 0 and double computation on the same pixel to update the CFdyn. B: Proposed
approach with NT2 = 0 and adopting simplifications (1) and (2). C: Same as B, with NT2 = NT1 − 2. D: Same as B, with NT2

= NT1 − 3. E: Same as B, with NT2 = NT1 − 4. F: Same as B, with NT2 = NT1 − 5. G: Conventional static correction with NT

= NT1 truncated columns.

Finally, the effect of the kernel size has also been investigated. Table 1 summarizes
the MRED of the correction factor and the output NED obtained when a 3 × 3 kernel with
randomly generated coefficients in the range [−128, 127] has been used for the convolution.
The meaning of the configurations in the first column of Table 1 is the same as described
in the caption of Figure 6. Additionally, for the 3 × 3 convolution kernel, the proposed
approach has shown significant advantages compared to the conventional solution with a
constant correction factor. In particular, the proposed dynamic approach is able to reduce

Electronics 2021, 10, 2063 10 of 17

the MRED of the correction factor and the output NED (configuration A with NT1 = 15 and
F = 4) by up to 100%. As expected, the lower the NT1 and/or F, the higher the accuracy.

Table 1. 3 × 3 convolution.

Error NED (%)

Configuration F = 4 F = 8

NT1 = 15 NT1 = 14 NT1 = 13 NT1 = 15 NT1 = 14 NT1 = 13
A 9.8 7.7 1.6 18.4 13.2 2.3
B 13.6 10.3 2.7 21.2 15.4 3.4
C 16.8 11.5 2.7 24.1 16.4 3.4
D 19.4 13.4 2.8 26.4 18.1 3.4
E 25.1 15.8 2.8 31.9 20.2 3.4
F 34.9 21.15 3 41.1 25.1 3.5
G 116 79.5 4.4 116 79.5 4.4

CF MRED (%)

Configuration F = 4 F = 8

NT1 = 15 NT1 = 14 NT1 = 13 NT1 = 15 NT1 = 14 NT1 = 13
A 22.7 9.5 7.3 42 16 10.4
B 35.5 14.4 15.3 51.6 20.2 16.8
C 38.5 15.3 15.3 53.7 20.8 16.7
D 41.4 16.7 15.4 55.8 21.8 16.7
E 47.1 18.8 15.5 60.8 23.5 16.8
F 59.6 23.3 15.9 71.2 27.4 16.9
G 137.5 62.1 17.6 137.5 62.1 17.6

5. The Gaussian Filter as a Case Study: Quality Results

In this section, a typical image processing application, i.e., the Gaussian filter [9], is
taken as a reference and the quality results deriving from the application of the proposed
methodology are investigated. The 7 × 7 Gaussian filter used is described in Equation (6):

K =
1

4096



1 6 15 20 15 6 1
6 36 90 120 90 36 6
15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1


(6)

Quality results have been obtained by modeling the filtering operation of Equation (6)
in Matlab, taking typical 8-bit 512 × 512 greyscale images as benchmarks [19]. Figure 11
depicts the peak-to-noise ratio (PSNR) and the structural similarity index metric (SSIM)
of the filtered images for F = 4 and F = 8 respectively, averaged on three benchmarks:
lake, dark woman and airplane. The analysis has been carried out by varying several
multiplier parameters: the number of truncated columns (NT) for the standard approach
(static correction factor), and the number of truncated columns in the lower accuracy
(NT1) and higher accuracy mode (NT2) for the proposed correction approach. For each
value of NT, the static correction factor related to the conventional procedure has been
evaluated as the multiplier mean error obtained for 1 M uniformly distributed inputs.
Several considerations can be drawn from Figure 11. Indeed, when a relatively low quality
is required (PSNR < 34 dB or SSIM < 0.75), the proposed approach is able to work with
NT1 > NT. This is preferable since the higher the number of truncated columns, the higher
the energy saving. As an example, when its configuration is set to (NT1, NT2) = (15, 10)
and F = 4, the new correction strategy leads to about the same PSNR as shown by the
static correction technique for NT = 11. As expected, the novel approach shows a quality

Electronics 2021, 10, 2063 11 of 17

saturation as NT2 approaches a relatively low value, since the error correction factor does
not show any further sensible accuracy increase for any further reduction of NT2. Such a
behavior is in agreement with the considerations drawn by the analysis described in the
previous Section 4. Indeed, as shown in Figures 6–10, when NT2 approaches the value
NT1 − 5 (histogram bar C), the MRED of the correction factor starts to converge to the
ideal value corresponding to the case NT2 = 0 (histogram bar B). It follows that, when
a higher output quality is required (PSNR > 34 dB or SSIM > 0.75), the simpler static
correction technique shows quality results that are similar to those deriving from the
proposed dynamic correction approach.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 17

approaches a relatively low value, since the error correction factor does not show any fur-

ther sensible accuracy increase for any further reduction of NT2. Such a behavior is in

agreement with the considerations drawn by the analysis described in the previous Sec-

tion 4. Indeed, as shown in Figures 6, 7, 9 and 10, when NT2 approaches the value NT1 − 5

(histogram bar C), the MRED of the correction factor starts to converge to the ideal value

corresponding to the case NT2 = 0 (histogram bar B). It follows that, when a higher output

quality is required (PSNR > 34 dB or SSIM > 0.75), the simpler static correction technique

shows quality results that are similar to those deriving from the proposed dynamic cor-

rection approach.

