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Abstract: The key to the study of node deployment in Wireless Sensor Networks (WSN) is to find the
appropriate location of the WSN nodes and reduce the cost of network deployment while meeting
the monitoring requirements in the covered area. This paper proposes a WSN node deployment
algorithm based on real 3D terrain, which provides an effective solution to the surface-covering
problem. First of all, actual geographic elevation data is adopted to conduct surface modeling. The
model can vividly reflect the real terrain characteristics of the area to be deployed and make the
deployment plan more visible and easy to adjust. Secondly, a probabilistic coverage model based
on DEM (Digital Elevation Model) data is proposed. Based on the traditional spherical coverage
model, the influence of signal attenuation and terrain occlusion on the coverage model is added to
make the deployment model closer to reality. Finally, the Greedy algorithm based on grid scanning is
used to deploy nodes. Simulation results show that the proposed algorithm can effectively improve
the coverage rate, reduce the deployment cost, and reduce the time and space complexity in solving
the WSN node deployment problem under the complex 3D land surface model, which verifies the
effectiveness of the proposed algorithm.

Keywords: wireless sensor networks; 3D surface covering; node deployment; real 3D terrain
modeling; covering model; Greedy algorithm

1. Introduction

Wireless Sensor Networks (WSNs) are composed of wireless sensor network nodes,
which transmit the information collected in the detection area to the sink node in a self-
organizing and multi-hop way, thereby actualizing the monitoring of the information in
the detection area. With the development of the wireless network, WSN has been widely
used in fine agriculture and smart factory and disaster prevention and reduction [1]. In
many types of research on wireless sensor networks, node deployment is one of the most
fundamental problems because it is directly related to the network quality of service.

The earliest studies on the coverage of wireless sensor nodes mainly focused on the
ideal two-dimensional plane [2]. The nodes that adopted the two-dimensional disk-sensing
model, the ant colony algorithm (ACO) [3], and the cuckoo search algorithm (CS) [4,5]
could improve the coverage of the target area in the two-dimensional plane. A 3D spherical
sensing model based on 3D space coverage was proposed to study the coverage problem
further [6]. Mnasri [7] compared 2D deployment with 3D deployment and proved that
the latter was more complex because it could solve more constraints brought by practical
problems. Boufares [8] proposed a distributed algorithm based on virtual force to actualize
autonomous coverage of the sensor nodes in the 3D region. Du [9] combined distributed
particle swarm optimization (DPSO) algorithm with the virtual force algorithm (VF) and
demonstrated the superiority of this algorithm in solving the performance of deployment
nodes in the 3D environment. Furthermore, in order to better account for the signal
attenuation problem in practice, the probabilistic perception model based on disk and
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sphere has been gradually used to solve the deployment problem of WSN nodes [10].
Hossain [11] discussed the influence of different sensor coverage models on the network
coverage range. Hao [12] proposed a 3D coverage deployment method based on WSN
probabilistic model and proved the effectiveness of the method.

The three-dimensional surface-coverage problem is a particular type of problem in
WSN node deployment [13]. The WSN nodes are distributed on a three-dimensional
surface to complete the task of covering the surface. The WSN coverage problem in 3D
terrain is close to actuality and has a certain degree of complexity, so there are few related
studies [14–17]. The general solution to the covering problem of the complex surface is
as follows:

1. The functional surface is used to simulate the surface environment of the area to be
deployed.

2. The three-dimensional spherical covering model is adopted as the covering model of
WSN nodes.

3. Use heuristic optimization algorithms (such as PSO, GA, ACO, etc.) to complete
nodes’ deployment.

The current states and progress of the 3D surface-covering problem are outlined:
Boufares [18] proposes a distributed deployment algorithm (3D-IDVFA-TC) based on the
improved virtual force strategy, which can effectively improve the coverage rate of differ-
ent complex Z-degree surface function models while ensuring network connectivity and
reducing node loss. Saha and Saikia [19] proposed a method based on Delaunay triangu-
lation and projection to optimize sensor node deployment in hilly areas. Felamban [20]
obtained the deployment location of nodes through the three-dimensional filling of the
truncated octahedron.

