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Abstract: Remote surveying of unknown bound geometries, such as the mapping of underground
water supplies and tunnels, remains a challenging task. The obstacles and absorption in media
make the long-distance telecommunication and localization process inefficient due to mobile sensors’
power limitations. This work develops a new short-range sequential localization approach to reduce
the required amount of signal transmission power. The developed algorithm is based on a sequential
localization process that can utilize a multitude of randomly distributed wireless sensors while only
employing several anchors in the process. Time delay elliptic and frequency range techniques are
employed in developing the proposed algebraic closed-form solution. The proposed method is highly
effective as it reaches the Cramer–Rao Lower Bound performance level. The estimated positions can
act as initializations for the iterative Maximum Likelihood Estimator (MLE) via the Taylor series
linearization to acquire even higher positioning accuracy as needed. By reducing the need for high
power at the transmit modules in the sensors, the developed localization approach can be used to
design a compact sensor with low power consumption and greater longevity that can be utilized to
explore unknown bounded geometries for life-long efficient observation mapping.

Keywords: sequential localization; monitoring; water contamination; elliptic measurement;
remote sensing

1. Introduction

Freshwater supply has decreased due to the continuous waste production from indus-
trial sewage, agriculture, and other human and animal activities. Even though around 73%
of the Earth’s surface is covered with water, only about 2.1% is available freshwater [1,2].
A sufficient clean water supply is essential for producing crops, habitat conservation, soil
formation, and the cycling of nutrients [1]. If drinking water is contaminated due to a
biological or a chemical substance, it can lead to the formation of contagious illnesses, such
as pneumonia, hepatitis, and gastric ulcers [3,4]. Lead (Pb), mercury (Hg), cadmium (Cd),
and arsenic (As), and other hazardous heavy metal substances can also be found in water
sources. Another area of concern in monitoring water quality is the residence of microbes
in the water supply, which can expose humans and the entire water ecology to a significant
danger [1]. Hence, the advancement of ultra-sensitive and rapid detection techniques is
critical in effectively safeguard the available clean water supply worldwide.

During the past two decades, numerous research has been done to construct more
effective methods to detect contamination with low operating costs and energy. In the
past, water supply contaminants were manually detected in water laboratory sites where
contamination analysis was carried out at the laboratory level [5]. Frequently used instru-
ments in detecting contamination are capillary electrophoresis, field-flow fractionation,
mass spectrometry, and multiple fermentation tube techniques [1]. Recent technological
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advancements in biosensor procedures and analytical chemistry improved the sensitivity
and accuracy of detection assays. Some of these technological developments include water
quality sensors [6], model-based event detection [7], and advanced spectroscopy [8]. Other
contamination detection methods include sensor placement approach [9], Microfluidics
sensors [10], biosensors [11], and light emission [12,13]. There are several types and ap-
plications of touching monitoring systems. Mobile and static sensors are employed to
acquire real-time information about the underground and pipeline water supply. The
mobile sensors are positioned inside the system at the starting source point and continue
to migrate until the sink point has been reached. The data are stored in the memory of the
mobile sensor and transmitted to the backend system (central processing system) for more
advanced analysis. The collected information can be correlated with the sensor’s location
to create a real-time mapping of the observations in the tested system [2]. As a real-time
assessment for sampling and analysis, online sensor monitoring provides a broader data
frequency than the traditional sample-based method. Additionally, online monitoring is
flexible and can be conducted remotely while still retaining a faster response rate. Online
monitoring systems based on Wireless Sensor Network (WSN) provide sufficient datasets,
straightforward monitoring assessment, simultaneous data measurements, and higher
sensitivity and detection accuracy [1]. An online monitoring system based on WSN consists
of monitoring centers, base stations, and information monitoring nodes [14]. In addition,
the usage of WSN lowers the consumption of power which lowers the operational cost as-
sociated with running the system [15]. The typical design of a sensor network incorporates
a low-power processor, a sensor interface, and a wireless communication module [1]. Some
WSN utilizations have been used in monitoring water quality [1,16]. For example, Wu et al.
[17] devised a self-powered transportable sensor that detects pH and disinfectant-related
ions levels in water distribution pipelines in real-time. For highly dynamic systems, such as
biological and chemical contamination monitoring in underground or underwater systems
with more diverse topologies, it is recommended to use a centralized processing algorithm
that provides more accurate location information when compared to distributed processing
algorithms [2]. The aggregated data can be used to find a time-based pattern of data
distribution. The main goal of sensor distribution is to adequately cover the maximal space
of the tested system (such as underground water supply). This centralized exploitation
technique applies WSNs with sensors dispersed in a small area and has inadequate reliabil-
ity due to loss in accumulated data resulting from multi-hop transactions [2]. Moreover,
this approach requires an enormous amount of energy and bandwidth consumption [18].

