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Abstract: Railway transportation has always occupied an important position in daily life and so-
cial progress. In recent years, computer vision has made promising breakthroughs in intelligent
transportation, providing new ideas for detecting rail lines. Yet the majority of rail line detection
algorithms use traditional image processing to extract features, and their detection accuracy and
instantaneity remain to be improved. This paper goes beyond the aforementioned limitations and
proposes a rail line detection algorithm based on deep learning. First, an accurate and lightweight
RailNet is designed, which takes full advantage of the powerful advanced semantic information
extraction capabilities of deep convolutional neural networks to obtain high-level features of rail lines.
The Segmentation Soul (SS) module is creatively added to the RailNet structure, which improves
segmentation performance without any additional inference time. The Depth Wise Convolution
(DWconv) is introduced in the RailNet to reduce the number of network parameters and eventually
ensure real-time detection. Afterward, according to the binary segmentation maps of RailNet output,
we propose the rail line fitting algorithm based on sliding window detection and apply the inverse
perspective transformation. Thus the polynomial functions and curvature of the rail lines are calcu-
lated, and rail lines are identified in the original images. Furthermore, we collect a real-world rail
lines dataset, named RAWRail. The proposed algorithm has been fully validated on the RAWRail
dataset, running at 74 FPS, and the accuracy reaches 98.6%, which is superior to the current rail line
detection algorithms and shows powerful potential in real applications.

Keywords: RailNet; rail line detection; sliding window detection; convolutional neural network

1. Introduction

As an essential national infrastructure, railway transportation has received significant
attention from society for its safety [1]. With the rapid development and popularization of
high-speed rail technology, higher requirements are put forward for the speed and security
of trains running on rail lines. In addition to the respective scheduling issues during train
operation, it is also necessary to consider how to enhance the detection of road conditions
during train operation [2]. With the application of railway video intelligent monitoring
systems and the development of a new generation of the fully automatic driving signal
system, the realization of intelligent monitoring of rail lines has become a hot topic of
research [3,4], such as track obstacle recognition [5,6], rail cracks detection [7,8], road
condition foreign body intrusion [9], and other issues. However, the factors that cause
rail accidents are complex and changeable, such as bad weather, obsolete train tracks,
malfunctions of electronic equipment, and the status of drivers.

In realizing the intelligentization and automation of railway transportation, the pri-
mary task is to predict the railway tracks in front during operation to provide trains with
basic information about the environment ahead in time [10]. In this way, the train can
sense the track’s condition in advance, and adjust the speed in time, so as to avoid rail
traffic accidents such as speeding and derailment in the curve. Simultaneously, the rail
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lines area is detected in advance to prevent foreign matter intrusion, which can help frame
the detection range and reduce the amount of processing. In this way, the operation safety
of the train can be ensured in real-time. At present, the detection of rail lines based on
computer vision is the mainstream method of railway detection. The rail line detection
algorithm based on computer vision can be divided into two directions: one is based on the
image processing algorithms, using image edge detection and other algorithms to search
for rail lines features and curve fitting. The other is based on deep convolutional neural
networks, which have powerful semantic information extraction capabilities to obtain
advanced feature information such as the edge, color, and texture of the rail lines and
segment the railway tracks and background face of more complex images information.

