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Abstract: The SARS-CoV-2 virus has spread worldwide, and the World Health Organization has
declared COVID-19 pandemic, proclaiming that the entire world must overcome it together. The
chest X-ray and computed tomography datasets of individuals with COVID-19 remain limited, which
can cause lower performance of deep learning model. In this study, we developed a model for the
diagnosis of COVID-19 by solving the classification problem using a self-supervised learning tech-
nique with a convolution attention module. Self-supervised learning using a U-shaped convolutional
neural network model combined with a convolution block attention module (CBAM) using over
100,000 chest X-Ray images with structure similarity (SSIM) index captures image representations
extremely well. The system we proposed consists of fine-tuning the weights of the encoder after a
self-supervised learning pretext task, interpreting the chest X-ray representation in the encoder using
convolutional layers, and diagnosing the chest X-ray image as the classification model. Additionally,
considering the CBAM further improves the averaged accuracy of 98.6%, thereby outperforming
the baseline model (97.8%) by 0.8%. The proposed model classifies the three classes of normal,
pneumonia, and COVID-19 extremely accurately, along with other metrics such as specificity and
sensitivity that are similar to accuracy. The average area under the curve (AUC) is 0.994 in the
COVID-19 class, indicating that our proposed model exhibits outstanding classification performance.

Keywords: COVID-19; self-supervised learning; deep learning; convolution attention; chest X-ray;
Score-CAM

1. Introduction

The SARS-CoV-2 virus, which causes COVID-19, has appeared across the globe and
has considerably damaged all forms of human activities worldwide. As a species of the
corona virus, such as the severe acute respiratory syndrome coronavirus that appeared
in 2002 and the Middle East respiratory syndrome coronavirus that appeared in 2012,
the SARS-CoV-2 virus spreads in the form of a droplet infection. Its spread has had
adverse effects on the economies and culture of humankind. The SARS-CoV-2 virus
infected 6.18 million people in just six months from December 2019 across the globe, and
it continues to spread. Since discovery, approximately eighty million cases have been
recorded world wide, including 35 million cases in the Americas, 26 million in Europe,
and 1.8 million confirmed deaths across the globe as of 1 January 2021. Because of the
rate of spread, the World Health Organization (WHO) declared the COVID-19 disease
a pandemic on 11 March 2020, and the whole world has since been actively working to
overcome this disease.

As the virus spreads around the world, experts are urging you to keep a distance
from your acquaintances, and working hard to intensively manage confirmed cases and
conduct epidemiological investigations of contacts. As the virus is highly contagious,
keeping distance is the key to preventing the spread of the virus. Moreover, infected
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patients require immediate treatment to prevent the spread and survive. Therefore, a
quick diagnosis system is important to enable the patient to be treated and to contain the
contagion. However, there is a significant problem with the detection of COVID-19.

Reverse transcriptase-polymerase chain reaction (RT-PCR) is considered to be a stan-
dard for detecting the SARS-CoV-2 virus [1], but it has some flaws, namely that is time-
consuming, lacks sensitivity, and can yield a highly variable positive rate depending on
the sample collection method [2,3]. Meanwhile, artificial intelligence (AI) is widely used
as a solution to several problems in areas such as engineering, and economics around the
world [4,5]. Particularly, convolution neural networks (CNNs) perform extremely well in
image classification tasks. As patients infected by the SARS-CoV-2 or other pneumonial
viruses have noticeable characteristics in their lung tissues [6], deep learning models can
aid radiologists in pre-determining diseases with chest X-rays (CXRs). Compared to RT-
PCR, AI using CNN has advantages such as time conservation and increased accuracy [7].
To overcome the weaknesses of RT-PCR, AI-based methods are being actively studied as
tools for detecting the SARS-CoV-2 virus using CXRs [8–11]. These studies have adopted
CNN-based models to classify CXR images to determine if an individual has COVID-19 or
not. Furthermore, data sets of chest radiography images, such as CXRs and computed to-
mography (CT), of patients with COVID-19 are collected; these can be used by radiologists
to analyze whether the patient is infected or not [11].

