
electronics

Article

Privacy Assessment in Android Apps: A Systematic
Mapping Study

Jose M. Del Alamo 1,*,† , Danny Guaman 1,2,† , Belen Balmori 1,† and Ana Diez 1,†

����������
�������

Citation: Del Alamo, J.M.; Guaman,

D.; Balmori, B.; Diez, A. Privacy

Assessment in Android Apps:

A Systematic Mapping Study.

Electronics 2021, 10, 1999.

https://doi.org/10.3390/

electronics10161999

Academic Editor: Vijayakumar

Varadarajan

Received: 9 July 2021

Accepted: 13 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
danny.guaman@epn.edu.ec (D.G.); b.balmori@alumnos.upm.es (B.B.); ana.diezm@upm.es (A.D.)

2 Departamento de Electrónica, Telecomunicaciones y Redes de Información, Escuela Politécnica Nacional,
Quito 170517, Ecuador

* Correspondence: jm.delalamo@upm.es
† These authors contributed equally to this work.

Abstract: Android apps are daily installed by billions of users worldwide, who grant access to an
extensive set of sensitive personal data. Different techniques have been developed over the years
to understand how apps protect or harm their users’ privacy. However, these results have been
produced in different research domains and addressing privacy from different perspectives, resulting
in a growing but scattered body of knowledge. To bridge this gap, we have carried out a systematic
mapping study to provide practitioners and researchers with an overview of the state-of-the-art
technique, published between 2016 and 2020, to assess privacy in Android apps. In this paper, we
highlight the most relevant findings, identify and analyse the most pressing gaps, and discuss the
promising research directions.

Keywords: Android; apps; data protection; privacy; quality assessment; software quality

1. Introduction

Mobile apps pose great privacy risks to their users [1]. We carry our smartphones
from dusk till dawn; they have thus become ubiquitous and gain access to a vast quantity
of sensitive personal data, which are shared worldwide with different service providers in
a complex ecosystem [2], even without the app developer’s knowledge [3]. Android is the
dominant platform in this market with a share circa 85% [4], and according to Zang et al. [5]
Android apps leak more personal data to third parties than iOS applications on average.

In this context, testing or auditing Android applications trustworthiness has become a
hot research topic. Researchers have leveraged static analysis to find anomalies in apps’
code [6]. Dynamic analysis further supports examining the real behaviour of the apps at
runtime [7]. Machine learning algorithms have recently been introduced to sign potential
misbehaviours [8]. They all have been applied to spot known issues, assess new risks, or
check whether some criteria or conditions are met by Android apps.

Understanding what are the available techniques and tools for assessing privacy in
Android apps is significant for different stakeholders. Developers and testers can leverage
the more matured techniques to identify and fix privacy issues, thus improving the quality
of the apps under assessment. Data protection authorities and auditors can apply them to
find privacy-related anomalies in third-party apps. Researchers need to understand the
state of the art so that they can identify and pursue new research avenues.

However, having a proper overview of the available contributions in this field is
challenging. To begin with, researchers approach the problem from different perspectives,
e.g., addressing different privacy threats or following different privacy paradigms. Further,
the contributions are scattered in different domains such as software engineering, cyberse-
curity, or computer networks, resulting in a growing but dispersed body of knowledge.

Electronics 2021, 10, 1999. https://doi.org/10.3390/electronics10161999 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6513-0303
https://orcid.org/0000-0003-2794-3079
https://orcid.org/0000-0001-5345-7467
https://orcid.org/0000-0002-4055-8661
https://doi.org/10.3390/electronics10161999
https://doi.org/10.3390/electronics10161999
https://doi.org/10.3390/electronics10161999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10161999
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10161999?type=check_update&version=1

Electronics 2021, 10, 1999 2 of 32

Some previous works have provided insight into the topic but were carried out more than
five years ago [6,7] or addressed security instead of privacy [9,10].

To fill this gap, this paper presents a comprehensive overview of the different privacy
assessment techniques for Android apps reported in the state of the art. The scope of our
study is thus defined by the intersection of three domains, namely, software quality assess-
ment, privacy, and Android applications. Our purpose is to identify the most promising
techniques available and the current gaps and discuss promising research directions.

Following a systematic process we have identified 10,825 references published between
2016 and 2020, and after a filtering process we selected 79 papers that describe privacy
assessment techniques applicable to Android apps. We have identified and classified the
goals of the techniques, including the privacy threats they target and the level of detail to
which they are applied. We have further investigated how the assessment is carried out
and analysed the overall quality level achieved. All this evidence supports a discussion
on the trends observed, which may help researchers to identify and focus their attention
on new promising opportunities in this growing field. Our outcomes suggest a switch in
the privacy paradigms considered, a lack of techniques assessing the app compliance with
both the declared policy and the applicable legislation, and the need to support developers
in this process.

The paper is organised as follows. Section 2 provides a summary of the core concepts
covered in our study. Section 3 details the research method we have followed, including our
research questions and classification scheme. Section 4 details the results of our mapping
study, answering the research questions. Section 5 discusses the results, further analysing
trends and highlighting the gaps observed. Section 6 examines the threats to the study
validity. Section 7 analyses the related work detailing the main differences with our study.
Finally, Section 8 concludes the paper.

2. Background

This section provides a summary of the fundamental concepts covered in this study.

2.1. Privacy Assessment

Since privacy is a plural and contestable concept there is still no single, widely accepted
definition. One of the salient privacy taxonomies in the field is the one proposed by
LINDDUN [11], which identifies seven common privacy threats found in software systems.
Hansen et al. [12] proposed three personal data protection goals which partially overlap
with LINDDUN identifiability and unawareness threats and further highlight the lack
of control as a relevant threat to users’ privacy. We have used these privacy threats
classifications to understand what is assessed by the different techniques (Table 1).

Having different privacy threats results in distinct approaches to assess them (Table 2).
For example, some techniques aim at detecting the presence of a given, previously known
privacy issue succeeding when it is found, or its presence can be discarded. Others aim
to verify whether an app meets a given privacy specification, whatever it is. Yet some
other techniques may assess the risk posed to an individual’s privacy if some feared event
materialises, e.g., considering its likelihood and impact.

Even when the privacy threat and assessment approach are set, researchers can focus
their attention at different levels of detail including a library, a module, the whole app, or a
set of apps. App developers usually include third party libraries in their code to simplify
or reuse features, but these libraries may include code that threatens the user’s privacy, as
demonstrated by Stevens et al. [13]. Android apps can also be organised in modules to
customise features delivery, which are downloaded and installed as required [14]. Whole
apps can be analysed in isolation or while collaborating, e.g., to detect collusive apps.

2.2. Assessment Techniques

The SWEBOK v3.0 identifies two major types of techniques to assess the quality of
software systems, i.e., static and dynamic analysis [15]. Lately, ML (Machine Learning)-

Electronics 2021, 10, 1999 3 of 32

based techniques have been introduced in software quality control where, e.g., a set of
features are identified to sign a potential issue drawing from previous experiences [16].

Table 1. Privacy threats subject to assessment.

Privacy Threat Description

Linkability “An adversary is able to link two items of interest without knowing the identity of the data
subject(s) involved." [11].

Identifiability “An adversary is able to identify a data subject from a set of data subjects through an item
of interest." [11].

Non-repudiation “The data subject is unable to deny a claim (e.g., having performed an action, or sent a
request)." [11].

Detectability “An adversary is able to distinguish whether an item of interest about a data subject exists
or not, regardless of being able to read the contents itself." [11].

Disclosure of information “An adversary is able to learn the content of an item of interest about a data subject." [11].
Unawareness “The data subject is unaware of the collection, processing, storage, or sharing activities

(and corresponding purposes) of the data subject’s personal data." [11]. Unawareness
relates to the transparency measures that a system can take to guide and educate
the user concerning the personal data processing (e.g., collection and disclosure)
and nudge the user into a more privacy-aware use of the system [12].

Non-compliance “The processing, storage, or handling of personal data is not compliant with legislation,
regulation, and/or policy." [11]. We are further interested in the particular regu-
lation/standard being evaluated (e.g., GDPR, COPPA) and, if mentioned, the
concrete principle (e.g., purpose limitation of GDPR).

Lack of control Control enables users to decide what kind or information is processed about them.
Focusing on data protection rights, “Intervenability is defined as the property that
intervention is possible concerning all ongoing or planned [personal] data processing."
[12]. Intervenability enables, e.g., to exercise the individuals’ rights to rectification
and erasure of personal data, providing and withdrawing consent, and so on.

Table 2. Assessment approach pursued by the techniques.

Assessment Approach Description

Issue detection The assessment aims to find privacy-related defects, i.e., a vulnerability or
deficiency that potentially may threaten a privacy aspect. A detection technique
seeks to find defects or defect patterns already known. For example, dynamic
permission requests with missing revocation statements.

Specification verification The assessment aims to verify that an app or its components meet a specifica-
tion, which can stem, e.g., from a policy or regulation. For example, verifying
whether a personal data flow complies with a privacy policy.

Risk assessment The evaluation aims to understand the privacy risk posed by an app. Note
that the source of risk may vary, and different authors may consider different
aspects to assess the risk e.g., permissions, network connections, etc. The risk
assessment output may be qualitative (e.g., a risk level) or quantitative (e.g., a
risk score).

Static analysis techniques do not need to execute the software. Instead, they analyse
and check any readable representation of the app, such as the program source code, its
config files such as the manifest or the layout files, or its policy. In fact, static analysis can
be applied to different types of code, i.e., source (Java, Kotlin, JavaScript, C . . .), binary
(DEX) or an intermediate representation (Smali and Jimple). Li et al. documented a set
of challenges for static analysis techniques in Android [6], including the use of native,
obfuscated or dynamically loaded code, or dealing with inter-component communications.

Dynamic analysis techniques execute the software in order to observe its real be-
haviour. Kong et al. identified three main stages in dynamic analysis [17], namely the

Electronics 2021, 10, 1999 4 of 32

generation of execution paths, the program execution, and the observation of the resulting
behaviour. The first one describes how the interaction with the app takes place i.e., the
approach used to generate the system and user events. Symbolic execution, model-based
testing, fuzzing, random generation, or actual user inputs can be used for this purpose.
Once generated, the tests can be executed in different environments, mainly in an emulator
or an actual device. Finally, the app behaviour can be observed because the app itself logs
its execution, the environment is instrumented at the virtual machine or kernel levels, or
through the interception of network communications.

ML-based techniques rely on models generated by analysing a set of apps to detect pri-
vacy issues in other apps. ML techniques can be classified into three major subtypes, namely
supervised, unsupervised, and reinforcement learning [16]. A supervised ML technique
relies on known (labelled) training samples to learn how to assess an app, and the resulting
model is applied to assess unknown apps. An unsupervised algorithm does not require
labelling of the training set but seeks to find hidden groups (i.e., clustering) or to reposit
the input source into a different variable space (i.e., feature extraction). Reinforcement
learning techniques either drop any outcome that does not lead to favourable expectations
by punishing them or reward positive outcomes, thus the “reinforcement” aspect.

A combination of the aforementioned techniques is also possible. Different techniques
can be pipelined so that the output from one technique is the input for the next one. For
example, the app features extracted through static analysis can be used to train a ML
algorithm signalling risky apps.

Deep Learning (DL) techniques advanced these learning techniques by the use of
artificial neural networks that can learn and make intelligent decisions on their own.

2.3. Technique Quality

In a growing research field sometimes, it is difficult to separate the wheat from the
chaff and filter out low-quality results. As a proxy to understand the overall quality level
of the techniques found, we pay attention to how well they have been assessed by their
authors and whether the techniques and/or its assessment results are easy to replicate by
other researchers.

Wieringa et al. [18] elaborated a taxonomy identifying the maturity of a research
result based on the efforts its authors took to assess it. While Wieringa et al.’s taxonomy
defines five types of assessment, we are only interested in those techniques that at least
have demonstrated their feasibility (Table 3).

Table 3. Type of assessment approach.

Type of Assessment Description

Validation The authors demonstrate the feasibility of their contributions by
means of an illustrative (demonstration) scenario. There is no for-
mal proof of correctness nor empirical evaluation.

Formal proof The authors assess the correctness of their contributions by means of
mathematical proof.

Empirical evaluation The authors assess the features of their proposal with experiments.
Different properties can be evaluated such as the effectiveness or
the performance of the proposal. The approach to report the results
might be qualitative or quantitative. Different apps sets can be used in
the evaluation process, e.g., ad-hoc custom sets developed/adapted
by the authors, reference benchmarks containing apps with known
privacy issues, or in-the-wild apps from real app stores. Finally, the
evaluation may include the results comparison with other tools.

Electronics 2021, 10, 1999 5 of 32

3. Methodology

This research is based on the general guidelines for conducting a systematic mapping
study (SMS) proposed by Petersen et al. [19]. An SMS is a systematic approach that aims
to provide an overview of a research area of interest by showing quantitative evidence to
identify trends.