(a) (b)

(c) (d)

Figure 11. Output quality analysis for a 7 × 7 Gaussian filter: comparison between the standard static

approach and the proposed dynamic technique. (a,b) F = 4, (c,d) F = 8.

6. Hardware Implementation and Energy-Quality Trade-Off

The hardware implementation of the analyzed Gaussian filter is described in Figure

12. It is based on a pipelined multiply-accumulate (MAC) circuit consisting of an 8 × 9

dynamically truncated unsigned Wallace multiplier and a 20-bit ripple carry adder

(RCA)-based accumulator needed to accumulate the 7 × 7 multiplications of the filter de-

scribed in Equation (6). The final accumulation is right-shifted by 12-bit positions to per-

form the division by 4096 and to obtain the final 8-bit filtered pixel. The circuit highlighted

in red aims at updating the correction factor CFdyn periodically, as described in Section 3.

Since the first pixel of each image row has no predecessor, we adopted the strategy to

perform two computations on it, one with lower accuracy and the other with higher accu-

racy, and to obtain the first correction factor by the difference of the two results. A finite

state machine (FSM) provides the multiplexers’ selection signals, C1–C4, and the trunca-

tion signals, th, to the multiplier, according to the definition of Equation (1). In the follow-

ing, there is a description of the computational steps consecutively performed by the pro-

posed hardware implementation.

(a) Low-accuracy convolution centered on the first pixel of the first row: At the be-

ginning of the convolution, the signal C3 is set to ‘0′, so that the register Corr. Reg. is ini-

tialized at 0, and the signals C4 and C2 are set to ‘1′ and ‘10′ respectively, in order to add

a zero constant to the first accumulation. The signal C1 is set to ‘1′ in order to freeze the

10

15

20

25

30

35

40

45

50

4 5 6 7 8 9 10 11 12 13 14 15

P
SN

R
 (

d
B

)

NT (for static corr.)  NT2 (for proposed dyn. corr.)

Proposed NT1 = 15
Proposed NT1 = 14
Proposed NT1 = 13
Proposed NT1 = 12
Proposed NT1 = 11
Static correction

the higher the better

quality begins to saturate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11 12 13 14 15

S
S

IM

NT (for static corr.)  NT2 (for proposed dyn. corr.)

Proposed NT1 = 15
Proposed NT1 = 14
Proposed NT1 = 13
Proposed NT1 = 12
Proposed NT1 = 11
Static correction

the higher the better

quality begins to saturate

10

15

20

25

30

35

40

45

50

4 5 6 7 8 9 10 11 12 13 14 15

P
SN

R
 (

d
B

)

NT (for static corr.)  NT1 (for proposed dyn. corr.)

Proposed NT1 = 15
Proposed NT1 = 14
Proposed NT1 = 13
Proposed NT1 = 12
Proposed NT1 = 11
Static correction

the higher the better

quality begins to saturate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 5 6 7 8 9 10 11 12 13 14 15

SS
IM

NT (for static corr.)  NT1 (for proposed dyn. corr.)

Proposed NT1 = 15
Proposed NT1 = 14
Proposed NT1 = 13
Proposed NT1 = 12
Proposed NT1 = 11
Static correction

the higher the better

quality begins to saturate

Figure 11. Output quality analysis for a 7 × 7 Gaussian filter: comparison between the standard
static approach and the proposed dynamic technique. (a,b) F = 4, (c,d) F = 8.

6. Hardware Implementation and Energy-Quality Trade-Off

The hardware implementation of the analyzed Gaussian filter is described in Figure 12.
It is based on a pipelined multiply-accumulate (MAC) circuit consisting of an 8 × 9
dynamically truncated unsigned Wallace multiplier and a 20-bit ripple carry adder (RCA)-
based accumulator needed to accumulate the 7 × 7 multiplications of the filter described
in Equation (6). The final accumulation is right-shifted by 12-bit positions to perform the
division by 4096 and to obtain the final 8-bit filtered pixel. The circuit highlighted in red
aims at updating the correction factor CFdyn periodically, as described in Section 3. Since
the first pixel of each image row has no predecessor, we adopted the strategy to perform
two computations on it, one with lower accuracy and the other with higher accuracy, and to
obtain the first correction factor by the difference of the two results. A finite state machine
(FSM) provides the multiplexers’ selection signals, C1–C4, and the truncation signals, th,
to the multiplier, according to the definition of Equation (1). In the following, there is a
description of the computational steps consecutively performed by the proposed hardware
implementation.