As deep learning models have millions of parameters to be trained, they cannot yield
good performance if the reliable training data are not enough, leading to misclassification [12].
However, as the published CXR dataset for COVID-19 is limited compared to other pneu-
monial diseases, generalization performance of deep learning models might not be good
enough in real application. For this reason, in this paper we considered various approaches
to improve the classification performance by introducing structure-wise approach. We used
a self-supervised learning method, Models Genesis [13], to ensure more robust represen-
tation learning. Then, lower-dimensional representations of CXR images can be captured;
with the embedding layer that converts image features to them, we developed a classifier
with an accuracy of 98.6%, thereby surpassing the accuracy of the baseline model (97.8%)
by 0.8%. Our proposed system reaches improved performance by using self-supervised
learning and convolutional attention module with 112,120 unlabeled CXR images and
fine-tuning the weights of the encoder with COVID-19 data. This implies that our method
can yield an accurately predicted class, even in unseen data. Furthermore, the results
of the self-supervised learning pretext task and score-weighted class activation mapping
(Score-CAM) [14] reveal that our study provides qualitative explanations, supported by
high accuracy, sensitivity, specificity, and the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve as the quantitative metrics.

In this paper we focused on the fact that COVID-19 is a disease affecting the lungs, the
same as pneumonia. Therefore, we considered Models Genesis, self-supervised learning
to extract the features of lung images from a large CXR dataset. Because classification
was performed by fine-tuning the weights of the encoder from the trained model by
self-supervised learning, the performance of the proposed model exceeds other existing
convolutional neural networks for predicting COVID-19. Quantitative and qualitative
evaluations are also conducted for the self-supervised learning and downstream task of
our proposed system, by examining the reasons for well-classified and misclassified cases
visually. Source codes for this study is provided in https://github.com/ngbsLab/covid19
(accessed on 12 August 2021). Overall, the main contributions in this paper are:

• Firstly, self-supervised learning is introduced to prevent the overfitting problem
caused by the limited number of training images in deep learning. Models Gene-
sis [13] was modified by adding convolutional attention module and trained using
112,120 unlabeled CXR dataset. And it was fine-tuned on a COVID-19 data set con-
taining 1821 X-ray images. The accuracy of our model is 98.6%.

• We improved the performance of Models Genesis by adding a convolutional attention
module after every convolutional layer. We conducted extensive experiments in

https://github.com/ngbsLab/covid19
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which we compared the performance of the modified Models Genesis containing the
attention modules with that of the original for the COVID-19 classification.

• For qualitative evaluation of model results, we considered a visually explainable AI
approach, Score-CAM [14]. By using it, we investigated how the proposed model
makes correct/incorrect classifications to identify critical factors related to COVID-19
cases. The Score-CAM used in this paper is an improved method which resolve issues
of the Grad-CAM [15].

2. Materials and Methods

This section describes the datasets and methods for the classification task based on
CNN using self-supervised learning with a pretext task by a modified Models Genesis [13],
which consists of UNet [16] and Convolutional Block Attention Module (CBAM) [17].
Combining these methods increases the classification accuracy, along with other metrics
such as the sensitivity and AUC.

2.1. Datasets

The datasets used in this study were collected from various sources to develop classi-
fication models that could accurately identify images as belonging to the classes of normal,
pneumonia, and COVID-19. Considering the balancing problem in classification tasks, the
size of dataset for each of the three classes was set to 607. The NIH CXR dataset [18], which
is used for self-supervised learning, consists of 122,120 images in PNG format, including
images with two classes, normal and pneumonia. COVID-19 datasets were collected from
various sources, as presented in Table 1.

Table 1. Number of data for each class used in this study and its sources.

Class Sources Number of Data

Normal NIH CXRs dataset 607
Pneumonia NIH CXRs dataset 607
COVID-19 COVID-19 image data collection [19] 468

Figure 1 COVID-19 CXRs [20] 35
Actualmed COVID-19 CXRs [21] 58

COVID-19 Radiography Database [22] 46

These datasets are collected from same sources based on the baseline model by Lee
et al. [11], to compare the model performances. All the images are resized to 512× 512,
because the collected images are in different shapes. For self-supervised learning, we
used 112,120 images as training dataset and 1000 images as validation dataset. For our
classification task, we split the data randomly into three parts: 20% of the total data set into
test set, 20% of the remaining as validation set, and the remaining as the training set; this
yields 1160 training data, 290 validation data, and 363 test data. Then the pixel values of
the collected images were scaled by a factor in the range of zero to one.