Our research is organised in three main stages: planning, conducting, and reporting.
The planning stage included the definition of the study scope, the main goal, and the re-
search questions. In addition, we formulate the search strategy, the exclusion and inclusion
criteria for the candidate papers, the classification scheme, and the codification process.
The objective of the conducting stage was to answer the research questions (RQs). For
that purpose, three tasks were defined, namely, the paper selection, the application of the
inclusion/exclusion criteria, and the coding of the selected papers using the classification
scheme defined. Finally, we summarised and analysed the results in the reporting stage by
answering the RQs and looking for trends and gaps in the field.

3.1. Scope and Research Questions

The scope of this research is the common theme between three domains: (1) software
quality, (2) privacy, and (3) Android applications. Our overall goal is twofold (i) to identify
the most promising techniques available to assess privacy-related aspects in Android apps
and (ii) to identify current gaps and discuss promising future research directions. It has
been broken down into concrete RQs:

RQ1. What privacy issues have been assessed in Android apps? We aim to gain knowledge
about the privacy threats that have been evaluated, the approaches taken, and the
level of detail reached.

RQ2. What techniques are used to assess these privacy issues? Our goal is to understand
what type of techniques have been proposed for finding privacy related anomalies,
their status and current challenges.

RQ3. What is the quality level of the techniques identified? We are interested in investi-
gating the quality level of the techniques and tools found, to identify those worth
following or applying.

3.2. Paper Search Strategy

We used Scopus and DBLP databases to find high-quality refereed research literature,
as they indexed the highest number of unique articles in the computer science field [20].
Scopus indexes the most important digital libraries such as IEEE Xplore, Springer Link,
Elsevier, Science Direct, or ACM. DBLP nicely complements Scopus as it also indexes
conference proceedings not hosted by the aforementioned digital libraries.

We built a Scopus search string based on our goal and research questions. The terms
for the search string include those related to software quality control defined in [15,21],
terms proposed by a senior privacy engineering researcher who supervises this study,
and synonyms obtained from taxonomies and vocabularies, e.g., 2017 IEEE Thesaurus
Version 1.0 [21], ACM Computing Classification System 2012 Revision [22], and Systems
and Software Engineering—Vocabulary ISO/IEC/IEEE 24765 [23].

Our search string was the conjunction (AND) of the three research domains considered
in our study, i.e., assessment, privacy, and Android. Each domain was represented as a
disjunction (OR) of all domain-relevant terms. We used a test set of 10 relevant papers
provided by a senior privacy engineering researcher to validate the search coverage of
relevant literature. The initial search string was refined trying to retrieve all the papers in
our test set. The final search string was obtained after five iterations. The details of the
iterations and the validation are available in the replication package [24]. The final search
string is presented below and was used to carry out a search on 14 October 2020, obtaining
3147 papers.

Electronics 2021, 10, 1999 6 of 32

("quality assurance" OR "quality control" OR "quality assessment" OR "validation" OR "verification"
OR "testing" OR "compliance" OR "compliant" OR ("static" W/3 "analy*") OR ("dynamic" W/3 "analy*"
) OR ("traffic" W/3 "analy*") OR ("static" W/3 "technique") OR ("dynamic" W/3 "technique") OR (
"analy*" W/3 "privacy") OR ("evaluat*" W/3 "privacy") OR ("asses*" W/3 "privacy")) AND
("privacy" OR "data protection" OR ("data" W/3 "leak*") OR ("information" W/3 "leak*")) AND
("android" OR "app" OR "mobile" OR "smartphone")

To mitigate the threat to validity of not including all relevant papers, we included in
our search the top 20 conferences in Software Systems, Computer Networks, and Computer
Security categories as for GScholar (https://scholar.google.com/citations?view_op=top_
venues&hl=en (accessed on 14 October 2020)) H5-Index. The H5-index is the h-index for
articles published in the last five complete years. It is the largest number h such that h
articles published in 2015–2019 have at least h citations each. The greater H5-index, the
better the conference.

Scopus included all these conference proceedings but for TACAS, INFOCOM, ICC
(Scopus does include ICC2016 proceedings), NDSS, PoPETs and ESORICS. Thus, we
searched them in DBLP on 14 October 2020, obtaining 7678 papers from these conferences
(Figure 1).

3.3. Inclusion and Exclusion Procedure

Once all the possible candidate papers were gathered, we conducted an inclusion and
exclusion procedure to further filter the papers. This procedure consisted of an automated
filter followed by a manual one.

3.3.1. Automated Inclusion—Exclusion Procedure

A paper must meet all the following inclusion criteria to pass to the screening stage:

• Research Field: computer science, engineering, decision sciences, or multidisciplinary.
• Publication date: >2015. Note that the paper selection phase of this study took place

in the first half of October 2020. Only papers included in Scopus until Sept 2020 are
included in our search.

• Document type: conference paper and article.
• Language: English.
• Citations: for papers published between 2016 and 2019, the minimum number of

citations in a paper should have to fall in the 50% percentile of papers in computer
science, as per Thomson Reuters [25]. For papers published in 2020, no citations are
required. The rules are stated in Table 4.

• Number of pages: we are looking for papers proposing contributions with some form
of validation, and this requires extensive works with detailed publications. Thus, we
exclude short papers, i.e., heuristically, papers with less than five pages. If no page
numbers are reported then the paper is included.

Scopus provides features for automatically checking all the inclusion criteria except for
the number of citations and number of pages, which was checked with an Excel file. After
Scopus-based filtering, 1474 papers were selected. The filter based on citations received
and number of pages produced 948 papers. We found 11 duplicates; therefore, 937 papers
were finally included in the next stage.

Table 4. Results for filtering by number of citations.

Publishing Year Minimum Citations

2016 4
2017 3
2018 2
2019 1
2020 0

https://scholar.google.com/citations?view_op=top_venues&hl=en
https://scholar.google.com/citations?view_op=top_venues&hl=en

Electronics 2021, 10, 1999 7 of 32

Conference papers from TACAS, INFOCOM, ICC, NDSS, PoPETS, and ESORICS
were retrieved from DBLP. These papers are all conference papers, from the computer
science field, published between 2016 and 2020, and written in English. DBLP provides
details on citations only at individual paper level, thus bulk processing is not possible.
This inclusion criterion was manually checked after the title-based screening. The two
most-experienced researchers (first and second authors) individually read all the titles for
conference papers selecting those that addressed any of the individual research domains
we are targeting, i.e., assessment, privacy, or Android apps. All papers selected by any of
these two researchers were included at this stage. We initially obtained 7678 papers from
DBLP, which were reduced to 38 after title-base screening and to 34 papers after applying
the citation-based filter.

This inclusion criterion was manually checked after a title-based screening. The two
most-experienced researchers (first and second authors) individually read all the titles for
conference papers selecting those that addressed any of the individual research domains
we are targeting, i.e., assessment, privacy, or Android apps. All papers selected by any of
these two researchers were included at this stage.

Figure 1. Filtering process.

3.3.2. Manual Inclusion—Exclusion Procedure

This procedure’s goal is to include primary contributions that focused on the intersec-
tion of the software quality, privacy, and Android apps’ domains. To this end we carried
out two screening phases, the first one based on titles and abstract and the second one
based on full texts. The tool CADIMA (https://www.cadima.info/(accessed on 16 August
2021)) was used to support the process, and the inclusion criteria was applied as a decision
tree represented in Figure 2. Each paper was reviewed by two researchers of the team,
made up of the four authors of the publication, and inconsistencies were discussed by the
whole team to get an agreement.

The team performed a two-iteration pilot with 60 papers (ten in the first iteration and
50 in the final one) to normalise their criteria for including and excluding papers. After
obtaining a 90% success rate and a “good” Krippendorff’s alpha inter-coder reliability
coefficient [26] of 0.78, the team then moved to the main screening stage.

In the title and abstract screening, 971 papers were evaluated and 800 of them were
excluded. In the full text screening, 171 papers were evaluated and 92 of them were
excluded. Once the screening phase was completed, 79 papers were selected for the
classification procedure. From now on we use the paper ID to identify the papers included,
e.g., ID179, which can be found in Appendix A. Details on all the papers analysed can be
found in the replication package [24].

https://www.cadima.info/

Electronics 2021, 10, 1999 8 of 32

Figure 2. Inclusion and exclusion decision tree.

3.4. Classification Scheme and Procedure

As suggested in the Petersen guidelines [19], we defined our initial classification
scheme based on existing taxonomies and classifications widely recognised in the research
community in order to support comparability. The scheme evolved by adding new cat-
egories (e.g., risk assessment) and correcting others. The final scheme is presented in
Figure 3.

The 79 papers selected in the screening stage were classified by a team of four re-
searchers (the authors) using the scheme presented in Figure 3. Full details of the clas-
sification criteria are described in the codebook, which can be found in the replication
package [24]. All the attributes were coded using an online form in Google Docs. The
coders carried out a comprehensive reading of the main sections of the text which described
the privacy assessment technique and its evaluation. Each paper was coded by two coders.

The first phase of the classification process was a five-iteration pilot, whose main
objective was to unify the criteria of the coders. In each iteration, five papers were evaluated
by all four researchers, and inconsistencies were discussed until an agreement was reached.
In this phase, there were two main error types: non-systematic errors due to depth of
reading and systematic errors due to disagreements in criteria. The latter were discussed

Electronics 2021, 10, 1999 9 of 32

and agreed upon, clarifying the coding criteria as needed. We moved on to the next phase
after reaching a Krippendorf’s alpha coefficient greater than 0.75 for all criteria.

Figure 3. Classification scheme for coding the privacy assessment techniques.

After the pilot phase was over, we coded packages of eight papers. In each package,
half of the papers were coded by two researchers of the team each, while the remaining
four papers were coded by three researchers of the team each. This last set formed the
control group, used to calculate again the Krippendorff’s alpha for each coding package.
Besides, daily meetings were performed during this phase to check the differences in
the codification and to reach an agreement. The Krippendorff’s values obtained for each
criteria were in the optimal range (above 0.67).

4. Results

This section presents the results obtained from the analysis of all the papers collected
in this study in response to our research questions.

4.1. RQ1: What Privacy Issues Have Been Assessed in Android Apps?

We start by analysing the 86 techniques reported in the 79 papers analysed by the
assessment approach they have followed, namely, privacy issues detection (Table 5), privacy
risk assessment (Table 6), or privacy specification verification (Table 7). For each approach
we have identified the privacy threat targeted by the assessment technique (disclosure of
information, non-compliance, or identifiability) and the depth of the assessment (library,
app module, whole app, or inter-app). The number of techniques is greater than the
number of papers as some papers reported different assessment techniques, e.g., when
targeting more than one privacy threat or assessing privacy at several levels of depth.

We did not find any technique addressing many of the privacy threats we were
looking for, namely linkability, non-repudiation, detectability, unawareness, and lack
of control. These kinds of threats are often reported in relation to datasets, protocols,
cryptographic algorithms, or authentication mechanisms but not in the case of consumer-
oriented software systems. We found techniques assessing these threats in the screening
phase, but we dismissed them as they did not meet our inclusion criteria.

Furthermore, we did not find any technique explicitly addressing privacy in Android
modules. This new app publishing format was recently announced and may have a great
impact in the assessment techniques. We discuss these aspects in detail in the next section.

Electronics 2021, 10, 1999 10 of 32

Table 5. Distribution of contributions of the assessment approach: Privacy Issue Detection.

Disclosure of Information Non-Compliance Identifiability

Library 2 0 0
Module 0 0 0

Application 51 0 0
Inter-Application 10 0 0

Total 63 0 0

Table 6. Distribution of contributions of the assessment approach: Risk Assessment.

Disclosure of Information Non-Compliance Identifiability

Library 2 0 0
Module 0 0 0

Application 13 0 1
Inter-Application 0 0 0

Total 15 0 1

Table 7. Distribution of contributions of the assessment approach: Specification Verification.

Disclosure of Information Non-Compliance Identifiability

Library 0 0 0
Module 0 0 0

Application 0 7 0
Inter-Application 0 0 0

Total 0 7 0

The vast majority of the techniques reported (73.26%, n = 63) were aimed at detecting
specific privacy problems in mobile applications. In fact, all of them focus on detecting the
disclosure of personal information, although at different levels of detail. The main focus
is on detecting privacy issues at the application level by analysing data flows, regardless
of whether these flows come from the application code itself or from any third-party
library, e.g., by detecting data leakages through network traffic (ID179, ID361). A rather
smaller amount of techniques focuses on analysing inter-application data leaks, e.g., due to
collusive applications (ID94, ID294). Finally, only two techniques (ID362, ID452) focus on
the detection of data leaks in libraries.