Electronics 2021, 10, 2063 12 of 17Electronics 2021, 10, x FOR PEER REVIEW 14 of 17

Figure 12. RTL schematics of the case study.

As expected, the MAC average energy dissipation per operation increases as NT and

NT1 decrease. For the proposed approach, a higher value of F leads to a lower MAC energy

dissipation because the time when the MAC is configured with a lower accuracy is larger.

Moreover, the lower the NT and NT1, the higher the clock network energy dissipation be-

cause, as the number of truncated columns decreases, the number of clock-gated FFs de-

creases as well. The energy overhead of the extra counters is insensitive to the value of

NT1, whereas it slightly depends on F. Compared to the single counter of the standard

static correction approach, the extra counters needed by the proposed dynamic approach

entail 15.6% (12.5%) more energy for F = 4 (F = 8). As expected, the higher the value of F,

the lower the energy dissipation of the correction factor updating circuit. This is reasona-

ble since a higher value of F means a lower activity for the circuit. In particular, from Table

2, it can be easily inferred that the energy dissipation of the correction factor updating

circuit is halved when the value of F doubles. Anyway, the extra energy dissipation of the

correction factor updating circuit and extra counters represents a very small percentage

of the total energy dissipation: up to 3.8% and 3% for F = 4 and F = 8, respectively. It is

worth noting that the accurate MAC has a slightly lower minimum clock period constraint

(447 ps), 2.8% lower than the delay of the proposed design, since the partial product gen-

eration stage of the accurate multiplier exploits 2-input AND gates rather than 3-input

AND gates. Moreover, the area overhead of the proposed design with respect to the accu-

rate one is about 46%, since the latter does not need clock gating latches. The energy con-

sumption of the MAC designed according to the proposed approach is up to 72% and 76%

lower with respect to the accurate MAC for F = 4 and F = 8, respectively. Figure 13 depicts

the energy-quality trade-off for the standard and proposed designs for different values of

NT1 and NT2. The quality has been evaluated with three metrics: PSNR, SSIM and NED. As

expected from the preliminary analysis of Figure 11, the proposed methodology shows a

quality saturation for low values of NT2, thus the standard approach is preferable when a

higher quality is required (PSNR > 32 dB, SSIM > 0.7, NED < 1%). On the contrary, for

lower-quality values, the proposed methodology shows a better energy-quality trade-off.

As it is visible in the insets of Figure 13, the energy consumption is reduced by up to 34%,

34% and 20% at the parity of PSNR, NED and SSIM, respectively. Similarly, the proposed

technique can improve the PSNR, the NED and the SSIM by up to +9 dB, −4× and +35%

Figure 12. RTL schematics of the case study.

(a) Low-accuracy convolution centered on the first pixel of the first row: At the
beginning of the convolution, the signal C3 is set to ‘0’, so that the register Corr. Reg. is
initialized at 0, and the signals C4 and C2 are set to ‘1’ and ‘10’ respectively, in order to
add a zero constant to the first accumulation. The signal C1 is set to ‘1’ in order to freeze
the dynamic switching activity of the correction factor updating circuit to save power.
Moreover, the FSM sets the signal th to the value thNT1, corresponding to a number of
truncated columns, NT = NT1 (lower accuracy). Such a value is supposed to be stored in a
register. After the first accumulation, the signal C2 is set to ‘00’ to enable the accumulation
feedback. In this way, the value of CFdyn obtained after the 7× 7 MAC operations coincides
with the first 8-bit filtered pixel at lower accuracy. We will refer to this value as OUT1_LA.
After the conclusion of the last accumulation operation, the signals C1 and C3 are set to
‘0’ and ‘1’ respectively, for one clock cycle, so that the value OUT1_LA can be stored into
Corr. Reg.

(b) High-accuracy convolution centered on the first pixel of the first row: The 7 × 7
convolution centered on the first pixel of the first row is repeated at the higher accuracy.
Towards this aim, the signal th is set to the value thNT2, corresponding to a number of
truncated columns, NT = NT2 (higher accuracy). Such a value is supposed to be stored
in a register. The signals C4 and C2 are set to ‘0’ and ‘10’ respectively, in order to add
the value of the static correction factor, CFstat, corresponding to NT = NT2 and loaded in
advance into a register, to the first accumulation. After the first accumulation, the signal
C2 is set to ‘00’ to enable the accumulation feedback. For the whole duration of the 7 × 7
convolution computation, the signals C1 and C3 are set to ‘0’ and ‘1’ respectively, in order
to save power, and the register Corr Reg. is clock-gated in order to keep the previous stored
value OUT1_LA. At the end of the final accumulation operation, the output coincides with
the 8-bit filtered pixel at higher accuracy (let us indicate this value, OUT1_HA). The signals
C1 and C3 are set to ‘0’ and ‘1’ respectively, for one clock cycle, and the clock gating on
register Corr. Reg. is disabled, also for one clock cycle: the value of the signal CFdyn is hence
calculated as OUT1_HA − OUT1_LA and stored in Corr. Reg.