2.2. Existing Models

As mentioned above, since the collected datasets are from the same sources as in
Lee et al. [11], we set their model as the baseline. Lee et al. [11] trained deep CNN-
based models by visual geometric group (VGG) team in Oxford University, VGG-16 and
VGG-19 [23]. VGG-16 and VGG-19 have depth of 16 and 19 depth convolutional layers,
using an architecture with very small (3× 3) convolution filters. While slightly increasing
the depth of convolutional layers, image classification performance reached the highest in
ImageNet Challenge 2014 submission. They constructed 12 experimental models by using
different degrees of fine-tuning for VGG-16 and -19 models. Then, Lee et al. [11] conducted
an experiment to compare the performance of the models for the COVID-19 classification.
Fine-tuning with Conv block 4 and Conv block 5 of VGG-16 exhibited the highest AUC
value of the ROC curve.



Electronics 2021, 10, 1996 4 of 17

Furthermore, in addition to the baseline model by Lee et al. [11], we compare the per-
formance of our proposed systems through two recently released models by Das et al. [24]
and Rahimzadeh et al. [25]. Das et al. [24] proposed a two-stage machine learning model
for classifying COVID-19 using CXR images. The proposed model extracts CXR features
with the VGG19 model pretrained with ImageNet dataset, and classifies CXR images into
normal and abnormal by logistic regression. Then, CXR images classified as abnormal
in the first stage are again classified into pneumonia and COVID-19 using XGBoost [26].
Rahimzadeh et al. [25] introduced some training techniques that help the network learn
better when there is an unbalanced dataset (with more cases from other classes and fewer
COVID-19s). Also, the authors proposed a neural network connecting Xception [27] and
ResNet50V2 [28] networks.

Accuracy, sensitivity, specificity, AUC and F1 score of the VGG-16 with fine-tuning by
Lee et al. [11], bi-level classifier by Das et al.[24] and Xception and ResNet50V2 concated
model by Rahimzadeh et al. [25] were set for comparison with our proposed method.
Besides, we compared our proposed method with other well-known models, such as
ResNet-50, ResNet-101 [29], MobileNet [30], and MobileNetV2 [31] which were utilized in
other COVID-19 research [32–34].

2.3. Self-Supervised Learning

Self-supervised learning is used to learn the feature representations using unlabeled
data. As a form of semi-supervised learning, self-supervised learning is a state-of-the-
art technique that uses unlabeled data with a pretext task to capture semantic features
for use in other vision tasks such as classification and to improve the performance or to
prevent overfitting when the data are limited [35,36]. Image features learned from a self-
supervised learning method can be good substitutes when used in a transferring approach
in other vision tasks, as proven by various former studies such as Larsson et al. [37] and
Zhang et al. [38]. Furthermore, introducing self-supervised learning to obtain represen-
tations of data improves the accuracy of the model and makes the model more robust to
the result and even to adversarial examples [39]. Due to these benefits, self-supervised
learning has been widely used in various areas including medical image management. The
pretext task of Models Genesis begins by transforming the input medical images using
three steps: non-linear transformation, local-shuffling, and out-painting or in-painting,
as shown in Figure 1. See Zhou et al. [13] for details of the three types of input image
transformation of Models Genesis.

Figure 1. Example of transformed CXR (2D) by Models Genesis. CXR images are transformed using
distortion-based and painting-based methods [13].
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In the pretext task of Models Genesis, the model learns the CXR representation
by restoring the transformed images into their original ones. UNet encoder-decoder
architecture is used for the restoration task. UNet [16] is the model that first introduced
a fully convolutional network in segmentation tasks, especially in the medical image
field. Although it does not contain fully connected layers, it has fully convolution layers,
thereby enabling the model to yield more accurate results in segmentation tasks. It is
a U-shaped model, as shown in Figure 2, that consists of convolution and upsampling
layers to make input and output shapes equal. UNet is divided into two parts: the encoder
and the decoder. The encoder component uses a convolution layer to train input image
features and the decoder component for segmentation tasks upsamples the output of the
encoder gradually to yield the same shape as the input, corresponding to the same depth
of the encoding component using upsampling layers. Furthermore, because the decoding
component begins with a significantly large number of feature channels, the model can
propagate context information to higher resolution layers [16].

Figure 2. UNet architecture. As shown in this figure, the U-shaped model which is used especially
for segmenting medical images [16].