Before the rise of deep learning, rail line detection mainly used traditional image
processing technology, that is, based on the difference of a specific attribute of the entity
pixel in the image in the field. This type of algorithm uses the change law of the entity pixel
and the surrounding environment to determine the railway lines target in the image, so as
to carry out line detection. As one of the early works, Zhong Ren et al. [11] proposed a rail
recognition algorithm based on prior knowledge. The critical technology of the algorithm
is rail modeling and template matching. By matching, the position of the railroad tracks
in the current picture is determined. Although this method has some drawbacks, such as
susceptibility to environmental interference and low accuracy, it has set a precedent for
rail line detection. Afterward, according to the characteristics of the rails in the monitoring
images, Q Wang et al. [12] proposed a rail line identification and detection method based on
the Radon transform idea and the Bresenham straight lines detection algorithm. However,
the applicability of this method is not strong, and it is only suitable for straight-line sections.
Based on traditional image processing, Zhao Wu et al. [13] added postprocessing methods
such as segment merging, slope culling, single-frame comprehensive decision-making,
segment rebuilding, and multi-frame recognition result fusion to improve the accuracy
of rail recognition, but only for straight-line detection. Lei Zhang et al. [1] studied the
method of extracting rail tracks from infrared images, by obtaining the target area and
edge of rail tracks through image segmentation, refining the extracted target area, and
finally obtaining the curve based on the shape and location of railroad tracks. However,
this method still needs a lot of improvement in both detection speed and detection ac-
curacy. The proposed curve model directly influences the accuracy and computational
complexity of the rail line detection algorithm. Kaleli [14] and Badino et al. [15] suggested
extracting line features based on median filter and using dynamic programming to detect
lines. Still, the model is susceptible to environmental interference, and the robustness
needs to be improved. Although the complex curve model can fit more different boundary
curves, it has a weak anti-jamming ability and is susceptible to noise interference. Recently,
Yunze Wang et al. [16] used a curvature map-based orbital recognition algorithm to iden-
tify near-distance orbits and then obtain seed points from near-distance orbits recognition
results, based on local gradient information, to recognize long-distance trajectories im-
proved seed area growth algorithm to introduce directions. The algorithm overcomes the
shortcomings of the previous methods, but it needs to be improved in identifying multi-rail
lines. At the same time, the accuracy and real-time of rail line detection algorithms based
on traditional image processing still need further breakthroughs.

With the success of deep learning, researchers have also gradually investigated its
application in dealing with rail line detection. Ziguan Wang et al. [17] were among the first
to use deep understanding in railway track detection. Their model is based on Mask R-
CNN, which scans the picture and produces a candidate box containing the rails, calculates
the position of the box containing the tracks, creates a mask covering the rails, and finally
gets the position of the rails in the picture. They obtained photos from a surveillance video
of a subway company and fabricated them into a dataset for training and evaluating their
system. However, the presence of speculation in the final result of their output compromises
the recognition effect. Moreover, they fail to release the accuracy and detection speed of
their study, which hinder further comparisons. Recently, Xiaoyong Guan et al. [5] used
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ResNet101 and Feature Pyramid Networks (FPN) as the backbone network. Input pictures
can generate feature maps of various sizes, forming pyramids of feature maps at different
levels, making the network further enhanced in extracting features. By making railway
datasets, building network models, and training network parameters, the recognition and
segmentation of rail area, metro train, and signal lamps can be realized. The network
can adapt to the changes in metro train operation environment. Nevertheless, although
the complex network structure ensures the accuracy of detection, it hinders the real-time
performance of rail line detection.

In this paper, an algorithm based on state-of-the-art deep learning convolutional
neural networks is proposed to overcome the deficiencies of the aforementioned detection
methods. This algorithm is mainly used in local trains and city railways. First, the RailNet
is designed to preprocess images, extracting the key information and output the binary
segmentation maps, which is robust to unnecessary noise. The rail lines are segmented from
the background, and the feature of tracks are preserved without interference from other
objects [18]. Afterward, the binary segmentation maps pass through the post-processing
part of the RailNet, namely the sliding window detection algorithm. The algorithm is
mainly composed of three steps: Inverse Perspective Transformation (IPT), Feature Point
Extraction (FPE), and Rail Lines Curve Fitting. Moreover, the fitting results are mapped
to the original images, and the rail lines are finally marked on the authentic images. An
overview of the entire process of the algorithm can be seen in Figure 1.

Figure 1. Overview of the proposal method.The RailNet part is responsible for extracting the rail
lines features, which is trained to generate the binary segmentation maps of the rail lines. Afterward,
the binary segmentation maps and the original images are processed by the rail lines fitting algorithm
based on sliding window detection part. IPE and FPE respectively stand for Inverse Perspective
Transformation and Feature Point Extraction of the rail lines. A second-order polynomial is fitted for
each rail line, and the rail lines are reprojected onto the original images.
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The main contributions of our algorithm are four-fold:

1. A novel lightweight deep learning network, RailNet, is proposed. The encoder-
decoder structure of the RailNet ensures the accuracy of detection. The Depth Wise
Convolution (DWconv) is introduced in the RailNet, which reduces the number of
network parameters and eventually ensures real-time detection. Compared with the
existing state-of-the-art methods of extracting features, the RailNet has solid detection
speed and higher accuracy.