(c) Low-accuracy convolution centered on the following F − 1 pixel: After the compu-
tation of the last accumulation operation at the higher accuracy, the convolution centered
on the second pixel has to be computed. As a consequence, the signal CFdyn is forwarded
to the accumulation feedback by setting the signal C2 to ‘01’ for one clock cycle. Hence,
the correction factor, CFdyn, is added to the following accumulation operation. At the same

Electronics 2021, 10, 2063 13 of 17

time, the multiplier lower-accuracy mode is enabled by setting the signal th to the value
thNT1, corresponding to a number of truncated columns, NT = NT1 (lower accuracy). As
described in the previous points, after the first accumulation, the signal C2 is set to ‘00’ to
enable the accumulation feedback. For the whole duration of the 7 × 7 convolution compu-
tation, the signals C1 and C3 are set to ‘0’ and ‘1’ respectively, in order to save power, and
the register Corr Reg. is clock-gated in order to keep the previous stored value CFdyn. This
same control strategy is perpetuated for the convolutions centered on the following pixels
belonging to the same update period. The only exception is represented by the control
signal C2, which is set to ‘11’ for one clock cycle at the beginning of a new convolution; in
this way, the value of the correction factor can be inserted in the accumulation feedback
directly from the output signal, CFdyn_reg, of the register Corr. Reg.

(d) Updating the value of the register Corr. Reg.: The content of the register Corr. Reg.
has to be updated at the end of the convolution operation centered on the F-th pixel, i.e., the
last pixel of the first update period. To this aim, the update correction circuit is enabled by
setting the signals C1 and C3 to ‘0’ and ‘1’ respectively, for one clock cycle, an disabling the
clock gating on the register Corr. Reg. for one clock cycle. Let us indicate with (OUTF_LA)corr
the (corrected) value of the F-th 8-bit filtered pixel computed at the lower accuracy. The
register Corr. Reg. is then updated with the value OUTF_LA = (OUTF_LA)corr − CFdyn, i.e.,
the value of the F-th 8-bit filtered pixel without considering the correction factor. This is
exactly what is requested by the proposed update strategy depicted in Figure 4.

(e) Updating the correction factor: As depicted in Figure 4 (yellow step), the convolu-
tion centered on the following (F + 1)-th pixel has to be performed at the higher accuracy.
Therefore, the MAC is configured again as described in point (b). At the end of the last
accumulation of the (F + 1)-th convolution, the signals C1 and C3 are set to ‘0’ and ‘1’
respectively, for one clock cycle, and the clock gating on register Corr. Reg. is disabled,
also for one clock cycle. The value of the signal CFdyn is hence updated with the value
OUTF+1_HA − OUTF_LA and stored in Corr. Reg. The described procedure is then repeated
starting from point (c) until the end of the image row.

At the beginning of each new image row, the computational steps (a)–(e) start again.
The timing with which the FSM provides the described control signals is regulated by
three counters, advising the time when a 7 × 7 convolution ends (signal TW), when an
update period finishes (signal TF) and when the computation of the entire image row
has been completed (signal TR). Finally, the designed hardware architecture has been
enriched with the possibility to also work according to the conventional static correction
strategy. Indeed, as pointed out at the end of Section 5, the quality results of the latter
configuration are similar to those obtained by the proposed methodology for a relatively
low value of the parameters NT and NT1. This occurs because the error becomes very low
so the static approach can assure a high accuracy by itself. In such a situation, the static
approach is preferable because it does not entail the energy drawbacks of a more accurate
computation, as required by the proposed technique. The input dyn configures the MAC to
work according to either the proposed dynamic correction updating strategy (dyn = 1) or
the conventional static correction approach (dyn = 0). When dyn = 0, the FSM always sets
the control signal C4 to ‘0’ and the signal th to thNT2.

The architecture of Figure 12 has been described in Verilog and synthetized with
Cadence Genus, exploiting the ST 28 nm UTBB FDSOI technology. The 12-track 1 V Typical
Process Regular Threshold Voltage (RTV) Standard Cell library has been adopted in all
the implementations. The same MAC version based only on the usual static correction
approach has been taken as a reference design. Obviously, the latter does not employ
the FSM and the correction updating circuit, but only the counter for the signal TW is
needed. The dynamically truncated approximate multiplier and the adders have been
described in Verilog in a structural way. For the multipliers, the Wallace scheme with 3:2
(Full-Adder) and 2:1 (Half-Adder) compressors has been adopted in the partial reduction
stage. For the sake of a low energy consumption, each designed multiplier adopts a ripple
carry adder (RCA) as a final carry propagate adder. For the same reason, the accumulating