2.4. Convolutional Attention Module

The attention method used in the deep learning field has several advantages. Attention
enables a deep learning model to focus on an important point of the input and yield better
interpretations of the output. Additionally, attention allows researchers to interpret the
deep learning model through human perception [40]. Therefore, various approaches for
applying attention to CNN-based models have been proposed. One approach is called the
Convoluational Block Attention Module (CBAM), which was developed by Woo et al. [17].
Figure 3 shows the architecture of the CBAM. It consists of channel-wise and spatial-wise
attentions. When a feature map F is given as input, the CBAM computes two feature maps
using the channel-wise and spatial-wise attentions. Then, the overall CBAM is expressed
as follows:

F ⊂ RH×W×C;

Mc ⊂ R1×1×C;

Ms ⊂ RH×W×1;

F′ = Mc(F)⊗ F;

F′′ = Mx(F′)⊗ F′,

where H, W, and C are the height, width, and channel of the input feature map, respectively,
⊗ denotes element-wise multiplication, and Mc and Ms represent the channel-wise and
spatial-wise attentions, respectively. The channel attention map represents the ‘inter-
channel relationship’ of features by considering the channel of an input feature map as
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a feature detector [41]. Channel attention uses multi-layer perceptron, with one hidden
layer applied to two different features of average-pooling and max-pooling operations.
Therefore, it can be interpreted as focusing on the ‘what’ is meaningful in the input feature
map [17]. Spatial attention, unlike channel attention, produces a spatial attention map
focusing on ‘inter-spatial relationship’ of the input feature map. It uses convolution layers
to generate spatial attention maps with a filter size of 7× 7 and sigmoid function. Hence,
spatial attention can be interpreted as focusing on ‘where’ to be counted as an important
area of input feature map [17]. Using the channel and spatial attention, CBAM can be used
on any dimensional feature map when it follows the convolution layer.

Figure 3. Architecture of the CBAM [17].

2.5. Our Proposed System
2.5.1. Self-Supervised Learning with Convolutional Attention Module

In this paper, we used the self-supervised learning method, Models Genesis [13] and
modified it with CBAM [17] after every convolutional layer in Models Genesis networks to
learn the representation of CXR images. For the self-supervised learning we conducted
an experiment with NIH large CXR dataset, which contains 112,120 CXR images from
pneumonia patients and normal cases. Following the transformation of the input images
based on Models Genesis, the proposed self-supervised learning model should capture
image features better than the model without self-supervised learning because the use of
large amounts of CXR data helps capturing important CXR image features.

Figure 4 illustrates how our self-supervised learning task captures the image repre-
sentations as pictionary. The original CXR images are expressed as X and restored images
as X′. Transformed images are input into the U-shaped architecture of Models Genesis to
restore their original pixel values. During this task, the U-shaped architecture and CBAM
weights are updated to restore the transformed images. We conducted the self-supervised
learning from scratch using the training dataset, and trainable weights are initialized
randomly from zero to one. The loss function, L(X, X′), consists of structure similarity
(SSIM) index [42] which is used to measure similarity between original images and their
corresponding restored ones. SSIM index is calculated by following equations:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ.

The term l(x, y) equals (2µxµy + C1)/(µ2
x + µ2

y + C1), where µ represents sample
mean and C1 is a very small constant to stabilize the metric when µs are close to zero.
l(x, y) indicates the difference of luminance of the two images. c(x, y) equals 2(σxσy +
C2)/(σ2

x + σ2
y + C2), where σ represents sample standard deviation and C2 is a constant

close to zero. c(x, y) indicates the difference of the contrast of the two images. And s(x, y)
is calculated by (σxy + C3)/(σxσy + C3) which is a measure for the structural correlation
between two images, and C3 also plays a role in stabilizing the fraction calculations as C1
and C2. The parameters, α , β and γ which are positive values, are adjustment numbers
for relative importance of the three components. For our experiments, C1, C2, and C3
are set to very small value, 0.000001, and all three parameters are equal to 1, to simplify
the calculations.
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Figure 4. The modified Models Genesis with CBAM.

Therefore, as SSIM index has its value between 0 to 1 in our experiments, the 1−SSIM
index is used as the loss function to maximize the SSIM index while reducing the loss value.

2.5.2. Fine-Tuing the Encoder

Figure 5 shows our overall proposed system for the COVID-19 classification. As the
self-supervised learning is conducted using 112,120 images, we enable our encoder-decoder
architecture to capture representations of the CXR images. Our proposed classification
model fine-tunes the weights of the encoder network from the pretrained self-supervised
learning model.

Figure 5. Our overall proposed system.