The reliability of remote sensing devices depends on the lifetime requirements of
different applications and the energy storage capacity of sensor nodes [19]. Therefore, a
more compact sensor design with low energy consumption modules is highly appreciated
for successful long-term wireless network surveillance. An efficient long-life power source
is important to run the different modules in the mobile sensor (sensor interface module,
actuation module, and signal transmission module). The interface and actuation systems
depend on the application type and nature of the media (liquid/gas).

For successful underground explorations and remote surveillance, the wireless cover-
age of mobile sensors should be adequate to ensure reliable real-time connectivity. However,
devices with very high-frequency (VHF)/ ultra-high frequency (UHF) radio equipment
may not be as effective underground as aboveground due to signal fading and high
multipath propagation [20]. Theoretically, the amount of power required for successful
communications between two network terminals (nodes) is equivalent to the effective
aperture of the receiving antenna at a distance d from the antenna transmitting signal
[21,22]. The simplest form to predict the best case received signal power is

Pr = δt δr

(
λ

4πd

)n
Pt , (1)

where: Pt represents the power fed into the transmitting antenna input terminals, Pr serves
as the power available at receiving antenna output terminals, λ is the wavelength of the
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radio frequency, n represents the path loss exponent, δt and δr are the antenna directivities
of the transmitting and receiving antennas, respectively.

Many factors can cause the received signal power to be lower than the simple form of
the Formula (1), such as an obstructed link due to buildings, trees, hills, earth curvature,
atmospheric attenuation, and antenna misalignment [23]. By ignoring the noise and interfer-
ence of the telecommunication signal and assuming that the transmitter/receiver antenna
is an absorption-less medium, Equation (1) can be reduced to the following equation:

Pt = (CPr) dn, (2)

where C is a constant that depends on the antenna directivity and the wavelength. From
Equation (2), it can be concluded that the required transmission power Pt is directly propor-
tional with at least the square of the distance between the nodes’ antennas, assuming the
received power Pr is more than the minimum threshold power of successful communication
for the used sensors.

This work suggests a new generation of wireless low-range transmission sensors
with an efficient sequential localization algorithm that can run based on minimal data
transmission power rate between the deployed sensors, to estimate a real-time mobile
sensor distribution pattern inside the tested system.

WSN Localization Problem

Accurate and seamless localization processes are essential requirements in any po-
sitioning method regardless of their applications. In any sensor network, the ability of
sensors to use the inter-node measurements to self-localize is a crucial step for its successful
application in different fields, such as surveillance, pollution, traffic monitoring, health
care, target detection, and water contamination [24–29]. Wireless sensor networks can be
deployed in varied localization scenarios. The physical observations, inter-node Time of
Arrival (TOA) distances, can be exploited to construct the relative positions of the sensor
nodes along with the reflection, translation, and rotation uncertainties [30]. Information
about the positions of some reference nodes is often needed to attain the absolute locations
of the unknown nodes.

Typically, distributed sensor networks involve hundreds or thousands of robust, tiny,
robust, densely distributed, and moving or stationary sensors employed in various modern
applications. In addition, efficient sensor devices must satisfy specific essential criteria, such
as long battery life, lightweight, affordability, availability, and low manufacturing cost.