Electronics 2021, 10, 2063 14 of 17

adder of the MAC and the subtractor in the correction factor updating circuit have also
been described according to the RCA structure. The minimum delay for both the designs
has been found to be 460 ps (limited by the multiplier, which is the same for both the
implementations), whereas the proposed methodology entails +43% more area. Both the
designs employ clock gating to save dynamic energy on those Flip-Flops in the pipeline
that can stay idle depending on the multiplier truncation configuration (clock gating latches
are not shown in Figure 12). Table 2 reports the average energy dissipation per operation
of the two designs for a few truncation configurations, obtained from back-annotated
simulations at the maximum clock frequency, based on the image benchmarks reported
in the previous section. The energy dissipation has been separated into the components
related to the multiplier, the adder, the FSM, the correction factor updating circuit, the clock
gating latches, the clock network and the counters. The average energy dissipation per
operation of each MAC implementation has been found by multiplying the average power
consumption (estimated by the Cadence Genus tool by means of .vcd files coming from
back-annotated simulations) by the clock period.

Table 2. Energy dissipation (pJ) of the standard and proposed designs.

Accurate MAC

Mult Adder Err. update clk FSM Gating latches Counter Other Total

0.458 0.248 - 0.092 - - 0.032 0.013 0.844

Standard static correction approach

NT Mult Adder Err. update clk FSM Gating latches Counter Other Total
10 0.191 0.091 - 0.080 - 0.018 0.032 0.013 0.426
11 0.142 0.075 - 0.075 - 0.018 0.032 0.013 0.355
12 0.102 0.058 - 0.069 - 0.018 0.032 0.013 0.293
13 0.069 0.044 - 0.062 - 0.018 0.032 0.014 0.239

Proposed (F = 4, NT2 = NT1 − 5)

NT1 Mult Adder Err. update clk FSM Gating latches Counter Other Total
13 0.126 0.063 0.004 0.068 0.005 0.017 0.037 0.013 0.334
14 0.094 0.050 0.004 0.061 0.005 0.017 0.037 0.013 0.281
15 0.066 0.039 0.004 0.054 0.005 0.017 0.037 0.013 0.235

Proposed (F = 8, NT2 = NT1 − 5)

13 0.098 0.056 0.002 0.065 0.005 0.016 0.036 0.013 0.290
14 0.070 0.042 0.002 0.057 0.005 0.016 0.036 0.013 0.240
15 0.045 0.033 0.002 0.049 0.005 0.016 0.036 0.013 0.198

As expected, the MAC average energy dissipation per operation increases as NT and
NT1 decrease. For the proposed approach, a higher value of F leads to a lower MAC energy
dissipation because the time when the MAC is configured with a lower accuracy is larger.
Moreover, the lower the NT and NT1, the higher the clock network energy dissipation
because, as the number of truncated columns decreases, the number of clock-gated FFs
decreases as well. The energy overhead of the extra counters is insensitive to the value of
NT1, whereas it slightly depends on F. Compared to the single counter of the standard static
correction approach, the extra counters needed by the proposed dynamic approach entail
15.6% (12.5%) more energy for F = 4 (F = 8). As expected, the higher the value of F, the lower
the energy dissipation of the correction factor updating circuit. This is reasonable since a
higher value of F means a lower activity for the circuit. In particular, from Table 2, it can be
easily inferred that the energy dissipation of the correction factor updating circuit is halved
when the value of F doubles. Anyway, the extra energy dissipation of the correction factor
updating circuit and extra counters represents a very small percentage of the total energy
dissipation: up to 3.8% and 3% for F = 4 and F = 8, respectively. It is worth noting that the
accurate MAC has a slightly lower minimum clock period constraint (447 ps), 2.8% lower
than the delay of the proposed design, since the partial product generation stage of the

Electronics 2021, 10, 2063 15 of 17

accurate multiplier exploits 2-input AND gates rather than 3-input AND gates. Moreover,
the area overhead of the proposed design with respect to the accurate one is about 46%,
since the latter does not need clock gating latches. The energy consumption of the MAC
designed according to the proposed approach is up to 72% and 76% lower with respect to
the accurate MAC for F = 4 and F = 8, respectively. Figure 13 depicts the energy-quality
trade-off for the standard and proposed designs for different values of NT1 and NT2. The
quality has been evaluated with three metrics: PSNR, SSIM and NED. As expected from the
preliminary analysis of Figure 11, the proposed methodology shows a quality saturation
for low values of NT2, thus the standard approach is preferable when a higher quality is
required (PSNR > 32 dB, SSIM > 0.7, NED < 1%). On the contrary, for lower-quality values,
the proposed methodology shows a better energy-quality trade-off. As it is visible in the
insets of Figure 13, the energy consumption is reduced by up to 34%, 34% and 20% at
the parity of PSNR, NED and SSIM, respectively. Similarly, the proposed technique can
improve the PSNR, the NED and the SSIM by up to +9 dB, −4× and +35% respectively, at
iso-energy. The energy saving is even higher if we consider only the energy consumption
of the clock network, the multiplier, the adder and the correction update circuit (when
applied). Indeed, the remaining components can be shared among several MACs if the
computation is parallelized. In such a scenario, the proposed design can reduce the energy
dissipation by up to 44%, 44% and 29% at iso-PSNR, iso-NED and iso-SSIM, respectively.
Finally, when a high quality is required, the proposed design needs to be configured to
work with a constant correction factor (dyn = 0); in such a case, the proposed design has
shown a negligible extra power consumption with respect to the standard design (less
than 1.5%).