A smaller percentage (18.60%, n = 16) of techniques focus on assessing the risk to the
users’ privacy posed by an application. The risk score is then applied to sign potentially
malicious apps (ID589, ID669) or make recommendations on alternative privacy-friendly
apps to users (ID635).

Again, the main focus of the risk assessments is on personal data leaks. However,
in this case we have found some papers further analysing these disclosures under the
principle of data minimisation. For example, Zhang et al. (ID589) compared the execution
of an application under different privacy settings claiming that if there is no perceived
change when access to some data is granted/denied then the application did not actually
need that piece of data, thus violating the principle of data minimisation and incurring a
higher risk to the user. In another example, Oltroggle et. al. (ID846) compared the set of
permissions requested and actually used by an app to detect over-privileged apps posing
greater risks to their users.

We found one single paper focused on assessing identifiability risks (ID495). The
authors collected the permissions granted to the application and computed a risk score
considering the level of identification of the personal data obtained and the impact these
may have in the users’ privacy.

Electronics 2021, 10, 1999 11 of 32

Finally, the remaining techniques (8.14%, n = 7) verify the app behaviour against a
privacy specification and the non-compliance aspects. To this end, they use as a reference
the app privacy policy, a specific data protection or privacy regulation, or both. For
example, Yu et al. (ID281) looked for inconsistencies between the privacy policy and the
permissions requested. We have found several laws being used as a reference such as
the European GDPR (ID635), the USA COPPA (ID363), the privacy laws of California
and Delaware (ID94), and even the old European Union Data Protection Directive (ID501)
currently superseded by the GDPR.

The app manifest file is widely exploited as it encodes a declarative permission model
that is significant for privacy assessment. Some techniques rely on the Android protection
levels to analyse the declaration of “dangerous permissions” in the Manifest and gain
an overall idea of the app privacy risk (ID272, ID281). Other techniques leverage upon
the permissions declared in the Manifest as an input to detect whether an application
is over-privileged, i.e., request more permissions than necessary (ID636, ID955). Other
configuration files, such as the layout file, have also been used in the app assessment but to
a lesser extent. This file defines the structure of an application’s graphical user interface
(GUI) declaring, e.g., the GUI elements that can be interacted with, and thus providing a
valuable input for driving the app execution based on the extracted model.

We have also found techniques using the app metadata available in the app store
including the app category, app description, or users’ reviews. An app category is handy to
find and classify the apps, particularly for those techniques that focus on specific privacy-
sensitive categories, e.g., apps oriented to children. The users’ reviews have been used to
understand the privacy-to-functionality trade-off, e.g., by comparing the privacy-oriented
reviews with those commenting on functionality (ID365). Some authors even leverage the
privacy-related reviews as an input to calculate an app’s privacy risks (ID635).

4.2. RQ2: What Techniques Have Been Used to Assess Apps’ Privacy?

Static, dynamic, machine learning, and hybrid techniques have been applied in a quite
different way to assess the privacy aspects described before. Nearly half of the papers use
a combination of techniques instead of relying on just one of them, as shown in Figure 4.
Pipelining the techniques is the preferred way of combining them and in Figure 5 we see
how the techniques are preferred to be combined.

Figure 4. Privacy assessment techniques.

Electronics 2021, 10, 1999 12 of 32

Figure 5. Hybrid assessment techniques.

Next, we further detail the different assessment techniques found and their combina-
tions, the goals reached by each one, and the most outstanding papers in each case.

4.2.1. Static Analysis

Static analysis is carried out over different types of code, presented in the background
Section 2, yet most of the papers report the analysis of some sort of intermediate code
(Figure 6). Smali (https://github.com/JesusFreke/smali/wiki (accessed on 16 August
2021)) is the preferred option for intermediate code (35.9%). It provides a human-readable
representation of Android binary code and can be easily obtained from an APK with tools
like Apktool (https://ibotpeaches.github.io/Apktool/ (accessed on 16 August 2021)). Java
bytecode is another relevant option (25.6%) but with an important trade-off: while there
are tools getting the Java bytecode from Android binaries (e.g., DARE [27]) and assessing it
(e.g., Soot framework [28]), reversing the process is daunting and, e.g., “problems often
arise in retrieving variables names and types, among others.” [29]. Finally, Jimple is also
used in some cases (17.9%) as it delivers a simpler representation. Dexpler [30] obtains a
Jimple representation from Android Dalvik Bytecode.

Figure 6. Type of app representation assessed by static analysis.

https://github.com/JesusFreke/smali/wiki
https://ibotpeaches.github.io/Apktool/

Electronics 2021, 10, 1999 13 of 32

Previous surveys in the domain [6] identified a set of challenges for the static analysis
of Android apps. Our results show that research has paid attention to some of these
challenges, particularly regarding dynamically loaded code (DLC), inter-component com-
munication (ICC), native code, and obfuscated code.

DLC is a mechanism by which applications execute code that was not included in the
original APK file. This is handy to update an app over time with new features but can also
become a privacy threat if it is used to load malicious code. DLC is a significant challenge
to static analysis techniques as it takes place during the app execution, and thus the new
code can be unknown to the static analyser. It is oftentimes implemented by reflection
APIs, which are increasingly introduced in Android apps. According to ID77: "reflection
usage is widespread in Android apps, with 87.6% of apps making reflective calls". Although it
is often claimed that static analysis cannot detect DLC, paper ID77 presents a method to
detect DLC when the loaded code has been included in the apk file, and papers ID352
and ID597 describe the tools DroidRista and Ripple respectively, both partially addressing
this challenge.

Other authors combine static and dynamic techniques to improve the detection of
reflective code. These types of techniques basically use the static analysis to create a
behavioural model (ID362), a flow graph (ID484), or to instrumentate the app (ID104), and
later they use dynamic analysis techniques to focus the privacy assessment based on the
results of the static analysis.

Another challenging feature is ICC, which mediates the communication between
Android components either within an app or between different apps. The Android platform
manages the communication leading to “discontinuities in the statically extracted app
models” [7], which may hide data leaks to static analysers. Some authors (ID240, ID281,
ID352, ID666, ID829, ID893, ID908) have addressed this issue by leveraging upon available
tools such as Epicc [31], IC3 [32], or IccTA [33]. Other proposals “modify the code to
transform the inter-component communications into function calls” so that the data leakage
paths are uncovered (ID329). It is worth mentioning IIFA (ID81), which deals with both
ICC data leaks intra- and inter-apps, and whose authors claim to achieve a 100% precision
and recall against well-known benchmarks such as DroidBench and ICC-Bench.

Although there are different techniques coping with ICC, the main issue they usually
find is that “these analysis processes consume a lot of time and memory” as reported in
ID829. As the average size of applications grows, the number of methods and calls to be
analysed grows too, leading on occasions to unacceptable analysis times when it comes
to large-scale evaluations. We call the attention again to IIFA, whose performance was
evaluated with a set of 90 real world apps reporting an average time of analysis per app of
87.9 seconds, which makes it ready for deployment at scale.

Native code makes static analysis quite challenging as code analysers usually deal
with a single programming language, for example, a Java static analyser is not able to
support fragments of C or C++ code [7]. However, many apps use native code to improve
their performance. The approaches found either detect the native code and rely on specific
tools to analyse it or create bridges to track the flow of personal data among languages.
As an example of the former approach, DyDroid (ID565) is a tool to detect native code in
apps, identify the libraries loading the code, and perform a malware detection based on
DroidNative. As for the latter, BridgeInspector (ID89) tracks the data flows in hybrid Java-
JavaScript apps, leveraging TaintDroid (ID247) for the data flows in Java, observing the
Java-JavaScript bridge communication, and further analysing data flows on the JavaScript
layer. The authors report a 100% precision when evaluating BridgeInspector in a sample
of 38 apps that they claim to “cover all possible cross-language data paths”. To deal with
native code some papers (ID382, ID484) make use of tools like IDA Proo [34], which is a
disassembler used to translate machine code into a human readable assembly language.

Finally, obfuscation is a common practice to protect the code from being understood.
However, malicious behaviours may be also hidden behind obfuscated code, which chal-
lenges the privacy assessment. Obfuscation techniques are always evolving, and thus

Electronics 2021, 10, 1999 14 of 32

no paper has claimed to fully overcome this challenge. However, some papers have
solved specific cases of obfuscation such as obfuscated tracking APIs (ID771), obfuscated
network transmissions (ID382), or detection of inter-app data leaks in obfuscated code
(ID294). Another approach consists of using deobfuscation tools such as DeGuar, like in
paper ID281. Finally, the DyDroid authors (ID565) present a system to detect and classify
obfuscation techniques.

All in all, we have detected a considerable number of papers (over 60%) that report
combining static analysis with another type of technique to improve their results. The main
reason researchers combine static analysis with other techniques is the high number of false
positives reported by this analysis. Although the analysis of all the code and associated
resources of an app achieves high coverage, it may well lead to false positives due to parts
of the code not executing, and in many cases researchers use other techniques to confirm
this false positive, as explained in (ID294). The most common combination in this case is
a pipeline of static and dynamic analysis: a way to take advantage of the best features of
each technique type.

4.2.2. Dynamic Analysis

Dynamic analysis is based on the execution of an app code and the observation of its
behaviour. Three main aspects to consider are the means to generate the different execution
paths, i.e., (i) test generation, (ii) the environment where the tests are executed, and (iii)
how the app behaviour is observed.

Different techniques are used for test generation, but the ones that stand out are
“Random generation” and “Tester inputs” (Figure 7). In fact, the choice of the technique for
the test generation heavily depends on what behaviours the researcher favours, with some
papers even applying multiple techniques. Android Monkey is the preferred tool for the
generation of inputs. The tool has demonstrated a good code coverage when compared
with other input generation tools [35]. Furthermore, being part of the Android framework
makes it a robust and always updated alternative. This contrasts with many of the results
we have found which are outdated and abandoned shortly after being published. However,
Android Monkey is not able to deal with smart user inputs. As described by Xu et al.
(ID249): "We do not adopt automated testing (e.g., using Monkey) because such tools cannot handle
user registration and login issues, and hence cannot trigger some spyware behaviours effectively".

Figure 7. Types of test generation.

Regarding the execution environment, researchers slightly favour physical devices
(55.3%) over emulators. Devices are expensive and sometimes they must be rooted to unlock
relevant features, which can be difficult to emulate. On the other hand, current emulators
are easy to configure, launch, and reuse although they do not have full capabilities. Some of
the most commonly used emulators are GenyMotion, AndroidX86, and Android Emulator.

Electronics 2021, 10, 1999 15 of 32

Finally, we have found four major approaches to observe an app behaviour, with
important differences between them (Figure 8):

• Application instrumentation: this is one of the most complex techniques because it
requires the modification of the app code to introduce code snippets that log the app
status or behaviour at different points. This implies obtaining the application code,
changing it, and repackaging it. This procedure heavily depends on the API version.
As an advantage, this technique gives a greater insight on the app internals.

• Virtual Machine instrumentation: this technique requires an instrumented version
of the Android Virtual Machine to observe the different API calls of the tested app.
Unfortunately, this instrumentation is tight to the system version, thus making it very
difficult to keep updated. The paradigmatic example was TaintDroid (ID247), which
has been extensively used for Android apps assessment but is now deprecated.

• Kernel instrumentation: These tools observe the behaviour of the app at the kernel
level. To this end, a modification to the operating system is required, generating again
a great dependency on the system version. One of the most widespread tools was
Xposed, which is now deprecated too. Some alternatives currently available are Frida
or Magisk.

• Network interception: this technique is one of the easiest ways of behavioural obser-
vation. It does not require modifying the app code, can be used with both devices
and emulators, and does not depend on the Android version. Tools such as tcpdump,
Wireshark, or a Man In The Middle (MITM) Proxy can be used to monitor the network
traffic. On the downside, the communication payload can be encoded or the channel
secured, thus making the detection of data leaks cumbersome.

Figure 8. Types of behavioural observation.

4.2.3. Machine Learning-Based Analysis

Of all the coded papers, only 18 explore the use of machine learning to assess the
privacy of Android apps. The features to train the models are usually extracted from static
analysis, dynamic analysis, or both. Papers which only base their privacy assessment on
features extracted from the app meta-data are an exception, e.g., paper ID342 uses the app
reviews available in Google Play Store to train and validate a privacy risk model.

The use of machine learning brings important benefits to the privacy assessment of
Android apps. First, machine learning can help to discover the most relevant features
to focus the available resources on, avoiding useless efforts. For example, some studies
(ID129, ID363, ID908) have discovered that the combination of simple features can be
highly relevant for uncovering problematic apps, thus reducing the overall analysis time
while keeping the effectiveness.