Many approaches have been suggested for self-localization techniques in the literature.
The authors of [31] applied a successive closed-form primitive algorithm for a new scheme
to improve the positioning of pseudo anchors based on the TOA localization of the entire
network. The authors of [32,33] proposed an iterative multilateration approach by consider-
ing some TOA measurements from the pseudo anchors and anchors to achieve a distributed
localization. Sequentially, the sensors that located themselves become pseudo anchors for
the following localization process for sensor nodes that exhibit TOA connectivity. For a
particular issue, the authors of [34] introduced an unknown realistic environmental model
algorithm that required large sensor networks with minimal communication range with
only several reference nodes. The introduced algorithm is based on Gauss–Newton’s ap-
proach and reduced the complexity significantly through specific problem assumptions. In
more recent applications, the authors of [35] presented joint synchronization based on time
difference of arrival (TDOA) and localization algorithm for asynchronous networks. The
suggested approach has been drawn in three stages: least square estimation (LSE) based
on TDOA observations, maximum likelihood localization (MLE) of reference nodes, and
LSE estimation at clock offsets under the Gaussian noise model. Targets can be located by
a single transmission, which leads to a reduction in power emission. For further enhanced
observations in radar, microphone array, sonar, and particularly in passive scenarios, the
authors of [36] developed two TDOA algebraic properties in sensor network and simul-
taneous source–sensor localization problem. Singular value decomposition, geometrical
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knowledge, and low rank property were exploited to improve the qualities of the TDOA,
which led to a higher positioning accuracy. The authors of [37] applied two stages of
WLS based on time delay elliptic observations for MIMO radar systems. Fewer sensors
(transmitters or receivers) have been conducted in the implementation and experiments. By
exploiting the nuisance parameter from the first stage, applying the second stage improves
the performance of the localization process.

This work takes a new path to solve the localization problem by using a new gen-
eration of sensors. In particular, we explore a strategy to build a method for finding a
solution using (time delay) elliptic and frequency range observations in a two-dimensional
case. Closed-form single node localization with sensor position refinement algorithms is
proposed for the self-localization scenario, which is extended from the solution in [38].
We begin with a description of the problem and then propose a processing framework
for inaccessible and unknown systems by applying two-step weighted least-squares min-
imization. Finally, a performance comparison of the proposed approach with the CRLB
accuracy is made. To the best of our knowledge, the use of elliptic time delay and frequency
observations for discovering unreachable natural environments has not been proposed
or investigated before. The proposed solution is simple, accurate, effective and more
realistic. The developed single-node closed-form solution is appealing since it does not
demand initial guesses (since the system is completely unknown), and it is computationally
efficient (suitable for a large number of WSN), making it an ideal candidate approach to
solving the problem at hand. Another leverage in applying the proposed method is its
localization performance that can reach the Cramer–Rao lower bound (CRLB) accuracy
through additional measurements of anchor nodes in low and medium noise levels under
inaccessible systems. The proposed solution can also act as an initialization for the iterative
MLE for further enhancement as needed.

The paper is structured as follows. Section 2 formulates the localization problem.
Section 3 proposes the method that applies the nonlinear least squares technique. Section 4
depicts the framework of the sequential localization. Section 5 reports the performance eval-
uation and the simulation results in the 2-D case. Section 5 also presents the performance
comparison with the CRLB accuracy. Section 6 draws the conclusion and future work.

2. Problem Formulation

Our goal is to identify the positions of many unknown sensors M as accurately as
possible using time delay and frequency range measurements amidst the challenging
narrow number of reference points and the low-range transmission signal. Time delay
elliptic and frequency range measurements are utilized to locate the unknown nodes.
Elliptic positioning is an active localization technique that requires a transmitter to send
out a signal. The asynchronous mode is an important advantage of elliptic positioning over
TOA and TDOA [29]. TDOA can be obtained by cross-correlating the two received signals
and used for non-cooperative and passive positioning [39]. However, in both methods,
differences in the frequency measurements can be exploited to enhance the accuracy of the
localization process. The proposed method employs wireless sensors deployed on a 2-D
plane. This method has a straightforward extension for the more general 3-D case. The
problem is to determine sequentially the positions of M unknown sensors with N known
reference/anchor nodes in the K dimensional space, K = 2 or 3, where all unknown sensors
are identical and have the same communication range R. The anchors can be placed in the
system’s entrance and/or exit points and have the same communication range as the other
nodes in the sensor network. Our scenario uses single sensor node localization, followed
by a refinement stage to enhance its accuracy. This process is repeatedly applied for each
unknown sensor inside a certain cluster, as discussed in the following sections, until the
last unknown sensor has been localized, which ultimately leads to an exploration of the
hidden tunnel environment.
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For simplicity of the presentation, the position and velocity of the unknown sensor
to be localized are denoted by u = [x, y]T and ú = [x́, ý]T . The noisy time delay elliptic
measurement can be written as follows