Electronics 2021, 10, x FOR PEER REVIEW 15 of 17

respectively, at iso-energy. The energy saving is even higher if we consider only the en-
ergy consumption of the clock network, the multiplier, the adder and the correction up-
date circuit (when applied). Indeed, the remaining components can be shared among sev-
eral MACs if the computation is parallelized. In such a scenario, the proposed design can
reduce the energy dissipation by up to 44%, 44% and 29% at iso-PSNR, iso-NED and iso-
SSIM, respectively. Finally, when a high quality is required, the proposed design needs to
be configured to work with a constant correction factor (dyn = 0); in such a case, the pro-
posed design has shown a negligible extra power consumption with respect to the stand-
ard design (less than 1.5%).

Table 2. Energy dissipation (pJ) of the standard and proposed designs.

(a) (b)

(c) (d)

10
15
20
25
30
35
40
45

0.1 0.2 0.3 0.4 0.5

PS
NR

 (d
B)

Energy (pJ)

Static Correction
Prop. NT1 = 15
Prop. NT1 = 14
Prop. NT1 = 13
Prop. NT1 = 12
Prop. NT1 = 11

15
14

13

12

11

10
9

12
10 8 6

10 8

6
9 8 6

9 7 5

11

7

-34%

+9dB

10

12

13

10 11

10

15

20

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5

PS
NR

 (d
B)

Energy (pJ)

Static Correction
Prop. NT1 = 15
Prop. NT1 = 14
Prop. NT1 = 13
Prop. NT1 = 12
Prop. NT1 = 11

15
14

13

12
11

10
9

12
10 8

10 8
9 8 6

9 7 5
11

7

-20%

+7dB
10

12

13

10 12

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5

SS
IM

Energy (pJ)

Static Correction
Prop. NT1 = 15
Prop. NT1 = 14
Prop. NT1 = 13
Prop. NT1 = 12
Prop. NT1 = 1115

12
10
12

8

10

8

11
9

710 8 6
9

7 5

14

13 12

11
10

9

13

10 12-20%

+35%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5

SS
IM

Energy (pJ)

Static Correction
Prop. NT1 = 15
Prop. NT1 = 14
Prop. NT1 = 13
Prop. NT1 = 12
Prop. NT1 = 1115

12
10

12

8 10

8

11
9 7

10 8 6

9

7 5

14

13

12
11

10
9

14

10 13-20%

+38%

Figure 13. Cont.

Electronics 2021, 10, 2063 16 of 17Electronics 2021, 10, x FOR PEER REVIEW 16 of 17

(e) (f)

Figure 13. Energy-quality trade-off for the standard and proposed approaches: numbers close to the symbols indicate the
values of NT (for the standard static approach) and NT2 (for the proposed dynamic approach). (a–c): F = 4, (d–f): F = 8.

7. Conclusions
This paper has proposed a simple approach to improve the quality degradation of

dynamically configurable approximate multipliers, exploiting the spatial and/or temporal
input correlation typically shown by error-tolerant applications, such as image and video
processing. By periodically changing the approximation level of the multiplier, the cor-
rection factor can be updated at runtime and adapted to the incoming inputs. When ap-
plied to a typical image processing application (the Gaussian filter), the proposed ap-
proach has shown an energy reduction of up to 34% at iso-quality and a PSNR, NED and
SSIM improvement of up to +9 dB, −4× and +35% at iso-power respectively, compared to
the traditional correction approach employing a static correction factor. As future works,
it is planned to investigate the proposed methodology for other error-tolerant applica-
tions, such as machine learning for image/audio recognition.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Han, J.; Orshansky, M. Approximate Computing: An Emerging Paradigm for Energy-Efficient Design. In Proceedings of the

2013 18th IEEE European Test Symposium (ETS), Avignon, France, 27–30 May 2013; pp. 1–6, doi:10.1109/ETS.2013.6569370.
2. Alioto, M. Energy-Quality Scalable Adaptive VLSI Circuits and Systems beyond Approximate Computing. In Proceedings of

the IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017;
pp. 127–132, doi:10.23919/DATE.2017.7926970.

3. Rodrigues, G.; Lima Kastensmidt, F.; Bosio, A. Survey on Approximate Computing and Its Intrinsic Fault Tolerance. Electronics
2020, 9, 557, doi:10.3390/electronics9040557.