Electronics 2021, 10, 1999 16 of 32

In our research, nearly all papers used supervised learning algorithms. Furthermore,
all these algorithms were classifiers. This fits well with the nature of the object of analysis,
since the purpose is to create a model that predicts if an application has or has not privacy
issues, which is indeed a classification problem. The distribution of the different supervised
algorithms is described in Figure 9. It is worth noting that the authors usually test different
algorithms and finally choose to apply the one showing the best performance. Among
them, Support Vector Machine has demonstrated a better performance.

Figure 9. Supervised algorithms used to uncover privacy issues: Support Vector Machines (SVM),
Random Forest (RF), Logistic Regression (LR), Decision Trees (DT), Convolutional Neural Networks
(CNN), Nearest Neighbours (NN).

The major hurdle of supervised classification algorithms is the need of a ground truth,
i.e., a reference dataset where each element is labelled. The creation of a good dataset can be
one of the most time-consuming tasks, and an incomplete dataset can lead to a poor model.
While some papers create their own dataset, others make use of publicly available ones.
Among the latter, there are mainly three types: the datasets of labeled privacy policies,
the datasets of malware samples, and the datasets of labeled apps based on their previous
analysis. Table 8 presents a compilation of the public datasets still available and their
main features.

Table 8. Public datasets labelled for the privacy assessment of Android apps.

Name Description Samples

OPP-115 (https://usableprivacy.org/data) Website privacy policies annotated with privacy
practices

115

APP-350 (https://usableprivacy.org/data) Android app privacy policies annotated with privacy
practices

350

Androsec (http://androsec.rit.edu/home) Dataset of Android applications including details
on quality metrics and security characteristics of the
applications such as adherence to coding standards,
file size, lines of code, over and under permissions,
and any defects or security vulnerabilities that may
exist

1179

Drebin (https://www.sec.cs.tu-bs.de/~danarp/
drebin/)

Malware repository including apps labelled with
malware family, and other features extracted from
the applications

5560

VirusShare (https://virusshare.com/ Repository of malware samples for cybersecurity
research

36,643,433 *

* This set can include multiple versions of the same application.

https://usableprivacy.org/data
https://usableprivacy.org/data
http://androsec.rit.edu/home
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://virusshare.com/

Electronics 2021, 10, 1999 17 of 32

4.3. RQ3: What Is the Quality Level of the Techniques Identified?

All the papers analysed have either validated or evaluated their contributions (Figure 10).
We intentionally excluded papers not showing efforts to assess their contributions. We did
not find any paper carrying out formal proofs, which is reasonable since this would require
having a formal model of apps unknown to the evaluator.

Figure 10. Type of assessment carried out on the technique by its authors.

Validations provide less information on the quality of the technique, as these basically
demonstrate the feasibility of the proposal, but neither its effectiveness nor its performance
is discussed. Validations are usually related to large-scale demonstration of the technique
in the wild, where the newly created technique is used to assess the privacy features of a
large set of apps. We have found techniques applied to as much as one million apps (ID94,
ID196).

Effectiveness is the main goal pursued by empirical evaluations (Figure 11), i.e.,
understanding how well the technique assesses privacy aspects. Approximately 70% of
the papers use standard metrics to describe their effectiveness such as precision, accuracy,
recall, or F-score. This also means that the remaining 30% do not follow standard practices,
which hinder comparing these tools with others. Time of analysis is the most reported
metric of performance, although we have also found measures of CPU usage or overhead.

Figure 11. Goal pursued by empirical evaluations.

Electronics 2021, 10, 1999 18 of 32

Authors have used different application sets to carry out their empirical evaluations
(Figure 12). For example, they develop their own apps from scratch or adapt those al-
ready available to show a privacy behaviour their techniques are challenged to detect.
These custom sets are usually reduced, including tens of applications at best. Sometimes,
a benchmark is already available containing apps with known behaviour, thus saving
researchers a great amount of time. Table 9 summarises the most relevant benchmarks
available for evaluating privacy assessment techniques in Android apps. Finally, in a few
cases researchers use actual apps available in different stores, which need to be reverse
engineered to confirm the technique verdict. Real applications are usually downloaded
from Google Play Store as there are REST APIs available to this end. We have also found
other markets being used such as Baidu, Wandoujia, Anzhi, or QQ.

Figure 12. Types of app sets used for empirical evaluation.

Only 10 out of the 79 papers analysed (13%) have publicly released their tools
(Table 10). This result strongly suggests that nowadays, although there have been sustained
research efforts in privacy assessment techniques, there is very limited dissemination of
these efforts to the scientific and more importantly the practitioner community. Figure 13
shows the tools used for comparison more often and the techniques comparing them.

Table 9. Reference benchmarks for evaluating privacy assessment techniques in Android.

Name Description Samples Last Updated

Droidbench (https://github.com/secure-
software-engineering/DroidBench) 2.0/3.0

Apps covering several types
of data leaks

120 (2.0); 146 (3.0) 2016

Icc bench (https://github.com/fgwei/ICC-
Bench)

Apps with inter-component
data leaks

24 2017

F-droid (https://f-droid.org/en/
packages/)

General apps (no privacy-
related)

3696 2020

Mudflow (https://www.st.cs.uni-saarland.
de/appmining/mudflow/)

Apps with abnormal per-
sonal data use

2866 2018

Drebin (https://www.sec.cs.tu-bs.de/
~danarp/drebin/)

Malware apps 5560 2014

VirusShare (https://virusshare.com/) Malware apps 36,643,433 2020
Contagio Mobile (http://
contagiominidump.blogspot.com/)

Malware apps 131 2018

MobSecLab (http://mobseclab.gazi.edu.tr/
datasets/)

Bening apps 1074 2017

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/fgwei/ICC-Bench
https://github.com/fgwei/ICC-Bench
https://f-droid.org/en/packages/
https://f-droid.org/en/packages/
https://www.st.cs.uni-saarland.de/appmining/mudflow/
https://www.st.cs.uni-saarland.de/appmining/mudflow/
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://virusshare.com/
http://contagiominidump.blogspot.com/
http://contagiominidump.blogspot.com/
http://mobseclab.gazi.edu.tr/datasets/
http://mobseclab.gazi.edu.tr/datasets/

Electronics 2021, 10, 1999 19 of 32

Table 10. Contributions that released the developed tools.

Contribution Open Source Technique Type Compared

SpyAware (ID249) No Dynamic + ML based No
SoProtector (ID484) No Static + Dynamic Yes

Agrigento (ID38) Yes Dynamic Yes
DroidRA (ID77) Yes Static Yes
NDroid (ID108) Yes Dynamic Yes

SCDFLOW (ID126) Yes Static + ML based Yes
Pluto (ID306) Yes Dynamic No

HybriDroid (ID362) Yes Static Yes
Reaper (ID842) Yes Dynamic No

AppWalker (ID893) Yes Static + Dynamic Yes

Figure 13. Publicly available tools found in our study (blue) and other tools to which they com-
pare (white).

5. Discussion

In this section we further elaborate on the most relevant trends observed.

5.1. A Switch in Privacy Paradigms

Based on the results of what aspects of privacy have been assessed (RQ1), one main
observation is that research efforts in the last five years have focused on two privacy
threats: disclosure of personal information (83%) and non-compliance (12.5%). These two
groups of papers roughly correspond to two very distinct privacy paradigms: privacy as
confidentiality and privacy as contextual integrity.

Privacy as confidentiality is based on the binary criterion that any disclosure of a
piece of personal data is a violation of the individual’s privacy [36]. That is, it assumes
that there are no other actors with other interests or needs to collect pieces of personal
data (e.g., an app provider’s need to collect the location to provide its core service). For
example, some of the techniques included in this category alert of a privacy leak when an
app merely accesses pieces of personal data on the mobile device even when these are not
necessarily sent off-device (e.g., ID81), others do so when the data indeed leaves the device
but does not take into account who the recipient is (e.g., ID141). Thus, these techniques
by themselves are useful for alerting about (potential) personal data leaks but fail when
certain personal data flows are indeed expected in a particular context.

On the other hand, the idea that individuals do not always act in isolation but rather
transact in a variety of social contexts is known as contextual integrity [37]. It argues that an
individual’s activities take place in differentiated social contexts, and each of these contexts
has a different set of norms that balance the multiple interests. Such norms prescribe
context-dependent appropriate or inappropriate flows of personal data. For example, in a
location-based service, the individual’s location needs to be collected by the app provider

Electronics 2021, 10, 1999 20 of 32

to operate correctly and provide the service to the individual. In that particular context,
the disclosure of the individual’s location to the app provider is appropriate. However,
disclosure of the individual’s location to other parties not involved in the provision of
the service (e.g., advertisers) is not appropriate and may lead to a privacy violation. We
observed that some recent works rely on the apps’ privacy policies (ID596), regulations
(ID501), or both (ID94) as the source to extract the (in) appropriate personal data flows.
They are then used to analyse their alignment with the personal data flows performed by
apps and to detect privacy violations in case of misalignment.

We argue that the increasing and tightened privacy regulation of mobile apps in the
past few years has led to a growing interest in techniques embraced by the contextual
integrity approach. Both the European Union [38] and the United States [39] authorities
have agreed on the obligations for app providers to inform users about their personal data
collection and processing practices, e.g., in terms of a privacy policy. Following on these
requirements, the Google Play Store mandates that any application with access to personal
and sensitive information must provide a privacy policy. However, apps’ compliance
with privacy and data protection regulations still remains a hot research topic, as further
elaborated in the next subsection.

5.2. From Policy Compliance to Legal Compliance

Researchers have addressed apps’ privacy compliance following two main approaches.
Some authors seek to check the app compliance with some specific privacy law. Other re-
searchers focus on checking that the app behaviour actually complies with its privacy policy.

The first group checks whether the app meets some mandatory legal aspect. At the
basic level, Zimmeck et al. checked whether a privacy policy was available (ID323), show-
ing that as much as 48% of applications in Google Play do not even provide a policy link.
Assuming a privacy policy is available, others apply natural language processing (NLP)
and other machine learning techniques to the app policy to address specific data protec-
tion principles, for example, assessing whether the policy is easy to read and understand
(ID365). The completeness of the privacy policy has been evaluated too (ID323), that is,
whether it includes some important information such as changes over previous versions
and where to find them, the data subjects’ rights, the data collection practices, and the
information about with whom and how personal data is shared. Advanced papers even
touch on requirements for international transfers (ID501), i.e., assessing whether the policy
properly declares to send personal data to third countries with different (and potentially
incompatible) data protection laws.

The second group of papers compares the practices described in the policy with the app
behaviour. For this purpose, the most convenient approach is a hybrid analysis, combining
supervised machine learning techniques to understand the policy statements with either
static or dynamic analysis for understanding the app behaviour and comparing both.

Supervised machine learning requires a dataset of annotated policies to train policy
models. Generating such annotated dataset is a human-intensive process, thus some
approaches focus on extending datasets already available [40]. Once the new dataset is
ready, the Sklearn library is usually employed to generate and train the models. Once
the models are trained and validated, they are applied to identify some data practices in
apps policies, typically data access and sharing. These practices will be compared with the
actual behaviour observed in the app.

For understanding the app behaviour, the researchers use static and/or dynamic
techniques. In the simplest cases, they check the permissions granted to the app and map
them to the personal data they protect (ID635), assuming that the apps will indeed collect
the data. More sophisticated studies perform a call graph analysis to trace relevant data
access and sharing (ID94). While the static analysis approaches may yield false positives,
dynamic techniques are used to detect actual behaviours by executing the application,
typically using Android Monkey, and collecting system and network logs (ID596).

Electronics 2021, 10, 1999 21 of 32

Checking the consistency between the app policy and its behaviour is a first step but
far from being enough for assessing app compliance. Thus, we posit that the applicable
legislation must be considered in this process, to understand whether the data practices
also meet them.

5.3. App Developers Need More Support

Privacy compliance assessment is a priority issue for application providers, as certain
regulations carry significant financial penalties in case of privacy violations [41]. Although
sometimes developers ignore what privacy risks are introduced in their applications by
the libraries they use [13], testing or auditing mobile apps against legal requirements is
challenging for developers as there is a need for tools available to test, verify, or audit apps,
libraries, and services [42]. As shown in Section 4, there have been a significant number
of contributions in recent years; only a few have made their tools available. This then
remains a barrier for developers to leverage those advancements and perform an effective
assessment of the privacy status of their applications.

We believe that the provision of privacy-as-a-service assessment, supported by a flexi-
ble architecture for assessing different privacy requirements, could be a viable alternative
to support developers and partly break down this barrier. Zimmeck et al. (ID94) moves
closer to this approach, although it only deals with the data collection practices.

5.4. Changes on Apps Delivery Practices

In 2018 Google introduced a new app publishing format for Android known as
Android App Bundle (.aab) [14]. Basically, a developer submits to Google Play a package
including all the app code and resources and delegates in Google Play the generation of
an optimised APK upon a user request. Some of the advantages of using the app bundle
approach include the automated generation and distribution of custom APKs fitting the
device and users’ needs and the dynamic delivery of new modules as needed.