2. The Segmentation Soul (SS) module is creatively added to the RailNet structure, which
can enhance the feature representation in the training phase and can be discarded in
the testing phase. The SS module improves segmentation performance without any
additional inference time.

3. A rail lines fitting algorithm based on sliding window detection is proposed as the
post-processing part of the RailNet. The algorithm further improves the accuracy of
detection. Simultaneously, the rail lines in the original image are accurately marked,
and the mathematical expression and curvature of the tracks are calculated.

4. A dataset of rail lines, RAWRail, has been created for deep learning network training
and testing. The dataset can be used for algorithm performance evaluation, which
would help enrich the research and development of rail line detection.

2. Material and Methods

The main aim of the algorithm is to improve the accuracy and speed of rail line
detection through the RailNet with its post-processing algorithm. We train the lightweight
RailNet, which is realized by treating the rail line detection as a binary segmentation
problem. The imbalance between the rail lines and background features can show whether
the pixels belong to the tracks. Since RailNet outputs a set of pixels of railway lines, we
still need to fit a curve through these pixels to improve detection accuracy. Therefore, this
paper designs the rail lines fitting algorithm based on sliding window detection. It carries
out postprocessing on the binary images output by the neural network and finally marks
the rail lines on the original images.

2.1. RailNet

The detection of train tracks is essentially an image segmentation problem, which
segments the tracks from the background and retains the characteristic information of the
tracks. In this way, the network has a more vital anti-interference ability when extract-
ing rail characteristics and can cope with changes in the number of rails. The RailNet
model structure is mainly divided into two parts. Figure 2 shows the specific structure of
the RailNet.

Encoder-decoder architectures are widely used in dense prediction tasks like semantic
segmentation, which typically utilize convolutional layers and transpose convolution layers
for feature encoding and decoding [19]. For a higher efficiency, the RailNet network adopts
a light-weight encoder-decoder architecture. Table 1 shows details of the constituent layers.
The encoder takes images of the front view of a rail as the input, and hierarchically extracts
the features [19,20]. The decoder progressively recovers the resolution of the feature map
and produce pixel-wise binary images.



Electronics 2021, 10, 2038 5 of 15

Figure 2. Overview of the RailNet architecture. From left to right, the model receives input images
from a forward-looking camera and outputs binary segmentation images. The RailNet is mainly
composed of two parts: the encoder and decoder. The detailed structural information of the network
is shown in Table 1. SS refers to the Segmentation Soul section.

Table 1. Details of the RailNet. The structure of the decoder is relatively simple, and there is a more
detailed description in the text, so only the details of the encoder are shown in the table. The input
size of the picture is 640× 320.