4. Lotrič, U.; Pilipović, R.; Bulić, P. A Hybrid Radix-4 and Approximate Logarithmic Multiplier for Energy Efficient Image Pro-
cessing. Electronics 2021, 10, 1175, doi:10.3390/electronics10101175.

5. de la Guia Solaz, M.; Han, W.; Conway, R. A Flexible Low Power DSP with a programmable Truncated Multiplier. IEEE Trans.
Circuits Syst. 2012, 59, 2555–2568, doi:10.1109/TCSI.2012.2189059.

6. Frustaci, F.; Perri, S.; Corsonello, P.; Alioto, M. Approximate Multipliers with Dynamic Truncation for Energy Reduction via
Graceful Quality Degradation. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3427–3431, doi:10.1109/TCSII.2020.2999131.

7. Pei, H.; Yi, X.; Zhou, H.; He, Y. Design of Ultra-Low Power Consumption Approximate 4–2 Compressors Based on the Com-
pensation Characteristic. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 461–465, doi:10.1109/TCSII.2020.3004929.

8. Strollo, A.G.M.; Napoli, E.; De Caro, D.; Petra, N.; Di Meo, G. Comparison and Extension of Approximate 4-2 Compressors for
Low-Power Approximate Multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3021–3034, doi:10.1109/TCSI.2020.2988353.

9. Javadi, M.H.S.; Yalame, M.H.; Mahdiani, H.R. Small Constant Mean-Error Imprecise Adder/Multiplier for Efficient VLSI Im-
plementation of MAC-Based Applications. IEEE Trans. Comp. 2020, 69, 1376–1387, doi:10.1109/TC.2020.2972549.

10. Leon, V.; Zervakis, G.; Xydis, S.; Soudris, D.; Pekmestzi, K. Walking through the Energy-Error Pareto Frontier of Approximate
Multipliers. IEEE Micro 2018, 38, 40–49, doi:10.1109/MM.2018.043191124.

11. Kim, H.; Kim, J.; Amrouch, H.; Henkel, J.; Gerstlauer, A.; Choi, K.; Park, H. Aging Compensation with Dynamic Computation
Approximation. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1319–1332, doi:10.1109/TCSI.2020.2969462.

1

10

100

0.1 0.2 0.3 0.4 0.5

NE
D

(%
) (

lo
g)

Energy (pJ)

Static Correction
Prop. NT1 = 15
Prop. NT1 = 14
Prop. NT1 = 13
Prop. NT1 = 12
Prop. NT1 = 11

15
14

13

12

11

10

12

10
8

10
8 9

10
8 9

7 5

11

7

12
-34%10

11
13

-4X

1

10

100

0.1 0.2 0.3 0.4 0.5

N
ED

 (%
) (

lo
g)

Energy (pJ)

Static Correction
Prop. NT1 = 15
Prop. NT1 = 14
Prop. NT1 = 13
Prop. NT1 = 12
Prop. NT1 = 11

15
14

13

12

11

10

12

10
8

10

8 9

10

8
9

7 5

11

7

12

-28%10

11
13

-4X

Figure 13. Energy-quality trade-off for the standard and proposed approaches: numbers close to the symbols indicate the
values of NT (for the standard static approach) and NT2 (for the proposed dynamic approach). (a–c): F = 4, (d–f): F = 8.

7. Conclusions

This paper has proposed a simple approach to improve the quality degradation of
dynamically configurable approximate multipliers, exploiting the spatial and/or temporal
input correlation typically shown by error-tolerant applications, such as image and video
processing. By periodically changing the approximation level of the multiplier, the correc-
tion factor can be updated at runtime and adapted to the incoming inputs. When applied
to a typical image processing application (the Gaussian filter), the proposed approach
has shown an energy reduction of up to 34% at iso-quality and a PSNR, NED and SSIM
improvement of up to +9 dB, −4× and +35% at iso-power respectively, compared to the
traditional correction approach employing a static correction factor. As future works, it
is planned to investigate the proposed methodology for other error-tolerant applications,
such as machine learning for image/audio recognition.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Han, J.; Orshansky, M. Approximate Computing: An Emerging Paradigm for Energy-Efficient Design. In Proceedings of the 2013

18th IEEE European Test Symposium (ETS), Avignon, France, 27–30 May 2013; pp. 1–6. [CrossRef]
2. Alioto, M. Energy-Quality Scalable Adaptive VLSI Circuits and Systems beyond Approximate Computing. In Proceedings of

the IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017;
pp. 127–132. [CrossRef]

3. Rodrigues, G.; Lima Kastensmidt, F.; Bosio, A. Survey on Approximate Computing and Its Intrinsic Fault Tolerance. Electronics
2020, 9, 557. [CrossRef]

4. Lotrič, U.; Pilipović, R.; Bulić, P. A Hybrid Radix-4 and Approximate Logarithmic Multiplier for Energy Efficient Image Processing.
Electronics 2021, 10, 1175. [CrossRef]