do
it = do

i + do
t + ei, i = 1, 2, 3, ... , N. (3)

where do
i = |u− si| and do

t = |u− t|.
In Equation (3), t represents reference transmitter, dit is the elliptic distance which is a

summing of two TOAs between t and the ith sensor through unknown sensor u, the symbol
| • | denotes the Euclidean norm, (∗)o means the true value of measurement, and ei is a
realization of an independent and identically distributed (i.i.d.) Gaussian random variable
with zero mean that represents the measurement noise. Each measurement in Equation (3)
generates an ellipse/ellipsoid with foci at t and si that tracks the possible locations of the
object in the 2-D/3-D case, respectively [28,39].

Figure 1 illustrates an elliptic scenario. The source reflects the emitted signal from a
transmitter, and a receiver captures the reflected signal to locate the source after detection
and classification processes [29]. For the 2-D case, the reflected signal’s propagation time
defines an ellipse shape of possible source locations foci that represent the transmitter and
receiver positions, as shown in the following figure. As the time delay elliptic measurement
and distance are equivalent, we will use them interchangeably for our problem.

These measurements are taken and internally stored when the swarm of sensors fully
captures the unknown system’s topology. The above elliptic technique can operate without
synchronization requirement between the transmitter and the receiver [30,40].

Figure 1. The elliptic scenario in the existence of 3 receivers.

The intersection of three or more ellipses yields the target location estimate. However,
obtaining the intersection is not straightforward due to the highly nonlinear relationship
between the measurements and the unknown target location [28,29,38]. When the frequency
differences of the measurements are available, resulting from the relative motion between
the source and receivers, we can improve the accuracy of the position estimate and identify
the source velocity [38,39].

3. Proposed Node Localization Method

This method is an extension of the work [38] that employed the TDOA and FDOA
measurements. In our sensor network application, we have applied time delay and fre-
quency range (elliptic) techniques. The sensor network consists of M unknown sensors
that need to be determined and N anchors that are placed at precisely known positions,
where N << M. The proposed method uses several assumptions: (i) at least three an-
chors/pseudo anchors do not lie on a straight line, (ii) at least three noncollinear anchors
have a connection with the sensor that needs to be localized, (iii) the noises in the range
of measurements are independent of each other, (iv) the standard deviation of the noise
is marginal compared to the actual time delay and frequency range (elliptic) values for
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simplification purpose. We have followed the same steps in [38] starting from Equation (3)
for the two-dimensional case. The true elliptic distances of Equation (3) can be written as

do
it = do

i + do
t , i = 1, 2, 3, ... , N. (4)

The transmitter t is assumed to be any node in the anchor group. Connectivity
knowledge is important when grouping the anchors in the range of unknown sensors that
need to be localized. Upon rewriting Equation (4) as do

it − do
t = do

i , squaring both sides,
and substituting for do

i
2 and do

t
2, we arrive at a set of elliptic equations:

do
it

2 − 2do
itdt

o = sT
i si − tTt− 2(si − t)Tu, i = 1, 2, 3, ... , N. (5)

The above elliptic equations alone allow computing the estimation of source position
without the velocity, and they may not be sufficient to provide adequate accuracy to the
position estimation [38,41]. Hence, the frequency range measurements are used to enhance
the position estimate accuracy and evaluate the unknown sensor velocity.