Type # Filters Kernel Size/Stride Output Size

S1 Conv+BN+ReLU 16 3 × 3/2 160 × 320

S2

Conv+BN+ReLU 16 1 × 1 160 × 320

Conv+BN+ReLU 16 3 × 3/2 80 × 160

Conv+BN+ReLU 16 3 × 3 80 × 160

S3

DWConv+BN 32 3 × 3/2 40 × 80

Conv+BN+ReLU 32 1 × 1 40 × 80

DWConv+BN 32 3 × 3 40 × 80

Conv+BN+ReLU 32 1 × 1 40 × 80

S4

DWConv+BN 64 3 × 3/2 20 × 40

Conv+BN+ReLU 64 1 × 1 20 × 40

DWConv+BN 64 3 × 3 20 × 40

Conv+BN+ReLU 64 1 × 1 20 × 40

S5

DWConv+BN 128 3 × 3/2 10 × 20

Conv+BN+ReLU 128 1 × 1 10 × 20

DWConv+BN 128 3 × 3 10 × 20

Conv+BN+ReLU 128 1 × 1 10 × 20

GAPooling+BN 3 × 3 10 × 20

Conv+BN+ReLU 128 1 × 1 10 × 20

Conv 128 3 × 3 10 × 20

2.1.1. Encoder

The backbone network extracts image features, which is also the encoding part of
the network. Inspired by Bisenetv2, RailNet is designed to extract semantic information
features of images [20]. The encoder of the RailNet replaces the standard convolution
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operations by the Depth Wise Convolutions (DWconv) to significantly lower the compu-
tational cost [21]. The details of the DWconv reducing the calculation cost are shown in
Figure 3. To be more specific, the DWconv layers with a kernel size of 3 are stacked for
progressive feature extraction. The 1× 1 convolution layer is designed to follow each
DWConv layer, which benefits for channel-wise information aggregation. As noted above,
there exists a great deal of objects that share similar local appearance with rail lines in the
input images. In order to improve detection accuracy, the context information should be
properly extracted and preserved in the encoding stage. The network is designed as two
DWConv layers followed by a 1 × 1 convolution layer, which is used for feature extraction
on one particular feature resolution [22]. The first DWConv layer has a dilation rate of
1, while the following layer uses dilation rate of 2. This enlarges the reception field. The
structure design of the encoder gives proper consideration to the efficiency and accuracy of
the detection.

(a) The working principle of Conventional Convolution.

(b) The working principle of Depth Wise Convolution.

Figure 3. Comparison between Conventional Convolution and Depth Wise Convolution. Different
from the Conventional Convolution operation, one convolution kernel of Depth Wise Convolution is
responsible for one channel, and one channel is calculated by only one convolution kernel. However,
the Conventional Convolution kernels operate each channel of the input picture at the same time. It
can be seen from the figure that the calculation amount of Conventional Convolution is three times
that of the Depth Wise Convolution.

2.1.2. Decoder

After the backbone network is the binary segmentation part, which is the decoding
part of the network. In order to recover the feature resolution and produce the rail line
binary segmentation images, we design a decoder architecture that follows the encoder [19].
Although the transposed convolutional layer is mainly used to amplify the intermediate
features in the neural network, it has the disadvantage of excessive calculation. Since the
sub-pixel convolution layer has the advantages of no parameters and no computational
cost, we use the sub-pixel convolution layer to gradually restore the feature resolution. The
last layer of the decoder is the softmax layer, which is used to classify pixels. The decoder
of RailNet has trained to output binary segmentation maps, indicating which pixels belong
to a rail line or not [23].
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2.1.3. Split Soul (SS) Module

To further improve the segmentation accuracy, we propose a booster training strat-
egy [24], called the Split Soul (SS) module. This module consists of a 3× 3 global average
pooling layer, a 1× 1 convolution layer, and a 3× 3 convolution layer. The specific struc-
ture details of the SS are shown in Figure 4. More specifically, it is similar to a catalyst in
chemical reactions: it can enhance the feature representation in the training phase and can
be discarded in the testing phase. Accordingly, it increases little computation complexity
in the testing phase. We can insert the Split Soul (SS) module to different positions of
the RailNet. In general, it improves the segmentation performance without any extra
testing time.

Figure 4. Detailed design of the SS. GAPooling is the global average pooling. Conv is the convolu-
tional operation. BN denotes batch normalization. ReLu is the ReLu activation function. Simulta-
neously, 1× 1, 3× 3, indicates the kernel size and H ×W × S represents the tensor shape (height,
width, depth).

2.1.4. Loss Function

The RailNet model applies the classical cross-entropy as the loss function, and the L1
loss, L2 loss, and cross-entropy loss are widely used in rail line detection. Among them,
xi is the input, yi is the actual true value, that is, the known label, and y∗i is the predicted
value of the output. The cross-entropy loss uses an inter-class competition mechanism, and
pi is the probability that the sample belongs to class C. When C = 2, the cross-entropy loss
can be defined as a binary classification problem, where y is the label of the sample, the
positive class is one, and the negative class is zero. In railway line detection, the imbalance
rate between the railway line and the background is considerable. In order to solve this
problem, each category is given a different weight wi. However, due to the existence of
an inter-class competition mechanism, cross-entropy loss mainly represents the accuracy
of prediction probability of correct tags. It ignores the difference of other wrong titles. To
increase the intersection of predicted rail line pixels and actual rail lines pixels, we propose
a loss function LIoU−Rail based on IoU:

LIoU−Rail = 1−
Mp

Mp + MT + MC
(1)

where Mp is the predicted rails pixel, MT is the real rails pixel, MC and is the rail lines in
the overlap area between the predicted rail lines area and the actual rail lines area.
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2.2. The Rail Line Fitting Algorithm Based on Sliding Window Detection

As mentioned in the previous section, the RailNet outputs a set of pixels for the rail
lines. It is not ideal to fit polynomials by these pixels in the original image space, so people
have to resort to higher-order polynomials to deal with curved rail lines [23]. A generally
accepted solution to this problem is to project the image into a "bird’s eye" representation,
where the rail lines are parallel to each other, so curved rail lines can be fitted with second
to third-order polynomials.