Behind the encoder network from the self-supervised learning model, we added
classification layers which consist of four convolution layers, a max pooling layer, a global
average pooling layer, and some fully connected layers. The four 2D convolution layers
are to interpret the information of feature maps resulting from the encoder. After the
convolution layers, the max and global average pooling layers follow to maintain graphical
features and to produce one-dimensional nodes which connect to fully connected layers.
A max pooling layer is used to down-sample the output of the two convolution layers.
This procedure reduces the input dimension while maintaining the graphical information.
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Furthermore, a global average pooling layer calculates the average values of each feature
map, containing more implicative information than a flatten layer and prevents overfitting
by reducing trainable parameters [43].

3. Experimental Study
3.1. Experimental Details

We trained the self-supervised learning model using the traing dataset, and the
validation set is used for hyperparameter tuning. The evaluation metric is the SSIM index
and mean squared error (MSE) which considers the self-supervised learning task as a
regression task to predict the pixel values of original CXR images.

For self-supervised learning, the initial learning rate was 0.0001 with an Adam opti-
mizer [44]. In the training procedure, the key to develop classification models is to prevent
overfitting. Thus, we used data augmentation techniques to make the training data more
variety [45]. In this experiment, we used the three image data augmentation methods,
which are flipping, zooming and width shifting to reduce the bias due to the characteristics
of the CXR images. Flipping refers to a method of flipping an image left and right, and
zooming is a method of performing augmentation with zooming at a certain ratio. Width
shifting is an augmentation method that can reduce the bias on the position of an object
in the image by moving the image up, down, left, and right by a certain distance. For the
self-supervised learning task, the selected hyperparameter is the Adam optimizer with
initial learning rate 0.0001. The learning rate of Adam optimizer decreases exponentially
by 0.8 every 10 epochs afterh 40th epoch and the batch size is 16. Also, the L1 and L2
regularization value was 0.01 and the drop out ratio was 0.2. For classification task, the
selected hyperparameter is the Adam optimizer with initial learning rate 0.00001. The
learing rate decreases exponentiall by 0.8 after 30th epoch by 0.8 and the batch size is 32.

Along with the structure-wise methods such as self-supervised learning and data aug-
mentation, regularization, batch normalization, and dropout methods are used to manage
the model. Regularization can improve the model performance and prevent overfitting
by controlling trainable weights via model complexity [46]. Loss function using L1 or L2
regularization reduces the model size in training. Furthermore, batch normalization is used
to reduce the chance for weights of layers to be high or low [47]. Additionally, dropout can
also improve model performance by removing several connections of nodes randomly in
hidden layers [48]. L1 and L2 regularization coefficients and the ratio of the total nodes to
dropout were carefully tuned according to the validation accuracy in our classification task.

In this experiment, we used NVIDIA Quadro RTX 8000 in the Ubuntu 20 operating
system. Entire neural networks were implemented using Keras API [49]. In the overall
classification task, we used a learning rate with exponentially decaying to prevent the
training procedure from falling in the local minimum of the loss function, beginning with
0.00001. An Adam optimizer was used in all training procedures.

3.2. Experimental Results

Figure 6 shows how well the modified Models Genesis with CBAM restores the
transformed images. As the figures show, the output images of self-supervised learning
pretext task are almost exactly the same as the original images. The training MSE of the
NIH CXR dataset is 0.0228 and 0.0234 for the validation set. For the SSIM index metric
of the NIH CXR dataset, the train dataset SSIM index is 0.9132, 0.9083 for the validation
dataset. Organs such as the bones, lungs, and heart are restored very clearly, which implies
that self-supervised learning using the modified Models Genesis pretext task can learn
medical image features very well.
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Figure 6. Result of self-supervised learning.

To evaluate the performance of our approach, the accuracy, specificity, sensitivity,
AUC and F1 score of the test dataset are used. Sensitivity denotes the ability of the model
to correctly detect infected patients given infected predicted cases, and specificity means to
correctly detect normal people given none predicted ill cases. These metrics are calculated
using the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Speci f icity =
TN

TN + FP

F1 score =
TP

TP + 1
2 (FP + FN)

where TP and TN are the number of correctly predicted images for positive and negative
cases, respectively, and FP and FN are the number of incorrectly predicted images for
positive and negative cases, respectively. Using TP, TN, FP and FN, we made a plot of ROC
curves and calculated the AUC to show the performance of the model at every threshold.
The classification performances of our approach as well as other models are presented
in Table 2.