Having custom apps makes the privacy assessment process challenging as it shall be
tailored to each APK too. In fact, Han et al. (ID60) already assessed differences between
free and paid versions of apps (ID60), discovering that only 32% of the paid apps exhibit
the same data processing behaviours as their free counterpart. Aligned with these find-
ings, Ren et al. (ID813) carried out a longitudinal study of data leaks across app versions
finding that the privacy risks vary greatly with versions. As demonstrated by these results,
conclusions from a given custom version assessment cannot be generalised to the others.

In addition, bundle apps can optionally include feature modules, which are not
included in the first download of the app but requested and installed later on either on-
demand or when certain requirements are met. For example, a feature module can include
new code and resources for an additional language package or a fancy add-on. Dynamically
loaded code is a known challenge for static analysis techniques (ID362). Although the
state-of-the-art reports early advances on this challenge, mainly through the combination
of static and dynamic techniques (ID77, ID352, ID597), they have not been validated in the
wild yet but in controlled environments.

As exposed, these novelties pose new challenges for the assessment of apps’ privacy,
which are not being properly addressed by the state of the art yet. In fact, we have not
been able to find any research focused on this new app publishing format, even though it
will become mandatory from August 2021. Thus, future research should provide privacy
assessment techniques targeting user- and device-specific apps while also addressing their
dynamic nature.

6. Threats to Validity

This section presents the potential threats to validity of our study and the steps we
have followed in order to mitigate them.

Electronics 2021, 10, 1999 22 of 32

6.1. Construct Validity

One of the first threats that was presented was the definition of the scope of the study,
specifically regarding the frontiers between privacy and security in mobile applications.
Although privacy is a multidisciplinary concept, within computer science it is often con-
sidered a cybersecurity knowledge area [43]. As such, identifying malware can imply
also identifying a privacy threat. On the other hand, not all malware seeks to compro-
mise privacy. To clearly set the scope, we decided to exclude from our analysis those
malware-related papers which were not targeting privacy-specific issues.

In the paper search phase, we dealt with two threats related to the completeness of
the study: the database, which could not index all relevant papers of the target domain,
and the search string, which may lead to the exclusion of relevant papers. Regarding the
database, we used Scopus since it indexes the most important digital libraries used in our
area of research, as mentioned in Section 3, Methodology. Furthermore, for the sake of
completeness, we also retrieved papers from the DBLP database which indexes conference
proceedings not hosted by Scopus. As for the search string, we made a great effort to define
it thoroughly, using keywords from well-known standards, vocabularies, and taxonomies
in the research field. Furthermore, the string creation was an iterative process, validated
with a test set of relevant papers provided by a senior privacy engineering researcher.

Despite all the preventions and actions taken, admittedly our study could have some
limitations regarding its coverage. The number of citations and the number of page criteria
significantly reduced the number of papers included in the screening phase. In addition,
we only used one search string and it is possible that some papers may be missing. All in
all, we started with a total amount of 10,825 papers published in the last five years, and
after analysing our results we consider that our study gathers all the actual knowledge and
provides an overview of the state of the art regarding the assessment of privacy-related
aspects in Android apps.

6.2. Internal Validity

As in any systematic literature study, we dealt with three internal threats presented
due to individual researcher’s bias, particularly in (i) resolving whether to include or
exclude a paper, (ii) classifying them according to the scheme, and (iii) analysing the
results and drawing the conclusions. Regarding (i), early in the screening procedure, the
researchers carried out an iterative pilot for validating and normalising their understanding
on the inclusion and exclusion criteria. Only after obtaining a 90% of success and a
0.77 value of the Krippendorff’s alpha coefficient they proceeded to the main screening
phase. Furthermore, in this phase every paper was screened by at least two researchers
and disagreements were resolved by all the team.

As for the classification procedure, the researchers elaborated a complete and clear
classification scheme. It was built using existing recognised classifications, as for the
best-practices and guidelines set in [19]. Once more a pilot was carried out in order to
ensure the understanding and convergence of classification criteria. After the inter-coder
reliability was assured (Krippendorff’s alpha coefficient greater than 0.75 for all criteria),
the classification phase was carried out and, like in the previous phase, every paper was
coded by at least two researchers and inconsistencies were discussed by the entire team.

Finally, for the analysis of the results, two of the researchers cleaned and presented the
results to the team. In an iterative way, the team discussed the meaning and the relevant
facts in the results until an agreement was reached. The final results and conclusions
presented in this paper stem from consolidated agreements and not from individual
thoughts and ideas. The detailed results obtained in the coding phase are available in the
replication package in case any reader wants to reproduce or validate our work [24].

6.3. External Validity

The scope of this study is the set of techniques reported in the state of the art to assess
privacy-related aspects in Android applications. Its external validity is further framed

Electronics 2021, 10, 1999 23 of 32

by the context in which they are intended to operate, i.e., the assessment is performed
in a (semi-)automated fashion on final versions of any Android app available. Thus, the
results and conclusions obtained are only valid within this scope and context. Accordingly,
our conclusions do not apply to techniques focused on detecting common malware rather
than specific privacy-related malware, techniques based on fixing some privacy issues
rather than assessing them, or techniques based on a manual evaluation of some group
of applications.

The application of the techniques reported in this paper to other OSs is not straight-
forward either. Most of them cannot be reused due to programming language and OS
differences, which would make Java-based static analysers and dynamic OS- and virtual
machine-based techniques useless. The most promising techniques to be reused in other
OSs are those leveraging machine learning models based on OS-agnostic features such as
metadata available in the app market (e.g., reviews) or network traffic metadata (e.g., desti-
nation, flow patterns), as demonstrated e.g., by McIlroy et al. [44]. Finally, the techniques
assessing apps’ privacy policies can be easily reused by researchers targeting other OSs.

The techniques reported targeted different Android API versions, thus threatening the
generalisation of their results to other versions. Specifically, we have found 10 different API
versions reported in the papers, from API level 14 released in 2011 to API level 28 released
in 2018. Current reports on Android version market share [45] show that these versions are
in use by slightly over a half of Android devices but sharply decreasing. Whether or not
a given technique is able to deal with newer API versions remains unclear and must be
studied individually. Unfortunately, most of the papers analysed do not provide a way of
replication, which may hinder this checking.

7. Related Work

As far as we know, there are no recent secondary studies focused on the intersection
of the three domains of our scope (i.e., privacy, software quality, and Android applications).
The related work is either outdated [6,7] or has a different scope, e.g., by focusing on
security instead of privacy [9,10] or missing the overall set of quality assessment techniques
we have covered [46,47]. We analyse these studies next.

There have been many secondary studies focused on specific techniques to assess
quality in Android apps. For instance, Li et al. [6] reviewed the use of static analysis for the
quality assessment of Android apps. In turn, Sadeghi et al. [7] focused on dynamic analysis
techniques. While both studies provided a complete overview of quality assessment
techniques and their challenges, they both reviewed papers published by 2016 and privacy
was only slightly mentioned.

More recent works have provided an updated perspective on the different techniques,
though their scope still differs from ours. For example, the literature review by Pan et al. [9]
analysed Android malware detection through static analysis techniques. This is a very
complete study providing an updated overview of static analysis techniques and its com-
bination with machine learning models, yet it misses privacy issues. Something similar
happens with the study by Garg et al. [10], as their review covers all the papers published
from 2013 to 2020 in the field of security assessment in Android. They have classified
security objectives, assessment techniques, code representations, tools, and frameworks
used but again do not include techniques addressing specific privacy issues.

Some recent studies have paid due attention to privacy issues, yet in this case they
have missed the focus on Android apps. For example, Guamβín et al. [46] carried out a
systematic mapping study on privacy assessment techniques in information systems to
provide an overall picture of the broad landscape of techniques available. In this study the
authors slightly touched upon mobile apps (i.e., they identified only 17 out of the 79 papers
we have analysed) but pointed out the relevance of further analysing this domain as apps
“involve higher privacy risks due to their ubiquity, the vast quantity of the personal data
they handle and their sensitive nature, as well as the amount of service providers involved
in the processing”.

Electronics 2021, 10, 1999 24 of 32

Finally, Ebramini et al. [47] might be considered the closest work to ours, as they
partially focused on privacy assessment techniques in Android apps and also detected
a majority of works reporting techniques for information disclosure detection. Their
systematic mapping study on mobile apps’ privacy was published in 2019, analysing
papers published from 2010 to 2018 in software engineering venues. We claim that our
study is more comprehensive and exhaustive. First, we claim comprehensiveness because
by considering only software engineering venues Ebramini et al. ignored relevant papers
published, e.g., in top conferences and journals in Computers Security and Computer
Networks such as NDSS (seven papers analysed) or PoPETS (four papers analysed). As a
result they identified 85 papers and coded 54 papers (often not even getting to the citation
threshold we set), while our research considered an initial set of 10,825 papers and finally
analysed 79 papers. Second, we claim exhaustiveness because they worked on different
privacy aspects, namely privacy policy analysis, privacy requirements specification, users’
perception on privacy, and privacy leaks detection, from which only the first and the
last categories are related to our study. However, unlike our papers on the specification
verification category, the papers in their privacy policy category were rather limited to
policy text analysis, missing the detection of policy-to-behaviour mismatches, which is
only recommended as future work. Finally, their Privacy Leaks Detection category is
well aligned with our Disclosure of Information Privacy Threat category including static,
dynamic, and hybrid approaches, but even in this case they found only 33 papers and we
found more than twice that and also included machine learning based approaches.

All in all, our study advances the state of the art since we have focused on privacy
assessment for Android applications considering all possible techniques (static, dynamic,
ML-based, and hybrid approaches) and extensively covering the papers published in the
last five years in major conferences and journals. We think our study is complementary
to the aforementioned studies and other similar ones, and in combination they provide a
better and more complete view on the dimension of Android privacy assessment.

8. Conclusions

This systematic mapping study has presented an overview of the state-of-the-art
techniques to assess privacy in Android apps. For researchers, we have provided an
overview of research efforts to assess different privacy threats and the most successful
techniques. We have further analysed research gaps and discussed promising trends, such
as the focus switch towards new privacy paradigms, the need to assess the app compliance
with the declared policy and the applicable legislation, and the need to support developers
in this process. For testers, auditors, and data protection authorities we have identified the
most mature techniques and investigated the quality of their results, highlighting those
that could be closer to their application in practice.

Our next steps point towards addressing the new challenges introduced by recent
changes in the Android apps delivery model, which will be mandatory from August 2021.
To this end, we seek to combine different techniques, which is a promising path according
to our findings, and we apply interdisciplinary knowledge to advance from mere policy
compliance to true app compliance with privacy regulations.

Author Contributions: Conceptualisation, J.M.D.A.; Investigation, J.M.D.A., D.G., B.B., and A.D.;
Supervision, J.M.D.A.; Writing—original draft, J.M.D.A., D.G., B.B., and A.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been partially supported by the CLIIP project (grant reference APOYO-
JOVENES-QINIM8-72-PKGQ0J) funded by the Comunidad de Madrid and Universidad Politécnica
de Madrid under the V-PRICIT research programme ’Apoyo a la realización de Proyectos de I+D
para jóvenes investigadores UPM-CAM’, and by the Escuela Politécnica Nacional in Ecuador.

Data Availability Statement: The data presented in this study are openly available in Mendeley
Data at doi:10.17632/jr349zxzcg.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 1999 25 of 32

Appendix A. The Full List of Examined Publications

Table A1. List of paper references.

ID1 Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, M. Yang, Finding Clues for
Your Secrets: Semantics-Driven, Learning-Based Privacy Discovery in
Mobile Apps, in: Proc. 2018 Netw. Distrib. Syst. Secur. Symp., Internet
Society, Reston, VA, 2018. https://doi.org/10.14722/ndss.2018.23092.

ID3 Y. He, B. Hu, Z. Han, Dynamic privacy leakage analysis of android
third-party libraries, in: Proc.—2018 1st Int. Conf. Data Intell. Secur.
ICDIS 2018, Institute of Electrical and Electronics Engineers Inc., 2018:
pp. 275–280. https://doi.org/10.1109/ICDIS.2018.00051.

ID8 A. Rahman, P. Pradhan, A. Partho, L. Williams, Predicting AndroApplica-
tion Security and Privacy Risk with Static Code Metrics, in: Proc.—2017
IEEE/ACM 4th Int. Conf. Mob. Softw. Eng. Syst. MOBILESoft 2017,
Institute of Electrical and Electronics Engineers Inc., 2017: pp. 149–153.
https://doi.org/10.1109/MOBILESoft.2017.14.

ID38 A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C.
Kruegel, G. Vigna, Obfuscation-Resilient Privacy Leak Detection for
Mobile Apps Through Differential Analysis, in: Proc. 2017 Netw.
Distrib. Syst. Secur. Symp., Internet Society, Reston, VA, 2017.
https://doi.org/10.14722/ndss.2017.23465.