The time derivative of (do
i ) expresses the relationship between sensor location param-

eters and the rate of the range [38]:

d́o
i =

(ú− śi)
T(u− si)

do
i

(6)

Taking the time derivative of Equation (5) and rearranging it again, we arrive at a set
of frequency range measurement equations:

2
(

d́o
itd

o
it − d́o

itd
o
1 − do

itd́
o
t

)
= 2(śi

Tsi − t́Tt− (t́− śi)
Tu− (t− si)

Tú) (7)

In the presence of elliptic range and frequency range noise, replacing the true range
and range rate in Equations (5) and (7) by their noisy values and rearrangement, leads to
an error vector equation:

$1 = z1 −G1θ1 (8)

where the vector θ1 = [uT, do
t , úT , d́o

t ]
T contains the unknown source location parameters

and two nuisance variables do
t and d́o

t , and

z1 =



d2
1t − sT

1 s1 + tTt
...

d2
Nt − sT

NsN + tTt
2(d́1td1t − śT

1 s1 + t́Tt)
...

2(d́NtdNt − śT
NsN + t́Tt)


and G1 = 2



(t− s1)
T d1t 0T 0

...
...

...
...

(t− sN)
T dNt 0T 0

(t́− ś1)
T d́1t (t− s1)

T d1t
...

...
...

...
(t́− śN)

T d́Nt (t− sN)
T dNt


(9)

where 0 is a (2 ∗ 1) zero vector. Notice that second-order error terms have been disregarded.
Hence, in the first stage processing, the weighted LS solution of θ1 is

θ1 = (GT
1 W1G1)

−1
G1

TW1z1 (10)

and
Cov(θ1) = (GT

1 W1G1)
−1

(11)

where W1 = E[$1 $T
1 ]
−1 expresses a positive definite weighting matrix. According to

the assumption (iv), the $1 is zero mean asymptotically at θo
1. Hence, θ1 is asymptotically

unbiased. Next, we use Equations (10) and (11) to enhance the accuracy of the sensor node
position estimate u.
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From the first stage of WLS, we have ũ = θ1(1 : 2) is an estimator of u and ˜́u = θ1(4 :
5) is an estimator of ú. To this end, we construct another set of equations after applying the
second stage of WLS and rearranging them by some simplification yields:

$2 = z2 −G2θ2 (12)

where
$2|θ2=θo

2
= ∆z2 ≈ B2∆θ1 (13)

and

z2 =


(θ1,u − t)

⊙
(θ1,u − t)

θ1
2(3)

(θ1,ú − t́)
⊙
(θ1,u − t)

θ1(3)θ1(6)

, B2 =


2diag{u− t} 0 O 0

0T 2do
t 0T 0

diag
{

ú− t́
}

0 diag{u− t} 0
0T d́o

t 0T do
t

,

G2 =


I2
1T

O
0T

0
0T

I2
1T

, `2 =

[
(u− t)

⊙
(u− t)

(ú− t́1)
⊙
(u− t)

] (14)

where
⊙

is the Hadamard product operator, 0 & 1 are zero and unity vectors of (2 ∗ 1),
respectively, and I2 & O are identity and zero matrices of (2 ∗ 2), respectively. Applying
WLS again to minimize the weight of the second norm of $2, with a positive definite matrix
W2, produces

θ2 = (GT
2 W2G2)

−1
GT

2 W2z2 (15)

The W2 that attains the minimum parameter variance of θ2 is E[$2 $T
2 |θo

2
]−1 [42]. After

ignoring the second-order error terms, multiplying Equation (13) with its transpose, taking
the expectation value and inverting it, gives the weighting matrix W2.

W2 = B−T
2 Cov(θ1)

−1B−1
2 (16)

We have θo
2 = (GT

2 W2G2)
−1GT

2 W2zo
2 = (GT

2 W2G2)
−1GT

2 W2θo
2. Hence, subtracting

both sides of Equation (15) by θo
2 gives

∆θ2 = (GT
2 W2G2)

−1
GT

2 W2∆z2 (17)

From Equation (13), W−1
2 = E[∆z2 ∆z2

T ] and applying the assumption (iv) in
Section 3 makes the G2 matrix constant. Hence, post-multiplying Equation (17) by its
transpose and taking expectation gives the covariance matrix of θ2 as shown in the follow-
ing equation:

Cov(θ2) = (GT
2 W2G2)

−1
. (18)

From the definition of θ2 in Equation (14), the final source position and velocity
estimate of u after the refinement process is