Although the above algorithms can achieve a better deployment effect in the WSN
surface-coverage problem, four significant issues have yet to be addressed: first of all, the
model of the area to be deployed still uses the simple surface generated by the function,
which is too regular and smooth to simulate the surface characteristics of the real terrain
environment. Secondly, the above solution needs to estimate the required number of nodes
based on the surface function. However, due to the irregularity of the real terrain, it cannot
obtain the surface function of the area and consequently cannot calculate the number of
nodes. Thirdly, the coverage of nodes is primarily irregular shapes in the complex surface
environment, but the traditional spherical coverage model does not consider the impact
of the real terrain on coverage. Therefore, it is urgent to propose a node coverage model
that fits the real surface environment better. Finally, the previous deployment algorithms
are easy to fall into local optimum and slow convergence because of the large amount
of surface information data in the monitoring area, and the new coverage model is more
complex. Therefore, to solve the WSN deployment problem of real three-dimensional
terrain more effectively, a deployment algorithm that can fully integrate terrain data and
node coverage model characteristics is required.

Based on the above ideas, this paper proposes a WSN node deployment algorithm
based on real three-dimensional terrain, which uses the real terrain elevation data down-
loaded from a network geographic database to reconstruct and model the surface. A proba-
bilistic coverage model based on Digital Elevation Model (DEM) data is proposed, which
can more truly reflect the influence of the geographical environment on the coverage of
nodes. Finally, considering the efficiency of the Greedy algorithm in solving the optimal
solution problem, we combine the Greedy algorithm for node deployment. Simulation
results verify that the proposed coverage model can reflect the real coverage more realisti-
cally under diverse surface models with different complexity. Meanwhile, combined with
the idea of the Greedy algorithm, it can quickly complete the deployment of nodes and
achieve a higher coverage rate.

The contributions of this study are as follows:
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• Terrain-modeling technology based on DEM data is applied to solve the WSN node
deployment problem, which actualizes the visualization of the WSN node’s three-
dimensional surface deployment plan.

• A WSN probabilistic coverage model based on DEM data is proposed in this study.
This model considers factors such as signal attenuation and terrain occlusion on the
original basis, making the coverage model closer to actuality and more practical.

• The Greedy algorithm based on grid scanning is employed to solve the WSN node
coverage problem, which significantly reduced the time and space complexity of
the algorithm.

The remainder is assigned as follows. Section 2 introduces the methods and steps of
establishing a three-dimensional real surface model. In Section 3, the proposed probabilistic
coverage model of WSN based on DEM data is described in detail. In Section 4, an efficient
sensor deployment algorithm on 3D real terrain is presented. Section 5 conducted a series
of simulation comparison tests. Finally, a conclusion is provided in Section 6.

2. Real Three-Dimensional Surface Model

In this section, we will introduce the methods of constructing the real three-dimensional
surface models, including the acquisition and processing of DEM data and commonly used
modeling methods and comparisons. Constructing a real three-dimensional surface model
can reflect the real terrain characteristics of the area to be deployed and provide a reference
for subsequent node deployment decisions.

The geographic data used in this study comes from the Geospatial Data Cloud [21]. It
provides a large amount of real surface data information for downloading, and the data
types are rich and diverse. Among them, the Digital Elevation Model, or DEM for short,
actualizes the digital simulation of the ground terrain through limited terrain elevation
data (that is, the digital expression of the terrain surface morphology). It is a solid-ground
model that uses a set of ordered numerical arrays to represent ground elevation. The DEM
file in the image format was opened by Global Mapper, then the image was intercepted
and ultimately converted into evaluation value data output.

Commonly used DEM data representation models are the contour model, regular
grid model (GRID), and irregular triangular network model (TIN), as shown in Figure 1.
The contour model emphasizes the topography features through contour lines, shows the
steepness of the slope through the density between the lines, and can directly display the
height of the terrain with elevation data. However, it cannot visually display the overall
topography and geomorphology. Although the GRID model and the TIN model cannot
display topographical changes in the form of data, they can intuitively reflect the general
appearance of the terrain and have a higher degree of visualization.
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Both the GRID model and the TIN model have the advantages of fully expressing
the structural features of the terrain. However, compared with the TIN model, the GRID
model has a more straightforward structure, a smaller amount of stored data, and is more
convenient for analyzing and calculating the terrain later. Therefore, we choose the GRID
model to establish the surface model.

The general modeling steps of the GRID model are: first, mesh the plane area according
to the number of samples of the DEM points in the horizontal and vertical directions, and
then, assign the corresponding elevation values to the grid points.