ID60 C. Han, I. Reyes, βü. Feal, J. Reardon, P. Wijesekera, N. Vallina-
Rodriguez, A. Elazari, K.A. Bamberger, S. Egelman, The Price is (Not)
Right: Comparing Privacy in Free and PaApps, Proc. Priv. Enhancing
Technol. 2020 (2020) 222-242. https://doi.org/10.2478/popets-2020-
0050.

ID77 L. Li, T.F. Bissyandé, D. Octeau, J. Klein, DroidRA: Taming reflection to
support whole-program analysis of androapps, in: ISSTA 2016—Proc.
25th Int. Symp. Softw. Test. Anal., Association for Computing Machin-
ery, Inc, 2016: pp. 318–329. https://doi.org/10.1145/2931037.2931044.

ID81 A. Tiwari, S. Groβƒ, C. Hammer, IIFA: Modular Inter-app Intent Informa-
tion Flow Analysis of AndroApplications, in: Lect. Notes Inst. Comput.
Sci. Soc. Telecommun. Eng. LNICST, Springer, 2019: pp. 335–349.
https://doi.org/10.1007/978-3-030-37231-6_19.

ID88 V. Sihag, A. Swami, M. Vardhan, P. Singh, Signature based malicious
behavior detection in android, in: Commun. Comput. Inf. Sci., Springer,
2020: pp. 251–262. https://doi.org/10.1007/978-981-15-6648-6_20.

ID89 J. Bai, W. Wang, Y. Qin, S. Zhang, J. Wang, Y. Pan, BridgeTaint: A Bi-
Directional Dynamic Taint Tracking Method for JavaScript Bridges in
AndroHybrApplications, IEEE Trans. Inf. Forensics Secur. 14 (2019)
677–692. https://doi.org/10.1109/TIFS.2018.2855650.

ID93 V. Jain, S. Bhandari, V. Laxmi, M.S. Gaur, M. Mosbah,
SniffDroid: Detection of Inter-App Privacy Leaks in An-
droid, in: 2017 IEEE Trust., IEEE, 2017: pp. 331–338.
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.255.

ID94 S. Zimmeck, P. Story, D. Smullen, A. Ravichander, Z. Wang, J. Reidenberg,
N. Cameron Russell, N. Sadeh, MAPS: Scaling Privacy Compliance
Analysis to a Million Apps, Proc. Priv. Enhancing Technol. 2019 (2019)
66–86. https://doi.org/10.2478/popets-2019-0037.

ID104 Y. Yang, W. Luo, Y. Pei, M. Pan, T. Zhang, Execution enhanced static
detection of androprivacy leakage hidden by dynamic class loading, in:
Proc. - Int. Comput. Softw. Appl. Conf., IEEE Computer Society, 2019:
pp. 149-158. https://doi.org/10.1109/COMPSAC.2019.00029.

Electronics 2021, 10, 1999 26 of 32

Table A1. Cont.

ID108 L. Xue, C. Qian, H. Zhou, X. Luo, Y. Zhou, Y. Shao, A.T.S. Chan,
NDroid: Toward tracking information flows across multiple andro-
contexts, IEEE Trans. Inf. Forensics Secur. 14 (2019) 814–828.
https://doi.org/10.1109/TIFS.2018.2866347.

ID117 K. Zhu, X. He, B. Xiang, L. Zhang, A. Pattavina, How dangerous are your
Smartphones? App usage recommendation with privacy preserving,
Mob. Inf. Syst. 2016 (2016). https://doi.org/10.1155/2016/6804379.

ID119 G. Bai, Q. Ye, Y. Wu, H. Botha, J. Sun, Y. Liu, J.S. Dong, W. Visser, Towards
Model Checking AndroApplications, IEEE Trans. Softw. Eng. 44 (2018)
595–612. https://doi.org/10.1109/TSE.2017.2697848.

ID126 P. Feng, J. Ma, C. Sun, Selecting Critical Data Flows in AndroApplica-
tions for Abnormal Behavior Detection, Mob. Inf. Syst. 2017 (2017).
https://doi.org/10.1155/2017/7397812.

ID129 N. Wongwiwatchai, P. Pongkham, K. Sripanidkulchai, Detecting per-
sonally identifiable information transmission in androapplications us-
ing light-weight static analysis, Comput. Secur. 99 (2020) 102011.
https://doi.org/10.1016/j.cose.2020.102011.

ID141 K. Alkhattabi, A. Alshehri, C. Yue, Security and Privacy Analysis of
AndroFamily Locator Apps, in: Proc. 25th ACM Symp. Access Con-
trol Model. Technol., ACM, New York, NY, USA, 2020: pp. 47–58.
https://doi.org/10.1145/3381991.3395612.

ID179 M. Backes, S. Bugiel, E. Derr, S. Gerling, C. Hammer, R-Droid: Lever-
aging androapp analysis with static slice optimization, in: ASIA
CCS 2016—Proc. 11th ACM Asia Conf. Comput. Commun. Se-
cur., Association for Computing Machinery, Inc, 2016: pp. 129–140.
https://doi.org/10.1145/2897845.2897927.

ID196 R. Binns, U. Lyngs, M. Van Kleek, J. Zhao, T. Libert, N. Shadbolt, Third
party tracking in the mobile ecosystem, in: WebSci 2018—Proc. 10th
ACM Conf. Web Sci., Association for Computing Machinery, Inc, 2018:
pp. 23–31. https://doi.org/10.1145/3201064.3201089.

ID224 M. Junaid, D. Liu, D. Kung, Dexteroid: Detecting malicious behaviors in
Androapps using reverse-engineered life cycle models, Comput. Secur.
59 (2016) 92–117. https://doi.org/10.1016/j.cose.2016.01.008.

ID240 S. Bhandari, F. Herbreteau, V. Laxmi, A. Zemmari, P.S. Roop,
M.S. Gaur, SneakLeak: Detecting Multipartite Leakage Paths in
AndroApps, in: 2017 IEEE Trust., IEEE, 2017: pp. 285–292.
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.249.

ID247 W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.G. Chun, L.P. Cox, J. Jung, P.
McDaniel, A.N. Sheth, TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones, ACM Trans. Comput.
Syst. 32 (2014) 1–29. https://doi.org/10.1145/2619091.

ID249 H. Xu, Y. Zhou, C. Gao, Y. Kang, M.R. Lyu, SpyAware: Investigat-
ing the privacy leakage signatures in app execution traces, in: 2015
IEEE 26th Int. Symp. Softw. Reliab. Eng. ISSRE 2015, Insti-
tute of Electrical and Electronics Engineers Inc., 2016: pp. 348–358.
https://doi.org/10.1109/ISSRE.2015.7381828.

ID272 S. Pooryousef, M. Amini, Enhancing accuracy of andromalware de-
tection using intent instrumentation, in: ICISSP 2017—Proc. 3rd
Int. Conf. Inf. Syst. Secur. Priv., SciTePress, 2017: pp. 380–388.
https://doi.org/10.5220/0006195803800388.

ID281 L. Yu, X. Luo, C. Qian, S. Wang, H.K.N. Leung, Enhanc-
ing the Description-to-Behavior Fidelity in AndroApps with Pri-
vacy Policy, IEEE Trans. Softw. Eng. 44 (2018) 834–854.
https://doi.org/10.1109/TSE.2017.2730198.

Electronics 2021, 10, 1999 27 of 32

Table A1. Cont.

ID294 N.T. Cam, V.H. Pham, T. Nguyen, Detecting sensitive data leakage via
inter-applications on Androusing a hybranalysis technique, Cluster Com-
put. 22 (2019) 1055–1064. https://doi.org/10.1007/s10586-017-1260-2.

ID302 V. Jain, V. Laxmi, M.S. Gaur, M. Mosbah, APPLADroid: Automa-
ton based inter-app privacy leak analysis for android, in: Com-
mun. Comput. Inf. Sci., Springer Verlag, 2019: pp. 219–233.
https://doi.org/10.1007/978-981-13-7561-3_16.

ID306 S. Demetriou, W. Merrill, W. Yang, A. Zhang, C.A. Gunter, Free for All!
Assessing User Data Exposure to Advertising Libraries on Android, in:
Proc. 2016 Netw. Distrib. Syst. Secur. Symp., Internet Society, Reston,
VA, 2016. https://doi.org/10.14722/ndss.2016.23082.

ID323 S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S.
Wilson, N. Sadeh, S.M. Bellovin, J. Reidenberg, Automated anal-
ysis of privacy requirements for mobile apps, in: AAAI Fall
Symp.—Tech. Rep., AI Access Foundation, 2016: pp. 286–296.
https://doi.org/10.14722/ndss.2017.23034.

ID329 H. Cui, S. Shao, S. Niu, W. Zhang, Y. Yuan, Container-based privacy
preserving scheme for androapplications, Chinese J. Electron. 29 (2020)
731–737. https://doi.org/10.1049/cje.2020.06.001.

ID342 M. Hatamian, J. Serna, K. Rannenberg, Revealing the unrevealed: Mining
smartphone users privacy perception on app markets, Comput. Secur.
83 (2019) 332–353. https://doi.org/10.1016/j.cose.2019.02.010.

ID349 Y. Li, G. Xu, H. Xian, L. Rao, J. Shi, Novel andromalware de-
tection method based on multi-dimensional hybrfeatures extraction
and analysis, Intell. Autom. Soft Comput. 25 (2019) 637–647.
https://doi.org/10.31209/2019.100000118.

ID352 A. Alzaidi, S. Alshehri, S.M. Buhari, DroidRista: a highly precise static
data flow analysis framework for androapplications, Int. J. Inf. Secur. 19
(2020) 523–536. https://doi.org/10.1007/s10207-019-00471-w.

ID361 J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, Y. Wang, Y. Xiang, A3CM:
Automatic Capability Annotation for AndroMalware, IEEE Access. 7
(2019) 147156–147168. https://doi.org/10.1109/ACCESS.2019.2946392.

ID362 H. Chen, H.F. Leung, B. Han, J. Su, Automatic privacy leakage detection
for massive androapps via a novel hybrapproach, in: IEEE Int. Conf.
Commun., Institute of Electrical and Electronics Engineers Inc., 2017.
https://doi.org/10.1109/ICC.2017.7996335.

ID363 K. Basu, S.S. Hussain, U. Gupta, R. Karri, COPPTCHA: COPPA Tracking
by Checking Hardware-Level Activity, IEEE Trans. Inf. Forensics Secur.
15 (2020) 3213-3226. https://doi.org/10.1109/TIFS.2020.2983287.

ID365 J. Wettlaufer, H. Simo, Decision support for mobile app selection via
automated privacy assessment, in: IFIP Adv. Inf. Commun. Technol.,
Springer, 2020: pp. 292–307. https://doi.org/10.1007/978-3-030-42504-
3_19.

ID382 J. Reardon, βü. Feal, P. Wijesekera, A.E.B. On, N. Vallina-
Rodriguez, S. Egelman, 50 Ways to Leak Your Data: An Ex-
ploration of Apps’ Circumvention of the AndroPermissions
System, in: 28th USENIX Secur. Symp. (USENIX Secur. 19),
USENIX Association, Santa Clara, CA, 2019: pp. 603–620.
https://www.usenix.org/conference/usenixsecurity19/presentation/
reardon.

ID384 M. Hatamian, J. Serna, K. Rannenberg, B. Igler, FAIR: Fuzzy alarming
index rule for privacy analysis in smartphone apps, in: Lect. Notes Com-
put. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinfor-
matics), Springer Verlag, 2017: pp. 3–18. https://doi.org/10.1007/978-3-
319-64483-7_1.

Electronics 2021, 10, 1999 28 of 32

Table A1. Cont.

ID412 G. Ascia, V. Catania, R. Di Natale, A. Fornaia, M. Mongiovi, S. Mon-
teleone, G. Pappalardo, E. Tramontana, Making androapps data-leak-
safe by data flow analysis and code injection, in: Proc.—25th IEEE Int.
Conf. Enabling Technol. Infrastruct. Collab. Enterp. WETICE 2016,
Institute of Electrical and Electronics Engineers Inc., 2016: pp. 205–210.
https://doi.org/10.1109/WETICE.2016.53.

ID452 L.H. Tuan, N.T. Cam, V.H. Pham, Enhancing the accuracy of
static analysis for detecting sensitive data leakage in Androby
using dynamic analysis, Cluster Comput. 22 (2019) 1079-1085.
https://doi.org/10.1007/s10586-017-1364-8.

ID484 G. Xu, W. Wang, L. Jiao, X. Li, K. Liang, X. Zheng, W. Lian, H. Xian, H.
Gao, SoProtector: Safeguard Privacy for Native SO Files in Evolving
Mobile IoT Applications, IEEE Internet Things J. 7 (2020) 2539–2552.
https://doi.org/10.1109/JIOT.2019.2944006.