From the table we can see that overall our model outperforms the baseline model and
other CNN based models. In particular, our model scored 98.6% averaged accuracy, 0.996
specificity, 0.992 sensitivity, and 0.994 AUC in the COVID-19 case. Although it did not
record the highest values in accuracy, sensitivity and specificity in all classes, the values of
sensitivity and specificity vary when calculated according to the level of threshold, it is
desirable to compare the overall accuracy, AUC and F1 scores to compare the classification
performances. Because our proposed system has the highest AUC, F1 score and overall
accuracy, it might be most powerful in diagnosing COVID-19 than other CNN-based
models presented here. Also, training loss using categorical cross entropy was 0.0256 while
0.0287 in the validation set, which indicates that there is no evidence of overfitting. The
confusion matrix in Figure 7 presents the result of the test dataset on the total samples
that are accurately classified by our proposed methods. Furthermore Figure 8 shows the
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ROC curves to depict overall classification performance of our proposed models in the test
dataset, which is very excellent.

Table 2. Performance of our proposed approach and other models. N, P and C denote normal, pneumonia, and COVID-19,
respectively, and Gen denotes Models Genesis.

Model Name Class Accuracy Specificity Sensitivity AUC F1 Score Averaged
Accuracy

Lee et al. [11]
N 0.980 0.992 0.982 0.981 0.968

0.978P 0.981 0.992 0.982 0.970 0.964
C 0.975 0.996 0.992 0.934 0.982

Das et al. [24]
N 0.964 0.959 0.962 0.964 0.956

0.954P 0.954 0.949 0.952 0.954 0.955
C 0.954 0.959 0.957 0.954 0.953

Rahimzadeh et al. [25]
N 0.982 0.985 0.987 0.979 0.980

0.983P 0.983 0.987 0.976 0.977 0.971
C 0.995 0.992 0.981 0.982 0.980

ResNet50 [29]
N 0.983 0.984 0.964 0.917 0.964

0.975P 0.978 0.975 0.953 0.950 0.968
C 0.994 1.0 1.0 0.976 0.982

ResNet101 [29]
N 0.972 0.984 0.964 0.970 0.955

0.975P 0.972 0.974 0.952 0.967 0.960
C 0.994 0.995 0.992 0.974 0.980

MobileNet [30]
N 0.975 0.988 0.973 0.979 0.960

0.972P 0.974 0.987 0.973 0.976 0.971
C 0.994 1.0 1.0 0.956 0.982

MobileNetV2 [31]
N 0.945 0.936 0.847 0.917 0.904

0.961P 0.945 0.982 0.969 0.950 0.924
C 0.994 1.0 1.0 0.986 0.982

Gen + CBAM (ours)
N 0.984 0.996 0.991 0.980 0.981

0.986P 0.978 0.975 0.953 0.988 0.984
C 0.995 0.996 0.992 0.994 0.992

Figure 7. Confusion matrix of our proposed model for the test dataset.
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Figure 8. ROC curve of our proposed model for the test dataset.

4. Discussion
4.1. AI over RT-PCR Using CXR

Published studies have shown that a diagnosis system that uses images such as CXR
and CT for COVID-19 has remarkable benefits over that of the RT-PCR [50,51]. However,
while CT uses longer durations to produce the images and requires more expensive equip-
ment, CXR is significantly cheaper and faster in producing the information from the tests.
Because of these benefits, expanding the diagnosis system to CXR using AI will enhance
the detection of COVID-19. Furthermore, developing systems that use AI to automatically
analyze the images will reduce the time and cost of diagnosis of COVID-19 and all kinds of
pneumonia diseases.

4.2. Interpretation of Classification Results Using Score-Cam

Figures 9 and 10 present examples of the Score-CAM [14]. Score-CAM can interpret
which parts of images are important according to the predicted result by using gradient
information flowing through the model from the last convolution layer to the input layer.
Compared to other CAM-based approaches, Score-CAM eliminates the dependence on
gradients by obtaining weights for activation maps through forward direction score on each
class. Therefore, Score-CAM produces a linear combination of weights and achieves better
performance for visual expression and fair interpretations for decision making process. As
our proposed model outperforms other models considered in this paper, we employed
Score-CAM to justify the model performance by confirming the activated regions of images
that are important to make such decision.