The algorithm mainly consists of three steps: Inverse Perspective Transformation
(IPT), Feature Point Extraction (FPE), Rail Lines Curve Fitting. Figure 5 shows the specific
algorithm flow in the form of a flowchart.

Figure 5. Flow diagram of the rail lines fitting algorithm based on sliding window detection.

2.2.1. Inverse Perspective Transformation (IPT)

Inverse perspective transformation is to remove the perspective effect of the cam-
era and restore the parallel rail lines from the perspective of the top view. The inverse
perspective transformation is as follows [25]:

x
′
= C xdcosθ1−ydsinθ1cosθ2+cosθ1sinθ2

sinθ1+ydcosθ1
+ Acosθ2 + Bsinθ2

y
′
= C−xdsinθ1−ydsinθ1cosθ2+cosθ1sinθ2

sinθ1+ydcosθ1
− Asinθ2 + Bcosθ2

(2)

where xd and yd satisfy: xd = x−cx
fx

yd =
y−cy

fy

(3)

In Equation (2), OC(A, B, C) coordinates the optical center of the camera in the world
coordinate system. Respectively, θ1 and θ2 are the pitch angle and yaw angle of the camera.
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The point (x
′
,y
′
) is the corresponding point of the pixel (x,y) in the original image in the

inverse perspective image.

2.2.2. Feature Point Extraction (FPE)

After the inverse perspective transformation, the feature points of the target are
detected and collected using histogram, sliding window, and other algorithms.

The priority in this task is the determination of the coordinates of the initial sliding
base points of the sliding window. With the bottom edge of the feature map set to the x-axis
after inverse fluoroscopic transformation, the distribution of pixels in the vertical direction
of the image for each abscissa on the x-axis is statistically derived using a histogram [26].
At this time, because most feature pixels belong to the tracks, there will be two apparent
peaks near the abscissa of the rail lines on the left and right sides [27]. The coordinates of
these two peaks are the starting points of sliding window detection.

After that is the sliding window detection of the feature map: First and foremost, the
parameters are designed and initialized, including the number of sliding window detection,
the height and width of the sliding window are obtained by image size and the number
of detection [28]. Next, In the process of feature point detection in a sliding window, the
window pixels are traversed, and the coordinates of non-zero pixel values are recorded.
When the number of effective pixels in the window is less than the threshold, the window
width is increased by the window height and width until the minimum number of pixels
is met [29]. Furthermore, taking the average value of the abscissa of the effective pixels
in the sliding window as the base point coordinate of the next sliding window, iterative
detection is carried out until the total number of sliding windows is satisfied [30]. Last but
not least, after the feature point detection deadline, the target array is the feature point of
the detected target.

2.2.3. Rail Lines Curve Fitting

The detected feature points are fitted by the curve fitting algorithm. The curve fitting
of the collected rail feature point array can well estimate the parameters of the rail lines,
such as offset, inclination angle, curvature radius, and other information, so as to predict
the direction of the tracks and provide help for the automatic train control system. The
existing mainstream algorithm is to directly use the least square method to do quadratic
or cubic curve fitting. For uncomplicated rail line detection, the fitting results are mostly
quadratic curves, meeting the requirements.

f (x) = ax2 + bx + c (4)

where a, b and c are the quadratic term, the coefficient of the first term and the constant
term respectively.

` =
|2a|

[1 + (2ax + b)2]
3
2

(5)

The curvature ` of the rail lines is easily derived from the above polynomial procedure.