5. de la Guia Solaz, M.; Han, W.; Conway, R. A Flexible Low Power DSP with a programmable Truncated Multiplier. IEEE Trans.
Circuits Syst. 2012, 59, 2555–2568. [CrossRef]

6. Frustaci, F.; Perri, S.; Corsonello, P.; Alioto, M. Approximate Multipliers with Dynamic Truncation for Energy Reduction via
Graceful Quality Degradation. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3427–3431. [CrossRef]

7. Pei, H.; Yi, X.; Zhou, H.; He, Y. Design of Ultra-Low Power Consumption Approximate 4–2 Compressors Based on the
Compensation Characteristic. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 461–465. [CrossRef]

8. Strollo, A.G.M.; Napoli, E.; De Caro, D.; Petra, N.; Di Meo, G. Comparison and Extension of Approximate 4-2 Compressors for
Low-Power Approximate Multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3021–3034. [CrossRef]

9. Javadi, M.H.S.; Yalame, M.H.; Mahdiani, H.R. Small Constant Mean-Error Imprecise Adder/Multiplier for Efficient VLSI
Implementation of MAC-Based Applications. IEEE Trans. Comp. 2020, 69, 1376–1387. [CrossRef]

10. Leon, V.; Zervakis, G.; Xydis, S.; Soudris, D.; Pekmestzi, K. Walking through the Energy-Error Pareto Frontier of Approximate
Multipliers. IEEE Micro 2018, 38, 40–49. [CrossRef]

11. Kim, H.; Kim, J.; Amrouch, H.; Henkel, J.; Gerstlauer, A.; Choi, K.; Park, H. Aging Compensation with Dynamic Computation
Approximation. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1319–1332. [CrossRef]

12. Balasubramanian, P.; Nayar, R.; Maskell, D.L. Approximate Array Multipliers. Electronics 2021, 10, 630. [CrossRef]

http://doi.org/10.1109/ETS.2013.6569370
http://doi.org/10.23919/DATE.2017.7926970
http://doi.org/10.3390/electronics9040557
http://doi.org/10.3390/electronics10101175
http://doi.org/10.1109/TCSI.2012.2189059
http://doi.org/10.1109/TCSII.2020.2999131
http://doi.org/10.1109/TCSII.2020.3004929
http://doi.org/10.1109/TCSI.2020.2988353
http://doi.org/10.1109/TC.2020.2972549
http://doi.org/10.1109/MM.2018.043191124
http://doi.org/10.1109/TCSI.2020.2969462
http://doi.org/10.3390/electronics10050630

Electronics 2021, 10, 2063 17 of 17

13. Waris, H.; Wang, C.; Liu, W. Hybrid Low Radix Encoding-Based Approximate Booth Multipliers. IEEE Trans. Circuits Syst. II
Express Briefs 2020, 67, 3367–3371. [CrossRef]

14. Nambi, S.; Kumar, U.A.; Radhakrishnan, K.; Venkatesan, M.; Ahmed, S.E. DeBAM: Decoder Based Approximate Multiplier for
Low Power Applications. IEEE Embed. Syst. Lett. 2020, in press. [CrossRef]

15. Esposito, D.; Strollo, A.G.M.; Alioto, M. Low-power approximate MAC unit. In Proceedings of the 2017 13th Conference on Ph.D.
Research in Microelectronics and Electronics (PRIME), Taormina, Italy, 12–15 June 2017; pp. 81–84. [CrossRef]

16. Chen, Y.; Najafi, A.; Garcia-Ortiz, A. On the Effects of Data Distribution on Small-error Approximate Adders. In Proceedings
of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 7–9
September 2020; pp. 1–4. [CrossRef]

17. Akbary, O.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. Dual-Quality 4:2 Compressor for Utilizing in Dynamic Accuracy Config-
urable Multipliers. IEEE Trans. VLSI Syst. 2017, 25, 1352–1361. [CrossRef]

18. Mittal, S. A Survey of Techniques for Approximate Computing. ACM Comput. Surv. 2016, 48, 62. [CrossRef]
19. Public-Domain Test Images. Available online: http://homepages.cae.wisc.edu/~{}ece533/images (accessed on 15 March 2021).

http://doi.org/10.1109/TCSII.2020.2975094
http://doi.org/10.1109/LES.2020.3045165
http://doi.org/10.1109/PRIME.2017.7974112
http://doi.org/10.1109/MOCAST49295.2020.9200260
http://doi.org/10.1109/TVLSI.2016.2643003
http://doi.org/10.1145/2893356
http://homepages.cae.wisc.edu/~{}ece533/images

	Introduction
	Related Works
	The Proposed Technique and Motivation
	Error Analysis of the Proposed Technique
	The Gaussian Filter as a Case Study: Quality Results
	Hardware Implementation and Energy-Quality Trade-Off
	Conclusions
	References