ID495 A. Hamed, H.K. Ben Ayed, Privacy risk assessment and users’ aware-
ness for mobile apps permissions, in: Proc. IEEE/ACS Int. Conf.
Comput. Syst. Appl. AICCSA, IEEE Computer Society, 2016.
https://doi.org/10.1109/AICCSA.2016.7945694.

ID501 M. Eskandari, B. Kessler, M. Ahmad, A.S. de Oliveira, B. Crispo,
Analysing Remote Server Locations for Personal Data Transfers in
Mobile Apps, Proc. Priv. Enhancing Technol. 2017 (2016) 118–131.
https://doi.org/10.1515/popets-2017-0008.

ID539 M. Sun, T. Wei, J.C.S. Lui, TaintART: A practical multi-level information-
flow tracking system for AndroRunTime, in: Proc. ACM Conf. Comput.
Commun. Secur., Association for Computing Machinery, 2016: pp. 331–
342. https://doi.org/10.1145/2976749.2978343.

ID541 T. Watanabe, M. Akiyama, T. Sakai, T. Mori, Understanding the
Inconsistencies between Text Descriptions and the Use of Privacy-
sensitive Resources of Mobile Apps, in: Elev. Symp. Usable Priv.
Secur. (SOUPS 2015), USENIX Association, Ottawa, 2015: pp. 241–
255. https://www.usenix.org/conference/soups2015/proceedings/
presentation/watanabe.

ID565 Z. Qu, S. Alam, Y. Chen, X. Zhou, W. Hong, R. Riley, DyDroid: Measuring
Dynamic Code Loading and Its Security Implications in AndroAppli-
cations, in: Proc.—47th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Networks, DSN 2017, Institute of Electrical and Electronics Engineers
Inc., 2017: pp. 415–426. https://doi.org/10.1109/DSN.2017.14.

ID589 L.L. Zhang, C.J.M. Liang, Z.L. Li, Y. Liu, F. Zhao, E.H. Chen,
Characterizing Privacy Risks of Mobile Apps with Sensitivity
Analysis, IEEE Trans. Mob. Comput. 17 (2018) 279–292.
https://doi.org/10.1109/TMC.2017.2708716.

ID593 Q. Qian, J. Cai, M. Xie, R. Zhang, Malicious Behavior Analysis for An-
droApplications, 2016.

ID596 B. Andow, S.Y. Mahmud, J. Whitaker, W. Enck, B. Reaves, K. Singh, S.
Egelman, Actions Speak Louder than Words: Entity-Sensitive Privacy
Policy and Data Flow Analysis with PoliCheck, in: 29th USENIX Secur.
Symp. (USENIX Secur. 20), USENIX Association, 2020: pp. 985–1002.
https://www.usenix.org/conference/usenixsecurity20/presentation/
andow.

ID597 Y. Zhang, T. Tan, Y. Li, J. Xue, Ripple: Reflection analysis for androapps
in incomplete information environments, in: CODASPY 2017—Proc. 7th
ACM Conf. Data Appl. Secur. Priv., Association for Computing Machin-
ery, Inc, 2017: pp. 281–288. https://doi.org/10.1145/3029806.3029814.

Electronics 2021, 10, 1999 29 of 32

Table A1. Cont.

ID611 N.W. Lo, K.H. Yeh, C.Y. Fan, Leakage Detection and Risk Assessment
on Privacy for AndroApplications: LRPdroid, IEEE Syst. J. 10 (2016)
1361–1369. https://doi.org/10.1109/JSYST.2014.2364202.

ID626 W. Choi, J. Kannan, D. Babic, A scalable, flow-and-context-sensitive taint
analysis of androapplications, J. Vis. Lang. Comput. 51 (2019) 1–14.
https://doi.org/10.1016/j.jvlc.2018.10.005.

ID627 E.P. Papadopoulos, M. Diamantaris, P. Papadopoulos, T. Petsas, S. Ioan-
nidis, E.P. Markatos, The long-standing privacy debate: Mobile websites
Vs mobile apps, in: 26th Int. World Wide Web Conf. WWW 2017, Inter-
national World Wide Web Conferences Steering Committee, 2017: pp.
153–162. https://doi.org/10.1145/3038912.3052691.

ID635 M. Hatamian, N. Momen, L. Fritsch, K. Rannenberg, A Multilateral Pri-
vacy Impact Analysis Method for AndroApps, in: Lect. Notes Comput.
Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformat-
ics), Springer Verlag, 2019: pp. 87–106. https://doi.org/10.1007/978-3-
030-21752-5_7.

ID636 S. Wu, P. Wang, X. Li, Y. Zhang, Effective detection of andromalware
based on the usage of data flow APIs and machine learning, Inf. Softw.
Technol. 75 (2016) 17–25. https://doi.org/10.1016/j.infsof.2016.03.004.

ID657 S. Lee, J. Dolby, S. Ryu, Hybridroid: Static analysis framework for andro-
hybrapplications, in: ASE 2016—Proc. 31st IEEE/ACM Int. Conf. Au-
tom. Softw. Eng., Association for Computing Machinery, Inc, New York,
NY, USA, 2016: pp. 250-261. https://doi.org/10.1145/2970276.2970368.

ID658 J. Malik, R. Kaushal, CREDROid: Andromalware detection by net-
work traffic analysis, in: PAMCO 2016—Proc. 2nd MobiHoc Int. Work.
Privacy-Aware Mob. Comput., Association for Computing Machinery,
Inc, 2016: pp. 28–36. https://doi.org/10.1145/2940343.2940348.

ID666 S. Bhandari, F. Herbreteau, V. Laxmi, A. Zemmari, M.S. Gaur, P.S. Roop,
SneakLeak+: Large-scale klepto apps analysis, Futur. Gener. Comput.
Syst. 109 (2020) 593–603. https://doi.org/10.1016/j.future.2018.05.047.

ID669 R.S. Arslan, I.A. Doǧru, N. Barişçi, Permission-Based Malware
Detection System for AndroUsing Machine Learning Techniques,
Int. J. Softw. Eng. Knowl. Eng. 29 (2019) 43–61.
https://doi.org/10.1142/S0218194019500037.

ID671 J. Xie, X. Fu, X. Du, B. Luo, M. Guizani, AutoPatchDroid: A framework
for patching inter-app vulnerabilities in androapplication, in: IEEE Int.
Conf. Commun., Institute of Electrical and Electronics Engineers Inc.,
2017. https://doi.org/10.1109/ICC.2017.7996682.

ID692 B. Buddhadev, P. Faruki, M.S. Gaur, S. Kharche, A. Zemmari,
FloVasion: Towards Detection of non-sensitive Variable Based
Evasive Information-Flow in AndroApps, IETE J. Res. (2020).
https://doi.org/10.1080/03772063.2020.1721338.

ID704 Z. Cheng, X. Chen, Y. Zhang, S. Li, J. Xu, MUI-defender: CNN-driven,
network flow-based information theft detection for mobile users, in: Lect.
Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, Springer
Verlag, 2019: pp. 329–345. https://doi.org/10.1007/978-3-030-12981-
1_23.

ID706 E. Pan, J. Ren, M. Lindorfer, C. Wilson, D. Choffnes, Panop-
tispy: Characterizing Audio and Video Exfiltration from AndroAp-
plications, Proc. Priv. Enhancing Technol. 2018 (2018) 33–50.
https://doi.org/10.1515/popets-2018-0030.

Electronics 2021, 10, 1999 30 of 32

Table A1. Cont.

ID730 J.C.J. Keng, L. Jiang, T.K. Wee, R.K. Balan, Graph-aided directed test-
ing of androapplications for checking runtime privacy behaviours,
in: Proc.—11th Int. Work. Autom. Softw. Test, AST 2016,
Association for Computing Machinery, Inc, 2016: pp. 57–63.
https://doi.org/10.1145/2896921.2896930.

ID771 X. Liu, J. Liu, S. Zhu, W. Wang, X. Zhang, Privacy risk anal-
ysis and mitigation of analytics libraries in the androecosys-
tem, IEEE Trans. Mob. Comput. 19 (2020) 1184–1199.
https://doi.org/10.1109/TMC.2019.2903186.

ID783 H. Fu, Z. Zheng, S. Bose, M. Bishop, P. Mohapatra, LeakSemantic: identi-
fying abnormal sensitive network transmissions in mobile applications,
in: Proc.—IEEE INFOCOM, Institute of Electrical and Electronics Engi-
neers Inc., 2017. https://doi.org/10.1109/INFOCOM.2017.8057221.

ID813 J. Ren, M. Lindorfer, D.J. Dubois, A. Rao, D. Choffnes, N. Vallina-
Rodriguez, Bug Fixes, Improvements, ... and Privacy Leaks—A Longi-
tudinal Study of PII Leaks Across AndroApp Versions, in: Proc. 2018
Netw. Distrib. Syst. Secur. Symp., Internet Society, Reston, VA, 2018.
https://doi.org/10.14722/ndss.2018.23143.

ID827 Y. He, L. Zhang, Z. Yang, Y. Cao, K. Lian, S. Li, W. Yang, Z. Zhang, M.
Yang, Y. Zhang, H. Duan, TextExerciser: Feedback-driven text input
exercising for androapplications, in: Proc.—IEEE Symp. Secur. Priv.,
Institute of Electrical and Electronics Engineers Inc., 2020: pp. 1071–1087.
https://doi.org/10.1109/SP40000.2020.00071.

ID829 Z. Meng, Y. Xiong, W. Huang, L. Qin, X. Jin, H. Yan, AppScalpel: Com-
bining static analysis and outlier detection to identify and prune unde-
sirable usage of sensitive data in Androapplications, Neurocomputing.
341 (2019) 10–25. https://doi.org/10.1016/j.neucom.2019.01.105.

ID842 M. Diamantaris, E.P. Papadopoulos, E.P. Markatos, S. Ioannidis, J. Po-
lakis, Reaper: Real-time app analysis for augmenting the andropermis-
sion system, in: CODASPY 2019—Proc. 9th ACM Conf. Data Appl.
Secur. Priv., Association for Computing Machinery, Inc, 2019: pp. 37–48.
https://doi.org/10.1145/3292006.3300027.

ID846 M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow, G. Pelle-
grino, S. Bugiel, M. Backes, The Rise of the Citizen Developer: Assessing
the Security Impact of Online App Generators, in: Proc.—IEEE Symp.
Secur. Priv., Institute of Electrical and Electronics Engineers Inc., 2018:
pp. 634–647. https://doi.org/10.1109/SP.2018.00005.

ID893 T. Wu, Y. Yang, Detecting AndroInter-App Data Leakage Via Com-
positional Concolic Walking, Intell. Autom. Soft Comput. (2019).
https://doi.org/10.31209/2019.100000079.

ID902 M. Graa, N. Cuppens-Boulahia, F. Cuppens, J.L. Lanet, R. Moussaileb,
Detection of side channel attacks based on data tainting in androsystems,
in: IFIP Adv. Inf. Commun. Technol., Springer New York LLC, 2017: pp.
205–218. https://doi.org/10.1007/978-3-319-58469-0_14.

ID908 X. Pan, X. Wang, Y. Duan, X. Wang, H. Yin, Dark Hazard: Learning-based,
Large-Scale Discovery of Hidden Sensitive Operations in AndroApps,
in: Proc. 2017 Netw. Distrib. Syst. Secur. Symp., Internet Society, Reston,
VA, 2017. https://doi.org/10.14722/ndss.2017.23265.

ID915 R. Salvia, P. Ferrara, F. Spoto, A. Cortesi, SDLI: Static Detection of Leaks
Across Intents, in: Proc.—17th IEEE Int. Conf. Trust. Secur. Priv.
Comput. Commun. 12th IEEE Int. Conf. Big Data Sci. Eng. Trust. 2018,
Institute of Electrical and Electronics Engineers Inc., 2018: pp. 1002–1007.
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00141.

Electronics 2021, 10, 1999 31 of 32

Table A1. Cont.

ID955 L. Yu, T. Zhang, X. Luo, L. Xue, H. Chang, Toward Automatically Gener-
ating Privacy Policy for AndroApps, IEEE Trans. Inf. Forensics Secur. 12
(2017) 865–880. https://doi.org/10.1109/TIFS.2016.2639339.

ID967 G. Barbon, A. Cortesi, P. Ferrara, E. Steffinlongo, DAPA: Degradation-
aware privacy analysis of Androapps, in: Lect. Notes Comput. Sci.
(Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
Springer Verlag, 2016: pp. 32–46. https://doi.org/10.1007/978-3-319-
46598-2_3.

References
1. Privacy and Data Protection in Mobile Applications—ENISA. Available online: https://www.enisa.europa.eu/publications/

privacy-and-data- (accessed on 16 August 2021).
2. Gamba, J.; Rashed, M.; Razaghpanah, A.; Tapiador, J.; Vallina-Rodriguez, N. An analysis of pre-installed android software.