The amount of DEM data used to construct the surface model is closely related to the
modeling accuracy. As shown in Figure 2, the higher the DEM data volume, the higher
the sampling accuracy. It means the larger the data storage and the more complicated the
calculation. Selecting appropriate modeling accuracy can reduce the number of model
calculations and save time and cost while meeting the coverage requirements.
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3. Probabilistic Coverage Model of WSN Based on DEM Data
3.1. Problem Formulation

For the problem of WSN on surface coverage, the most commonly used node coverage
model is spherical, and the coverage criterion is a single distance criterion that can only be
declared to be covered if the spatial distance is smaller than the node coverage radius. In
the following Formula (1):

P =

{
1 d ≤ r
0 d > r

(1)

where P is the coverage probability, d is the distance from the node, and r is the node
coverage radius.

In practical applications, the deployment environment of WSN nodes is primarily
mountainous terrain with large undulations and irregularities, where the coverage of nodes
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is easily affected by the terrain. In this case, using the traditional spherical coverage model
will cause an error between the real coverage and the calculated results. Suppose that the
node is deployed at position 1 using the traditional spherical coverage model. In this case,
point 2 can be covered in Figure 3, but the actual situation is that the terrain occludes the
coverage blind area, and electromagnetic waves cannot cover the two points.
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In order to solve the above problem, a WSN probability coverage model based on
DEM data is proposed. Based on the traditional coverage model, it considers the influence
of signal attenuation and terrain occlusion factors on the coverage model, which agrees
well with the perceived characteristics of nodes in practical applications.

3.2. Coverage Model Construction
3.2.1. The Influence of Terrain-Shading Factors on the Coverage Model

Since the continuous terrain surface is discretized into DEM data points (x, y, z), then
the continuous surface-coverage problem is transformed into a discrete grid point coverage
problem. Now we will proceed with the following steps to solve this problem.

First, store the coordinates (xi, yj, z(xi, yj))(i = 1, 2, . . . , m; j = 1, 2, . . . , n) of all discrete
grid points on the three-dimensional surface model into the matrixes X, Y, Z, respectively
shown in Equation (2), where the coordinate z(xi, yj) is the elevation coordinate value
corresponding to the grid point (xi, yj):

X = [x1, x2, . . . , xm]
Y = [y1, y2, . . . , yn]

Z =


z(x1, y1) z(x1, y2) . . . z(x1, yn)
z(x2, y1) . . . . . . z(x2, yn)

. . . . . . . . . . . .
z(xm, y1) z(xm, y2) . . . z(xm, yn)

 (2)

For determining the influence of the terrain occlusion in any sensing direction of the
sensor node, it is necessary to estimate the ground surface height in this direction since the
terrain surface is discretized into elevation points, as shown in Figure 4. For any sensor
node with a sensing radius of r on a discrete grid point, taking the node coordinates as the
origin, the sensing direction angle θ(θ ∈ [0, 2π]) as the step direction, and g/cosθ as the
step length, where g is the distance between discrete grid points. The elevation value of
each stepped point is calculated by interpolation of the four surrounding grid points. Then,
the elevation values {zθ1, zθ2 . . . zθi . . . zθk} for all step points within the perceptual range r
in the perceptual direction θ can be obtained.

Based on the approximate elevation values {zθ1, zθ2 . . . zθi . . . zθk}, Equation (3) de-
termines how the grid points in the sensing direction are affected by the terrain shading.
Pter = 1 means that sensor node can cover the grid points without being affected by the
terrain, and Pter = 0 implies that the grid points cannot be covered by the influence of
terrain occlusion. zi(0 ≤ i ≤ n) is the elevation value of the corresponding step point of the
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sensor node in the sensing direction, z0 is the elevation value of the grid point where the
sensor node is located, and zn is the farthest grid point that the sensor node can perceive in
the sensing direction:

Pter =

{
1 ∀zj ≤ zi
0 ∃zj > zi

(0 ≤ i ≤ n, 0 ≤ j ≤ i) (3)

An illustrative example is shown in Figure 5; it can be calculated that the grid points
{z1, z2 . . . z5, z6} in the figure are affected by the terrain shading. According to Equation (3),
grid points 2, 4, and 6 are affected by the grid points located in front of them and have
larger elevation values, which block the sensory signal of the node, resulting in coverage
blind spots, as shown in Table 1.
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Table 1. The impact of terrain shading on corresponding grid points.