Figure 9 shows the result of the Score-CAM for well-classified examples, and Figure 10
shows the misclassified samples of the test set with Score-CAM. In Figure 9, activated
gradient areas are mostly in the lung tissues, with high degree compared to other regions.
It is known that pneumonia is a disease that affects lung tissues [52], and COVID-19 is one
of those types [53]. Therefore, it can be verified that because our model focuses mainly on
lung tissues, the model could accurately diagnose whether the patients have COVID-19,
pneumonia, or neither. Furthermore, considering the misclassified samples in the test
dataset as shown in Figure 10, there is a significant difference that leads to misclassification.
Compared to the samples in Figure 9, the activated gradient area of the both images in
Figure 10 focus on the lung tissue area, but there is an alphabet ‘R’ in the left side of
the images. Those activated gradient maps in the misclassified examples show that the
proposed model focused on the character. This indicates that the activated gradient area
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focuses on the wrong place because of the foreign matter in the images, thereby resulting
in misclassification from normal to COVID-19 and pneumonia each. These substances
distract and hinder the model that is trained to target the torso, as shown in the activated
gradient region focusing on the external materials.

Figure 9. Examples of well-classified samples with Score-CAM.

Figure 10. Examples of misclassified samples with Score-CAM.

4.3. Comparison with Other Methods for Covid-19 Classification

Since the strike of the COVID-19 globally, several new and modified deep learning
models such as CVDNet [54] and transfer learning of various pre-trained deep learning
models [55] have been proposed for screening the COVID-19 using AI. Among the re-
cently published studies to diagnosis COVID-19, research topics can be divided into three
main categories:
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(1) Using well-known CNN based models. Hassantabar et al. [56] performed detection
and diagnosis using MLP on fractal features and CNN on CXR. To extract fractal features
from CXR, images were reshaped into 1-dimensional vectors at first, covariance matrix
was calculated and eigenvalue and eigenvector were used for fractal features extraction.
CNN architecture reached the higher accuracy, 93.2%. Khan et al. [57] proposed CoroNet
using Xception architecture pretrained on ImageNet dataset. The CoroNet classfies CXR
images into four classes, COVID-19, Pneumonia bacterial, Pneumonia viral and normal.
This model achieved 89.6% of overall accuracy, and 95% overall accuracy in 3-class case for
COVID-19, pneumonia, and normal. Ozturk et al. [58] aimed for detecting COVID-19 in
early stages. The authors implemented Darknet architecture used in you only look once
(YOLO) [59] to propose a real-time diagnosis method. The dataset used in this study is
CXR images taken on the first day of patients infected with COVID-19. The accuracy for
binary classification of COVID-19 and normal was 98.08%, and 87.02% for multi labels of
COVID-19, pneumonia and normal cases. Afshar et al. [60] used Capsule Network based
model to make classifications while handling small dataset. Proposed framework which
consists of several Capsule and convolutional layers were pretrained by ImageNet. After
transfer learning with COVID-19 dataset, classification results reached 95.7%, 90%, 95.8%,
0.97 for accuracy, sensitivity, specificity, and AUC respectively.

(2) Using self-supervised learning for feature extraction. Sriram et al. [61] trained a
model using self-supervised learning based on momentum contrast method in pretraining
to learn more general representations of CXR images. They used the pretrained model for
downstream tasks of single image prediction, oxygen requirements predictions for greater
than 6 L, and mortal prediction using multiple images sequence. The proposed model
achieved AUCs of 0.742, 0.765, and 0.848 for three downstream tasks, respectively.

(3) Using an optimization method. Goel et al. [62] aimed to classify COVID-19, normal
and pneumonia using CXR images. The authors proposed Optimized Convolutional
Neural Network (OptCoNet) for automatic diagnosis of COVID-19. Grey Wolf Optimizer
(GWO) algorithm was used to optimize the hyperparameters for training CNN. GWO
algorithm selects the hyperparameter iteratively and evaluates the candidate solutions until
the condition set by research is met. Using GWO, CNN based models achieved 97.78%,
97.75%, and 96.25% for accuracy, sensitivity, and specificity, respectively. The summary for
comparison is represented in Table 3.