û = Λ
[
(θ2(1))

0.5; (θ2(2))
0.5
]
+ t and ˆ́u = Λ

[
θ2(3)

(θ2(1))
0.5 ;

θ2(4)

(θ2(2))
0.5

]
+ t́ (19)

where Λ = diag{sgn(θ1,u − t)} with the aim of removing the sign ambiguity from the
square root operation. It is worth mentioning that: (i) the above elliptic technique can
operate without synchronization requirement between the transmitter and receiver [30,40],
(ii) using different reference transmitters neither affects the information quality from the
measurements nor affects the location precision since the weighting matrices W1 and W2 in
Equations (11) and (16) are introduced. (iii) since the near-field scenario is applied, then,
the proposed algorithm may need one or two iterations to give an accurate solution that



Electronics 2021, 10, 2025 8 of 15

reaches the CRLB under Gaussian noise [38]. (iv) The elliptic-based localization problem is
challenging because the source location parameters and the sensor positions are nonlinearly
related to the elliptic measurements. Therefore, the proposed closed-form solution is
developed to handle the nonlinearity in the elliptic equation. (v) The thresholding effect
can happen due to the nonlinear nature of the problem when the variance of the node
position error increases [42]. This thresholding phenomenon in the proposed method is
due to ignoring the second-order error terms in deriving the solution, which is not valid
when the noise is significant.

4. Sequential Localization Framework

Challenging real-world sensor network sequential-localization configurations are
considered here, in which the network comprises a large number of unknown wireless
sensor nodes and has only several anchors. Our task is to explore and identify some
unreachable system properties, which can be performed by determining the underlying
sensor localization.

The developed single-node closed-form solution is suitable to resolve the obstacle of
unknown remote systems in the WSN since it does not need an initial guess solution, and
it is computationally less complex.

Figure 2 describes the anchor-based sensors network that considers two positioning
parameters: time delay and range frequency elliptic techniques, where anchors, unknown
sensors, and the transmitter are represented by solid blue circles, brown stars, and solid
black circle, respectively. This network is rated as a partially connected network. The
line connected in the plot is used to interpret the existence of specific measurements. In
the figure, the unknown nodes at u4, u5, and others are invisible as they are not in the
communication range of the reference nodes. Hence, it is considered a second tier in the
offline localization process. This scenario is more realistic for a large-scale sensor network
where some anchors can only communicate with a few neighboring sensor nodes. Thus,
the connectivity information can also be exploited to cluster anchors and unknown sensors
for the localization process.

Figure 2. Sensor network. The dashed line depicts the inter-node measurements that are in the TOA
communication range. Anchor nodes, transmitter, and unknown nodes are represented by blue
circles, black circles, and brown stars.

In the first tier, which is similar to a fully connected network case, the unknown nodes
(u1, u2, u3) within the communication range of the anchors are localized first. While in the
second tier, and according to the connectivity, the unknown nodes with estimated positions
and velocities are considered pseudo anchors to determine the following unknown sensor
positions under some uncertainty of position and velocity. The uncertainty is eliminated
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by applying the refinement process of the second WLS minimization. This procedure is
repeated for the next cluster until all the unknown sensors in the network are localized
successfully. We emphasize that the number of N omits the transmitter node. Due to
the sequential framework process, the number of N may vary according to the number
of pseudo anchors in each cluster. In this context, increasing the number of anchors can
improve the localization accuracy by raising the average node degree. More accurate
position estimates will be obtained when the network has a large average node degree [43].

5. Performance Evaluation

Challenging real-world sensor network sequential-localization configurations are
considered here. First the sensor nodes are deployed randomly inside the system, which is
assumed to have one inflow and outflow, with the knowledge of connectivity of the entire
network. Then, after the nodes fully occupy the system, the offline localization process can
be performed at a particular timestamp.