The Number of Grid Points Impact of Terrain Shading Pteri

grid 1 1
grid 2 0
grid 3 1
grid 4 0
grid 5 1
grid 6 0



Electronics 2021, 10, 2028 7 of 16

By increasing the sensing direction angle θ in the range [0, 2π], it can be determined
whether each grid point in the sensing range of the node is affected by the terrain occlusion.

3.2.2. The Influence of Signal-Attenuation Factors on Coverage Model

Furthermore, to account for the influence of signal propagation attenuation on the
coverage model, we combine the terrain shading influence criterion with the spherical
probability perception model [7].

The coverage probability of the spherical probability perception model changes with
the distance of the node. Mathematically, the coverage probability is shown in Equation (4).
This model avoids the traditional Boolean perception model’s cliff-like perception boundary
and is closer to the actual propagation of the perception signal:

Psph =


1 d ≤ R− r
e−αλβ

R− r < d < R + r
0 d ≥ R + r

(4)

where Psph is the probability that can perceive a specific grid point under the spherical
probability coverage model, d denotes the distance between the grid point and the node, R
represents the maximum sensing radius when there is no signal attenuation, and r is used
to describe the uncertainty perception ability of the node, λ = d− (R− r).

α, β are attenuation factors that determine the degree of attenuation of the perceived
probability of a node in an uncertain sensing region with distance. The relationship between
d and Psph is shown in Figure 6. In the figure, R is set to 5 and r is 3. When α = β = 1, the
perceived probability decays faster. When α = β = 0.5, the probability decays slowly. The
values of α, β can be selected according to the actual situation of the node to meet different
coverage requirements.
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3.2.3. The Influence of Signal Attenuation Factors on the Coverage Model

Finally, combining the above two models, the WSN probability attenuation coverage
model based on DEM data is obtained as:

P = Pter · Psph (5)

This model comprehensively considers the influence of the terrain shading and signal
attenuation on the node coverage model, so the model can more genuinely reflect the
perceived effect of the node in the actual environment.
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4. WSN Deployment Based on Grid Scanning Using the Greedy Algorithm

The Greedy algorithm is a typical heuristic algorithm. It makes the current best choice
at every step, which means that it is not considering optimization as a whole, but a local
optimization. However, this kind of optimal local solution is often relatively close to the
optimal global solution. Greedy algorithms tend to save more time and cost than global
optimization algorithms to solve problems.

A solution for the deployment of WSN nodes on real 3D terrain is proposed. The
probabilistic attenuation coverage model of DEM data is adopted for nodes, and the Greedy
idea is used for node deployment on the real three-dimensional surface model. Its basic
idea is as follows:

First of all, the problem to be solved needs to be clarified. The solution goal of
this study is to actualize the deployment of sensor nodes under the complex and three-
dimensional surface model and maximize the coverage rate while meeting the regional
coverage requirements. Therefore, the objective function is:{

Coverage ≥ Ppre

Coverage = sum(countp≥ϕ)
m×n

(6)

where Coverage is the coverage rate under the condition that the preset coverage rate Ppre
is satisfied, and its calculation formula is the ratio of the number of covered grids to the
total number of grids, where the coverage is declared when the probability p is greater
than a specified threshold ϕ.

Then, the constraint conditions of the algorithm are determined: the deployment
position of the candidate nodes cannot exceed the deployment range defined by the area
to be deployed. That is, all nodes are deployed on the grid points divided by the surface
model. Suppose the sensor coordinate of a node is (xi, yj, z(xi, yj)), and the corresponding
constraint condition is:

s.t.


xi ∈ X
yj ∈ Y

z(xi, yj) ∈ Z

(i = 1, 2 . . . m)
(j = 1, 2 . . . n)

(7)

Node traversal is carried out according to the idea of the grid-scanning Greedy algorithm.

(1) Calculate the coverage P(k) of any sensor node to its surrounding grid points under the
influence of terrain shading and signal attenuation by combining Equations (3)–(5).