Unlike other studies, our proposed system has three important differences: (1) we pro-
posed a system for diagnosing COVID-19 that does not overfit through the self-supervised
learning pretext task of Models Genesis with a large CXR dataset to extract features of
CXR images well. Pretext task of Models Genesis enables the encoder and decoder to be
trained better with large CXR dataset, confirmed by the restored images in Figure 6. (2) We
used convolutional attention modules to enhance the diagnosis performance of COVID-19.
As our proposed system has CBAM layers after every convolutional layers, pretext task
and classification task both reached improved results in SSIM index and evaluation metric.
(3) We investigated the cause of misclassification visually through Score-CAM, in which the
gradient is activated. Therefore, our study is considered in both aspects of quantitative and
qualitative because we reached high classification accuracy as a quantitative aspect while
confirming that the misclassified samples are not because of the problems in the training
process of our proposed systems, but having foreign matters in Chest X-ray images as
qualitative aspects.
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Table 3. Details of previous research works for detecting COVID-19.

Authors [Reference
Number] Used Method Base Architecture Classes Metrics %

Das et al. [24] Deep transfer learning
with machine learning VGG19 Normal, Pneumonia,

COVID-19 Accuracy 99.26%

Rahimzadeh et al. [25] Deep learning Xception &
ResNet50V2

Normal, Pneumonia,
COVID-19 Accuracy 91.4%

Hassantabar et al. [56] Deep learning MLP, CNN Normal, Pneumonia,
COVID-19 Accuracy 93.2%

Khan et al. [57] Deep transfer learning Xception
Normal, Pneumonia

bacterial & viral,
COVID-19

Accuracy 95%

Ozturk et al. [58] Deep learning Darknet
Normal, COVID-19 Accuracy 98.08%

Normal, Pneumonia,
COVID-19 Accuracy 87.2%

Afshar et al. [60] Deep transfer learning Capsul network
Normal, Pneumonia

bacterial & viral,
COVID-19

Accuracy 95.7%

Sriram et al. [61] Self-supervised learning DenseNet ICU transfer,
intubation, mortality AUC 74.2%

Goel et al. [62] GWO CNN Normal, Pneumonia,
COVID-19 Accuracy 97.78%

5. Conclusions

In this paper we proposed a novel deep learning system that contributes for screening
COVID-19 efficiently. The advantage of our proposed system is in three main points. Our
proposed system uses self-supervised learning, so the system can learn the features of
CXR well using large amounts of CXR images data. Also, by applying the convolutional
attention module in self-supervised learning task, we can focus more on important features
of the CXR images. And lastly, through a qualitative evaluation using Score-CAM, we have
identified the reasons for misclassified cases. The pretrained encoder from the modified
Models Genesis was combined with classification layers and fine-tuned using the COVID-
19 dataset. Through extensive experiments, we showed that our proposed system performs
more powerful than other CNN-based classification models. The trainable parameters of
the encoder and convolutional attention module in the pretext task aim to capture image
representation precisely, not in just expanding numerical calculations. These lead to over
98% accuracy, with a similar or higher AUC and F1 score of our proposed system than those
for other models. Furthermore, visualizing activated gradient areas using Score-CAM also
verifies that our proposed model can enable diagnosing the CXR images by proper reason,
as focusing on the lung tissues in CXR images.

There are some limitations of the proposed solution. Although we constructed
balanced data to compare the proposed model with the baseline model proposed by
Lee et al. [11], the CXR image data with three categories, normal, pneumonia and COVID-
19, would be imbalanced with few COVID-19 samples in real life. Thus, the proposed
solution may not perform as well as presented in this paper in that case. Furthermore, the
COVID-19 data used in this paper is limited. Recent papers such as Das et al. [24] show
that there are more COVID-19 data publicly available. Hence, if we could collect more data,
the experimental results may be different.

For future research, one could investigate some implications of our proposed methods.
As the extent of future work, we are considering the reason for misclassification appearing
in our study. In our proposed method, it was confirmed through the activated gradient map
from Score-CAM that foreign substances such as various medical devices on the chest and
the letter ‘R’ on the CXR image interfered with the diagnosis and led to misclassification.
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Therefore, using the point that the U-shaped model is often used in the segmentation task,
it is possible to study the methodology for diagnosis that the region on images which are
segmented into medical devices or external materials does not affect the classification task.

Also, our models was considered only in CXR in this paper. There will be more appli-
cations where the models are applied to chest CT data. Moreover, as COVID-19 radiology
data have been collected, sufficient CXR images can enable the self-supervised learning
model to capture the image representation better, thereby yielding higher classification
model accuracy. Furthermore, our proposed approach manages only 3 categories; it would
be more helpful in the real world to aid the radiologist when more categories and data are
applied to our proposed models.
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