5.1. Comparison with the CRLB

Our reliable benchmark reference for evaluating the proposed estimator is the Cramér–
Rao lower bound (CRLB) [42]. We have followed [38], with slight differences, to derive the
CRLB using the time delay elliptic and frequency range measurements. The CRLB for the
underlying problem can be defined as

CRLB =

{((
∂qo(ϕ)

∂ϕ

)T
Q−1

(
∂qo(ϕ)

∂ϕ

))
|ϕ=ϕo

}−1

(20)

where ϕo=[u, ú]T , qo =
[
do

1t, do
2t, . . . , ro

Nt , d́o
1t, d́o

2t, . . . , d́o
Nt

]T
=
[
doT , d́oT

]T
.

Q−1 is the inverse of the generating covariance of measurement error in our simulation
and,

∂qo(ϕ)

∂ϕ
=

[
∂do(ϕ)

∂u
∂do(ϕ)

∂ú
∂d́o(ϕ)

∂u
∂d́o(ϕ)

∂ú

]
(21)

where

∂do(ϕ)

∂u
=

∂d́o(ϕ)

∂ú
=

(u− si)
T

do
i

+
(u− t)T

do
t

=
∂d́o(ϕ)

∂ú
,

∂do(ϕ)

∂ú
= O(N∗2).

∂d́o(ϕ)

∂u
=

(ú− śi)
T

do
i

−
(u− si)

T d́o
i

do
i

2 +
(ú− t́)T

do
t
− (u− t)T d́o

t

do
t

2 .

5.2. Simulation

Simulated experiments have been performed for the 2-D case to assess the performance
of the proposed approach under various amounts of measurement errors. We have assumed
the standard noise deviation is slight relative to the actual time delay (elliptic) and frequency
range values. Moreover, the second-stage processing substantially reduces the position and
velocity standard deviations in this simulation experiment, reducing the position estimate
bias and confirming that the proposed estimator is asymptotically unbiased. Hence, we
neglected the bias in our study. The parameters are set as the following: (i) all unknown
nodes are identical, have the same communication range R, and their antennas are isotropic.
(ii) Availability of information about at least three anchor sensors for the 2-D case placed
randomly at the insertion point of the unknown system. (iii) All sensors are neither lying on
a straight line nor exchanging data with others. (iv) The (time delay) elliptic and frequency
range noises are zero-mean Gaussian, and their covariance matrices are (σ2

d )ρ and 0.1(σ2
d )ρ,

where ρ is equal to unity in the diagonal elements and 0 otherwise [28,29]. Thus, both the
time delay elliptic and frequency range measurement noises were uncorrelated. This choice
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of the measurement errors’ covariance matrix (Q) corresponds to the MLE estimation of
elliptic and frequency ranges [41] for equal and uncorrelated receiver noises. (v) For further
accuracy refinement, iterative MLE via Taylor series (TS) linearization [42] has also been
implemented using the same framework of the proposed method. Repeating the MLE
solution calculation two times is enough to give an accurate estimation that reaches the
CRLB under Gaussian noise. All nodes whose locations were successfully estimated may
have a more accurate position estimate in which they act as initialization for the MLE
implementation. The average of the Root Mean Square Error (RMSE) of the estimated
positions is computed to examine the performance of each algorithm. In general, the
average RMSE is defined using Equation (22).

RMSE =

√√√√ 1
L ∗M

(
L

∑
1

M

∑
j=1
‖ [ûj − uj ‖2

2

)
(22)

where the number of ensemble runs L is 1000.
Two configurations have been implemented in this part. Figures 3 and 4 present the

accuracy and the topology of the first configuration. This scenario consists of 8 anchors
(inside a black rectangle) placed at the input and output points and 300 unknown sensor
nodes deployed in the unknown system assumed to have a U shape. Figure 3 displays
the comparison among the proposed closed-form method (CFM), the estimated solution
after passing the MLE implementation (MLE), and CRLB accuracy at the two different
communication ranges (R = 40 & R = 100). The plots show that CFM and MLE methods
can reach CRLB accuracy.

Due to the high nonlinearity, sequential framework process, and thresholding behavior
effect, both methods have deviated from the CRLB. Beyond noise level 1, the proposed
CFM method deviates from the bound, whereas the MLE method has the best outcome.
However, the refinement MLE approach deviates from the CRLB accuracy later.