In Proceedings of the IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 18–21 May 2020; pp. 1039–1055.
3. Balebako, R.; Marsh, A.; Lin, J.; Hong, J.; Faith Cranor, L. The Privacy and Security Behaviors of Smartphone App Developers.

In Proceedings of the 2014 Workshop on Usable Security, Reston, VA, USA, 23 February 2014, doi:10.14722/usec.2014.23006.
4. IDC—Smartphone Market Share—OS. Available online: https://www.idc.com/promo/smartphone-market-share (accessed on

16 August 2021).
5. Zang, J.; Dummit, K.; Graves, J.; Lisker, P.; Sweeney, L. Who Knows What About Me? A Survey of Behind the Scenes Personal

Data Sharing to Third Parties by Mobile Apps. Technol. Sci. 2015, 30, 1–53.
6. Li, L.; Bissyandé, T.F.; Papadakis, M.; Rasthofer, S.; Bartel, A.; Octeau, D.; Klein, J.; Traon, L. Static analysis of android apps:

A systematic literature review. Inf. Softw. Technol. 2017, 88, 67–95, doi:10.1016/j.infsof.2017.04.001.
7. Sadeghi, A.; Bagheri, H.; Garcia, J.; Malek, S. A Taxonomy and Qualitative Comparison of Program Analysis Techniques for

Security Assessment of Android Software. IEEE Trans. Softw. Eng. 2017, 43, 492–530, doi:10.1109/TSE.2016.2615307.
8. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A Review of Android Malware Detection Approaches Based on Machine

Learning. IEEE Access 2020, 8, 124579–124607, doi:10.1109/ACCESS.2020.3006143.
9. Pan, Y.; Ge, X.; Fang, C.; Fan, Y. A Systematic Literature Review of Android Malware Detection Using Static Analysis. IEEE

Access 2020, 8, 116363–116379, doi:10.1109/ACCESS.2020.3002842.
10. Garg, S.; Baliyan, N. Android security assessment: A review, taxonomy and research gap study. Comput. Secur. 2021, 102087,

doi:10.1016/j.cose.2020.102087.
11. Wuyts, K. Privacy Threats in Software Architectures. 2015; p. 192. Available online: https://limo.libis.be/primo-

explore/fulldisplay?docid=LIRIAS1656390&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&
fromSitemap=1 (accessed on 16 August 2021)

12. Hansen, M.; Jensen, M.; Rost, M. Protection goals for privacy engineering. In Proceedings of the 2015 IEEE Security and Privacy
Workshops, San Jose, CA, USA, 21–22 May 2015; pp. 159–166, doi:10.1109/SPW.2015.13.

13. Stevens, R.; Gibler, C.; Crussell, J.; Erickson, J.; Chen, H. Investigating User Privacy in Android Ad Libraries. In Workshop on
Mobile Security Technologies (MoST); Citeseer: Philadelphia, PA, USA; 2012; Volume 10, pp. 195–197.

14. About Android App Bundle|Android developers. Available online: https://developer.android.com/guide/app-bundle (ac-
cessed on 16 August 2021).

15. Bourque, P.; Dupuis, R.; Abran, A.; Moore, J.W.; Tripp, L. Guide to the Software Engineering Body of Knowledge, Version 3.0; IEEE:
Piscataway, NJ, USA, 2014.

16. Alsharif, M.H.; Kelechi, A.H.; Yahya, K.; Chaudhry, S.A. Machine Learning Algorithms for Smart Data Analysis in Internet of
Things Environment: Taxonomies and Research Trends. Symmetry 2020, 12, 88, doi:10.3390/sym12010088.

17. Kong, P.; Li, L.; Gao, J.; Liu, K.; Bissyandé, T.F.; Klein, J. Automated testing of Android apps: A systematic literature review. IEEE
Trans. Reliab. 2019, 68, 45–66, doi:10.1109/TR.2018.2865733.

18. Wieringa, R.; Maiden, N.; Mead, N.; Rolland, C. Requirements engineering paper classification and evaluation criteria: A proposal
and a discussion. Requir. Eng. 2006, 11, 102–107, doi:10.1007/s00766-005-0021-6.

19. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering:
An update. In Information and Software Technology; Elsevier: Amsterdam, The Netherlands; 2015; Volume 64, pp. 1–18,
doi:10.1016/j.infsof.2015.03.007.

20. Cavacini, A. What is the best database for computer science journal articles? Scientometrics 2015, 102, 2059–2071,
doi:10.1007/s11192-014-1506-1.

21. 2017 IEEE Thesaurus Version 1.0 Created by The Institute of Electrical and Electronics Engineers (IEEE). Technical Report, IEEE.
Available online: https://www.ieee.org/publications/services/thesaurus-access-page.html (accessed on 16 August 2021)

22. Computing Classification System. Available online: https://dl.acm.org/ccs (accessed on 16 August 2021).

https://www.enisa.europa.eu/publications/privacy-and-data-
https://www.enisa.europa.eu/publications/privacy-and-data-
https://www.idc.com/promo/smartphone-market-share
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1656390&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1656390&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1656390&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1
https://developer.android.com/guide/app-bundle
https://www.ieee.org/publications/services/thesaurus-access-page.html
https://dl.acm.org/ccs

Electronics 2021, 10, 1999 32 of 32

23. ISO—ISO/IEC/IEEE 24765:2017—Systems and Software Engineering—Vocabulary. Available online: https://standards.iso.org/
ittf/PubliclyAvailableStandards/c071952_ISO_IEC_IEEE_24765_2017.zip (accessed on 16 August 2021).

24. Del Alamo, J.M.; Guaman, D.S.; Diez, A.; Balmori, B. Privacy Assessment in Android Apps: A Systematic Mapping Study.
Mendeley Data 2021, doi:10.17632/jr349zxzcg.2.

25. InCites—Clarivate Analytics. Available online: https://esi.clarivate.com/ (accessed on 16 August 2021).
26. Krippendorff, K. Testing the reliability of content analysis data: What is involved and why. In The Content Analysis Reader; SAGE

Publications: New York, NY, USA; 2009 .
27. Octeau, D.; Jha, S.; McDaniel, P. Retargeting Android applications to Java bytecode. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineering, Cary North, CA, USA, 11–16 November 2012,
doi:10.1145/2393596.2393600.

28. Vallée-Rai, R.; Hendren, L.; Co, P.; Lam, P.; Gagnon, E.; Sundaresan, V. Soot—A Java bytecode optimization framework.
In CASCON ’10: CASCON First Decade High Impact Papers, Toronto, ON, Canada, 1–4 November 2010; pp. 214–224,
doi:10.1145/1925805.1925818.

29. Miecznikowski, J.; Hendren, L. Decompiling Java bytecode: Problems, traps and pitfalls. In Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Verlag: Berlin/Heidelberg,
Germany, 2002; Volume 2304, pp. 111–127, doi:10.1007/3-540-45937-5_10.

30. Bartel, A.; Klein, J.; Monperrus, M. Dexpler: Converting android dalvik bytecode to jimple for static analysis with soot.
In Proceedings of the ACM SIGPLAN International Workshop on State of the Art in Java Program Analysis, Beijing, China, 14
June 2012; pp. 27–38, doi:10.1145/2259051.2259056.

31. Octeau, D.; McDaniel, P.; Jha, S.; Bartel, A.; Bodden, E.; Klein, J.; Le Traon, Y. Effective inter-component communication
mapping in android with epicc: An essential step towards holistic security analysis. In Proceedings of the 22nd USENIX Security
Symposium, Washington, DC, USA, 14–16 August 2013; pp. 543–558.

32. Octeau, D.; Luchaup, D.; Dering, M.; Jha, S.; McDaniel, P. Composite constant propagation: Application to android inter-
component communication analysis. In Proceedings of the International Conference on Software Engineering, Florence, Italy,
16–24 May 2015; Volume 1, pp. 77–88, doi:10.1109/ICSE.2015.30.

33. Li, L.; Bartel, A.; Bissyandé, T.F.; Klein, J.; Traon, Y.L.; Arzt, S.; Rasthofer, S.; Bodden, E.; Octeau, D.; McDaniel, P. IccTA: Detecting
inter-component privacy leaks in android apps. In Proceedings of the International Conference on Software Engineering, Florence,
Italy, 16–24 May 2015; Volume 1, pp. 280–291, doi:10.1109/ICSE.2015.48.

34. IDA Pro—Hex Rays Available online: https://hex-rays.com/ida-pro/ (accessed on 16 August 2021).
35. Choudhary, S.R.; Gorla, A.; Orso, A. Automated Test Input Generation for Android: Are We There Yet? In Proceedings of the

2015 30th IEEE/ACM International Conference on Automated Software Engineering, Lincoln, NE, USA, 9–13 November 2015;
pp. 429–440.

36. Gürses, S. Can you engineer privacy? Commun. ACM 2014, 57, 20–23, doi:10.1145/2633029.
37. Nissenbaum, H. Privacy as contextual integrity. Wash. Law Rev. 2004, 79, 119–157.
38. ARTICLE 29 DATA PROTECTION WORKING PARTY Opinion 02/2013 on Apps on Smart Devices. Available online: https:

//ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2013/wp202_en.pdf (accessed on: 16 August
2021)

39. Trade Commission, F. Mobile privacy disclosures: Building trust through transparency. In Mobile Privacy Disclosures: Recommenda-
tions of the Federal Trade Commission; Federal Trade Commission: Washington, DC, USA, 2013; pp. 1–34.

40. Guaman, D.S.; Del Alamo, J.M.; Caiza, J.C. GDPR Compliance Assessment for Cross-border Personal Data Transfers in Android
Apps. IEEE Access 2021, 9, doi:10.1109/ACCESS.2021.3053130.

41. GDPR Fines & Data Breach Penalties. Available online: https://www.enforcementtracker.com/ (accessed on 16 August 2021).
42. Castelluccia, C.; Gürses, S.; Hansen, M.; Hoepman, J.H.; Hoboken, J.V.; Vieira, B. Privacy and Data Protection in Mobile Applications:

A Study on the App Development Ecosystem and the Technical Implementation of GDPR; ENISA: Athens, Greece, 2017; p. 70.
43. Rashid, A.; Chivers, H.; Danezis, G.; Lupu, E.; Martin, A. The Cyber Security Body of Knowledge (CyBoK) 1.0; University of Bristol:

Bristol, UK, 2019; p. 299.
44. McIlroy, S.; Ali, N.; Khalid, H.; E. Hassan, A. Analyzing and automatically labelling the types of user issues that are raised in

mobile app reviews. Empir. Softw. Eng. 2016, 21, 1067–1106, doi:10.1007/s10664-015-9375-7.
45. Mobile Android Version Market Share Worldwide|StatCounter Global Stats. Available online: https://gs.statcounter.com/

android-version-market-share/mobile/worldwide/ (accessed on 16 August 2021).
46. Guaman, D.S.; Alamo, J.M.; Caiza, J.C. A Systematic Mapping Study on Software Quality Control Techniques for Assessing

Privacy in Information Systems. IEEE Access 2020, 8, 74808–74833, doi:10.1109/ACCESS.2020.2988408.
47. Ebrahimi, F.; Tushev, M.; Mahmoud, A. Mobile App Privacy in Software Engineering Research: A Systematic Mapping Study.

Inf. Softw. Technol. 2019, 14, 106466.

https://standards.iso.org/ittf/PubliclyAvailableStandards/c071952_ISO_IEC_IEEE_24765_2017.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c071952_ISO_IEC_IEEE_24765_2017.zip
https://esi.clarivate.com/
https://hex-rays.com/ida-pro/
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2013/wp202_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2013/wp202_en.pdf
https://www.enforcementtracker.com/
https://gs.statcounter.com/android-version-market-share/mobile/worldwide/
https://gs.statcounter.com/android-version-market-share/mobile/worldwide/

	Introduction
	Background
	Privacy Assessment
	Assessment Techniques
	Technique Quality

	Methodology
	Scope and Research Questions
	Paper Search Strategy
	Inclusion and Exclusion Procedure
	Automated Inclusion—Exclusion Procedure
	Manual Inclusion—Exclusion Procedure

	Classification Scheme and Procedure

	Results
	RQ1: What Privacy Issues Have Been Assessed in Android Apps?
	RQ2: What Techniques Have Been Used to Assess Apps' Privacy?
	Static Analysis
	Dynamic Analysis
	Machine Learning-Based Analysis

	RQ3: What Is the Quality Level of the Techniques Identified?

	Discussion
	A Switch in Privacy Paradigms
	From Policy Compliance to Legal Compliance
	App Developers Need More Support
	Changes on Apps Delivery Practices

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Conclusions
	The Full List of Examined Publications
	References