3. Experimental Methodology
3.1. RAWRail

In order to realize the function of the network designed in this paper, we need to
train and test the network. So as to verify the feasibility of the algorithm and reduce the
difficulty of feature extraction, the experiment first collects the video stream of the rail
lines in front of the train when the weather is good in the daytime and then converts it into
pictures. When collecting images, we use cameras installed in front of local trains and city
railways, which can capture objects about 350 m ahead during the daytime. However, due
to the influence of the external environment and the inverse perspective transformation
in the algorithm, the algorithm detects the rail lines distance up to 280 m. The dataset is
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named RAWRail. A total of 3000 railroad track pictures with 640× 360 are prepared, and
the images with only 2 rail lines are first detected.

Secondly, we label the rail lines of all the rail images by using LABELME to get the
JSON file used as the real rail lines during training and finally compared with the predicted
rail lines [29]. In the actual training, the 3000 pictures are divided into the training set,
verification set, and test set according to the ratio of 0.9:0.05:0.05. The specific information
of RAWRail is shown in Table 2.

Table 2. Specific distribution of the RAWRail.

Number of Rails Left Curved Tracks Right Curved Tracks Straight Tracks In All

2 1000 1000 1000 3000

3.2. Evaluation Metrics

At present, it is rare to use deep learning neural networks for feature extraction of
train tracks, so the existing evaluation index for rail line detection is not perfect. In terms of
evaluation indexes, TP (True Positive), TN (True Negative), FP (False Positive), FN (False
Negative) are commonly used in the field of image processing [31].

The accuracy is calculated as the average number of correct points per image:

ACC =
TP + TN

TP + FP + TN + FN
= ∑

i

Xi
Yi

(6)

where Xi the number of correct points and Yi the number of ground-truth points. When the
difference between the basic fact and the prediction point is less than a certain threshold,
the point is correct. In addition to accuracy, FNR (False Negative Rate) and FPR (False
Positive Rate) are also proposed.

FNR =
FN

TP + FN
=

Fpred

Ngt
(7)

FPR =
FP

TN + FP
=

Npred

Fall
(8)

where Fpred is the number of rail lines that are initially correct but are predicted to be
negative, Ngt is the number of all right rail lines, Npred is the number of rail lines that are
originally negative but predicted to be positive, Fall is the number of all wrong tracks.

3.3. Implementation Details

The hyperparameters of each experiment in this work are generally consistent. Al-
though the dataset has 3000 images, this is far from enough. During training, these
experiments use data enhancement appropriately, and apply data enhancement with a
probability of 10/11. The transformations used are rotation with an angle in degrees
θ ∼ U(−10, 10), horizontal flip with a possibility of 0.5 [22]. The Adam optimizer is used,
along with the Cosine Annealing learning rate scheduler with a batch size of 16 and an
initial learning rate of 5× 10−4 until convergence [26]. The training session runs for 1961
epochs, taking approximately 23 h on four GeForce RTX 2080Ti. In the post-processing
curve fitting, a second-order polynomial degree is chosen to be the default. The Tensor-
board is used for data visualization analysis, and the RailNet training process is shown in
Figure 6.
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(a) (b)

(c) (d)

Figure 6. Training process of the RailNet. (a) FNR result. (b) FPR result. (c) Accuracy result. (d) Loss
function result.

3.4. Results

In order to verify the rationality and superiority of the algorithm, the following three
sets of experiments are designed. The detailed experimental diagram of each step of the
algorithm is shown in Figure 7.

3.4.1. State-of-the-Art Comparison

The results of comparing our algorithm with other latest algorithms are shown in
Table 3. Because these documents do not provide source code the evaluation index data
can only be directly extracted from the original papers. Regarding detection accuracy and
detection speed, it is not difficult to see that our algorithm is exceptionally competitive.
Figure 8 shows the results of the algorithm detecting the rail lines area, which reflects the
excellent performance in both straight and curved rail lines. The studies in [1,11,25] all lack
the two evaluation metrics of FPR and FNR, and [11] also lacks the evaluation metric of
FPS. Therefore, we introduce the two new evaluation indicators of FPR and FNR into these
three algorithms and introduce FPS into [11]. We conduct supplementary experiments on
FPR, FNR, and FPS evaluation metrics, and reproduce the algorithms. Morever, we let the
four algorithms run under the same instrument and GPU conditions. In this way, the ACC,
FPR, FNR, and FPS of the four algorithms can be compared comprehensively and clearly.
In practical application, our algorithm not only detects the rail lines in real-time during
train operation but also has strong robustness in bad weather.