The developed approach can work effectively with a 100% LOS scenario. Having no (or
few) obstacles increases the communication signal range. Without the presence of obstacles,
the number of the known sensors (pseudo anchors) with an adequate communication
strength will increase. As a result, the increase in the average node degree is used to
estimate the position of the unknown sensor node with more accuracy.

-30 -20 -10 0 10 20 30

10 log10( 2)

10-2

10-1

100

101

102

R
M

S
E

CRLB at R=100
CRLB at R=40
MLE at R=100
MLE at R=40
CFM at R=100
CFM at R=40

Figure 3. Comparison among CFM, MLE, and CRLB for the first configuration.
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Figure 4. The true and estimated sensor positions at R = 40 and σ2 = 0 dB, first configuration,
MLE method.

Figures 4 and 5 illustrate the topology of the distribution of the unknown sensors
and their true and estimated positions using both methods at R = 40 under noise power
σ2 = 1. The figures reveal a successful and effective WSN accommodation in exploring the
unknown system.
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y
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Figure 5. The true and estimated sensor positions at R = 40 and σ2 = 0 dB, first configuration,
CFM method.

The localization performance of the second configuration is demonstrated in
Figures 6 and 7. The configuration includes 100 unknown sensor nodes and 5 fixed nodes
placed at the insertion point, as shown in Figure 7. In addition, the figure indicates that the
proposed CFM method can detect the position of the unknown sensors with an accuracy
reaching the CRLB for a wide range of noise levels. The results affirm that the proposed
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method with MLE refinement matches the real observations by reaching the CRLB accuracy
with a better resistance for the thresholding effect than the CFM method.

A study of the relation between the average node degree and different values of
communication range R for the first scheme is presented in Figure 8. The figure displays
the positive correlation between the two variables: the communication range and the
node degree. Increasing R leads to an increase in the number of anchors and receivers,
improving the localization accuracy by raising the average node degree. As a result, more
accurate position estimates will be obtained when the network has a considerable average
node degree. However, since the estimation performance depends on the nature of the
nonlinear problem, more accurate position estimates might not be obtainable due to the
large node degree.

-30 -20 -10 0 10 20 30

10 log10( 2)

10-2

10-1

100

101

102

R
M

S
E

CRLB at R=30
CRLB at R=15
MLE at R=30
MLE at R=15
CFM at R=30
CFM at R=15

Figure 6. Comparison among CFM, MLE, and CRLB for the second configuration.

Based on the power consumption model (2), the required transmitter power for
successful telecommunication between two network nodes is directly proportional to
the distance between the nodes to the power n (∝ dn), where 5 ≥ n > 2 for obstructed
conditions of the system.

Figure 7. The true and estimated sensor positions at R = 30 and σ2 = 10 dB, second configuration, MLE.
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Figure 8. The relationship between the range and the average node degree for first configuration.

Utilizing the sequential localization approach can reduce the maximum line-of-sight
distance required for successful localization. For the studied simulation scenarios, the
maximum communication range required for successful sequential localization is R = 40
and R = 15 meters for noise level 1, as shown in Figures 4 and 7; while the full range
of the network (dmax), defined as the maximum distance between the farthest node and
the anchors, is 410 and 125 meters, respectively. Altogether, the transmission power for
successful communication between two successive sensors can be reduced by a factor equal
to
(

1− ( R
dmax

)n
)

. Thus, the theoretical reduction in the transmission power rate will be
more than 98% for the studied scenarios when n > 2.

6. Conclusions

This paper presents a sequential sensor localization technique for the challenging
application of exploring unknown bounded systems using mobile sensors equipped with
limited transmission rates. A closed-form solution is devised and implemented for under-
ground monitoring and remote sensing applications. The proposed approach yields the
CRLB accuracy and successfully captures the unknown environment fully covered by an
enormous number of sensor nodes. Furthermore, the developed localization algorithm can
reduce the transmission power by more than 98% for the tested network scenarios when
compare to the full range network localization approach. Thus, the developed localization
approach can be exploited to design a smaller power module that reduces the cost of the
sensing devices while sustaining a longer durability for efficient remote sensing and map-
ping observations. Future work will consist of designing and experimentally investigating
a prototype of a wireless sensor device to explore an unbounded geometrical system using
a low-range telecommunication signal transmission system.
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