(2) Find the node deployment location that can cover the largest number of grid points in
the area to be deployed, and add this location to the candidate coverage set Cov_sel,
as shown in Equation (8):{

argmaxNum(P(k) > ϕ)
Cov_sel = Cov_sel ∪ {sensor(k)} (8)

(3) Delete the covered grid points from the traversal domain Trav. Suppose multiple
nodes with the same coverage rate are encountered during the traversal process.
In that case, the node with the smallest coordinate is selected for priority deployment
until the area to be deployed is fully covered or the predetermined coverage rate is
reached, and finally ends the algorithm. The specific formula is shown below:

P(k) > ϕ
k→ (p, q)

Trav = ∼ (Trav(i, j) = 0, Trav(p, q) = 0)&&ones(m, n)
(9)

The implementation of the WSN node deployment algorithm based on real 3D terrain
is summarized in Algorithm 1:
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Algorithm 1: WSN deployment based on grid scanning using the Greedy algorithm

1 Import of DEM Data.
2 Initialize R, r, α, β, ϕ.
3 For each surface grid i.
4 Calculate the coverage area corresponding P(i) to the grid point i. (3)–(5)
5 End.
6 While (Coverage < Ppre)
7 Find the location of the node k to be deployed with the largest coverage. (8)
8 Add the point k to the candidate coverage set. (8)
9 Remove the covered grid points from the traversal domain. (9)
10 IF Num(P(m)) = Num(P(n))
11 IF m < n
12 k = m;
13 Else
14 k = n;
15 End.

5. Simulation Experiments and Analysis

To verify the superiority of the proposed algorithm (GAGS) in solving the 3D complex-
surface-coverage problem, we will compare and simulate it with traditional deployment
algorithms (PSO, GA, ACO).

First, the coverage of each algorithm is compared through deployment simulations
under three surface models of different complexity. Secondly, the coverage attenuation
factor, coverage threshold, and preset coverage values in the coverage model were changed
and simulated again to test the coverage performance of each algorithm under the coverage
model of different parameters. Finally, the iterative time required for different algorithms
to complete the deployment plan is compared.

5.1. Deployment Simulation under Different Levels of the Complex Surface Model

Deployment simulations on three surface models with different levels of complexity
are performed, and the coverage rate that each algorithm can achieve is compared. The
deployment parameters of all algorithms are kept consistent, as shown in Table 2.

Table 2. Simulation parameters.

Parameter Value

Projection Area of Monitoring Area 600 × 600 m2

Node Perceived Radius R 5 m
Uncertain perception radius r 1 m

Attenuation factor α, β 0.5
Grid length g 12 m

Coverage threshold value ϕ 0.8
Preset coverage rate 1

The deployment results are shown in Figures 7–9. The deployment results of the
proposed GAGS are more uniform than the other algorithms. Furthermore, to more
intuitively demonstrate the superiority of the proposed algorithm in terms of coverage, we
compare the coverage rate of different algorithms after deployment, as shown in Figure 10.

Specifically, when deploying nodes using a simple surface model, as shown in Figure 7,
GAGS uses 444 nodes to achieve full coverage. When the same number of nodes are
deployed, the deployment coverage rate of PSO is 86.12% and GA and ACO were 92.04%,
95.99%, respectively, as shown in Figure 10a.
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Figure 8 presents the deployment simulation of nodes using the general surface model.
Since the surface model’s projected area is the same, increasing the terrain complexity will
increase the surface area and correspond to the number of nodes that need to be deployed.
In this case, GAGS uses 486 nodes to achieve full coverage, but when the number of
deployed nodes is the same, the deployment coverage of PSO is 83.24%, and GA and ACO
are 83.52% and 93.56%, respectively, as is shown in Figure 10b.

Using a complex surface model (Figure 9), GAGS uses 630 nodes to achieve full
coverage. In the same number of deployed nodes, the deployment coverage of PSO is
79.33% and GA and ACO are 82.67% and 91.69%, respectively. Compared with the simple
terrain model, the coverage descent further, as shown in Figure 10c.

5.2. Deployment Simulation under Different Coverage Model Parameters

Take the complex surface model in Figure 9 as an example. The coverage of GAGS
under the coverage model with different parameters of the attenuation factor α, β, the
threshold ϕ, and the value of the preset coverage are analyzed individually.
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5.2.1. Deployment Simulation with Different Attenuation Factors

While keeping the other simulation parameters unchanged, the coverage model
attenuation factors α, β were increased from 0.5 to 1. The deployment results of each
algorithm are shown in Figure 11.
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Figure 11. Node deployment after increasing the coverage model attenuation factor.