3.4.2. Multi-Rail Line Detection

There will be some unexpected situations in practical application, such as several
trains running in parallel and changing the rail lines in time when meeting the rail fork. At
this time, it is of vital importance to identify multiple rail lines. It can be seen from Table 4
that the algorithm still has high accuracy in identifying multi-rail lines. This shows that the
algorithm has strong robustness.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Experiment process of the algorithm. (a) Binary segmentation diagram. (b) Inverse
perspective transformation diagram. (c) Histogram detection of left rail diagram. (d) Histogram
detection of right rail diagram. (e) Result of sliding window detecting left rail. (f) Result of sliding
window detecting right rail. (g) Schematic of characteristic point curve fitting. (h) The final rail
line prediction.

3.4.3. Ablation Study

To investigate the impact of some of the decisions made for the proposed method [22],
two ablation studies were carried out, using only RAWRail’s training set for training and
the validation set for testing. Different order polynomials are used to fit the rail lines in
the curve fitting part of the rail lines fitting algorithm based on sliding window detection
module. The experimental results are shown in Table 5. Due to the camera’s angle of view,
the detected track lines are mainly near the camera, and the curvature of this part is not
particularly obvious. This is why there is little difference in the experimental results when
other order polynomials are used to fit rail lines. Therefore, low order polynomials of
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different orders have little influence on the fitting results. Even so, it can be seen from the
data in the table that when the polynomial is of second-order, the detection accuracy is the
highest, so the second-order polynomial is also used in the design of this algorithm.

Figure 8. Test results of rail lines. The first column: the original images. The second column: the
RailNet output. The third column: the final rail lines prediction.

Table 3. Comparison of the results of the state-of-the-art rail lines detection algorithms.

Method ACC FPR FNR FPS

Zhong Ren [11] 76.7% 0.21872 0.10423 37.4

Tong Zhang [25] 79.0% 0.18790 0.08953 25.6

Lei Zhang [1] 90.1% 0.09094 0.04325 22.7

Proposed Method 98.6% 0.01104 0.00714 74.2

Table 4. The results of different type of rail lines on RAWRail.

Rail Line Type ACC FPR FNR

Multi-rail lines 94.16% 0.05958 0.02832

Table 5. The results of different polynomial degrees on RAWRail.

Polynomial Degrees ACC FPR FNR

1st 97.71% 0.02309 0.01570
2nd 98.65% 0.01321 0.00864
3rd 98.42% 0.01570 0.01038

As to another ablation study we carried out, we can find that the resolution of the train
camera is also the key factor affecting the results. Different sizes of images are input into
the algorithm, and the specific experimental results are shown in Table 6. The experimental
results show that reducing the image size will reduce the accuracy of rail lines prediction.
At the same time, the detection speed of rail lines has increased significantly. In practical
applications, combined with the characteristics of this algorithm, the best accuracy and
detection speed can be found [32]. The image size in the RAWRail is 640× 320.
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Table 6. The results of different picture sizes on RAWRail.

Input Sizes ACC FPR FNR FPS

320 × 180 95.14% 0.04895 0.03520 79.2
480 × 270 97.01% 0.02880 0.01991 76.4
640 × 360 98.64% 0.01332 0.00872 72.6

4. Conclusions

In this paper, a novel method for rail line detection algorithm based on deep learning
is proposed. Firstly, we propose the lightweight RailNet. The RailNet extracts the feature
of tracks by converting the rail line detection into an image segmentation problem. The
ingenious design of RailNet remarkably improves the accuracy and real-time of algorithm
detection. Afterward, we design the rail lines fitting algorithm based on sliding window
detection, which makes full use of the segmentation feature maps output by RailNet and
finally marks the rail lines on the original images. For the training and testing of the
RailNet, we collect a real-world rail lines dataset called RAWRail. Compared with the
state-of-the-art methods, the proposed method is effective and efficient, while maintaining
an accuracy of 98.6% and detection speed of 74 FPS. Furthermore, the proposed algorithm
also works well with multi-rail lines, which provides wide application prospects.
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