Since the increase of the attenuation factors α, β will accelerate the attenuation speed
of the coverage rate of the perception model, the effective coverage area of each node will
be relatively reduced, leading to an increase in the number of WSN nodes to achieve full
coverage of the area. The deployment coverage of each algorithm can be seen in Figure 12.
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Figure 12. Histogram of algorithm coverage comparison after increasing the coverage model attenu-
ation factor.

After increasing the attenuation factors α, β, GAGS achieves full coverage with
684 WSN nodes, while when deploying the same number of nodes, the coverage rate
of PSO is only 86.6%, the coverage rate of GA is 93.79%, and that of ACO reached 96.04%.
It reveals that the GAGS algorithm still has superiority in coverage performance.



Electronics 2021, 10, 2028 13 of 16

5.2.2. Deployment Simulation with Different Attenuation Factors

The coverage threshold reduced ϕ from 0.8 to 0.5 to verify the coverage performance
of each algorithm. Other simulation parameters are consistent with Table 2.

The deployment results under different coverage thresholds are presented in Figure 13.
It can be seen that reducing the coverage threshold ϕ will expand the coverage of a single
node, which means that the number of deployed nodes in the same area decreases. At
this time, GAGS achieves full coverage after deploying 375 WSN nodes. The coverage
rate of PSO is 86.08%, the coverage rate of GA is 95.44%, and the coverage rate of ACO
is 96.11%, under the condition of deploying the same number of nodes. In order to more
clearly observe the performance gap of each algorithm, the coverage histogram under the
deployment of the same number of nodes is shown in Figure 14.
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5.2.3. Deployment Simulation with Preset Coverage Ppre

The parameters remained constant, and the only change was the preset coverage rate.
The number of nodes that each algorithm needs to deploy under different preset coverage
rates are compared in Figure 15.
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Figure 15. Line chart of algorithm coverage ratio comparison under preset coverage ratio.

Obviously, when the preset coverage rate is small, the number of nodes deployed by
each algorithm is roughly the same under the premise of meeting the coverage requirements.
When the demand for regional coverage is high, the algorithms need to increase the number
of nodes to improve the coverage. Through comparison, it is concluded that the GAGS
algorithm can meet the coverage requirement under the condition of deploying a lower
number of nodes, which is much more cost-effective.

5.3. Comparison of Execution Time

The execution time of each algorithm under different surface models was compared.
The deployment parameters of all algorithms are shown in Algorithm 1, and the compar-
ison results are shown in Figure 16. With the increase in the complexity of the surface
model, the deployment time for all the algorithms has increased. However, the execution
time of the GAGS algorithm is significantly shorter than that of the other three algorithms.
It shows GAGS can effectively reduce the amount of calculation and the cost.
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This is probably because swarm intelligence algorithms (PSO, GA, ACO) are greatly
affected by initialization, which is highly random. It needs a large amount of calculation
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and has slow convergence in dealing with large-scale combination problems. However,
GAGS is an algorithm based on the Greedy idea of grid scanning. It only needs to traverse
all grid points once, which significantly reduces the time and space complexity. Moreover,
the algorithm deployment scheme is unique and more stable.

6. Conclusions

To solve the WSN nodes coverage problem under real 3D terrain, this paper proposes
a WSN deployment strategy for real 3D terrain coverage based on the Greedy algorithm
with the DEM probability coverage model.

Firstly, DEM data is used to build a three-dimensional real terrain model of the area
to be deployed, which can more truly reflect the characteristics of the area environment
and make the deployment plan more visible. Secondly, a WSN probability coverage model
based on DEM is established, which fully considers the impact of terrain shading and
signal attenuation on the coverage model. Finally, a WSN deployment strategy based
on the Greedy algorithm of grid scanning is proposed, which effectively improves the
coverage of the monitoring area, dramatically reduces the computational complexity, and
saves time.

The coverage performance of the proposed GAGS is verified through comparative
experiments by comparison with the three traditional deployment algorithms of PSO, GA,
and ACO. Experimental results show that for real terrain models with different complexity
and coverage models with various parameters, the proposed GAGS can complete the
coverage task with fewer nodes and has better coverage performance, faster execution, and
more excellent stability.
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