
electronics

Article

Congestion Prediction in FPGA Using Regression Based
Learning Methods

Pingakshya Goswami and Dinesh Bhatia *

����������
�������

Citation: Goswami, P.; Bhatia, D.

Congestion Prediction in FPGA using

Regression Based Learning Methods.

Electronics 2021, 10, 1995. https://

doi.org/10.3390/electronics10161995

Academic Editor: Joo-Young Kim

Received: 25 July 2021

Accepted: 13 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Computer Engineering, The University of Texas at Dallas,
Richardson, TX 75080, USA; pingakshya.goswami@utdallas.edu
* Correspondence: dinesh@utdallas.edu

Abstract: Design closure in general VLSI physical design flows and FPGA physical design flows
is an important and time-consuming problem. Routing itself can consume as much as 70% of the
total design time. Accurate congestion estimation during the early stages of the design flow can
help alleviate last-minute routing-related surprises. This paper has described a methodology for a
post-placement, machine learning-based routing congestion prediction model for FPGAs. Routing
congestion is modeled as a regression problem. We have described the methods for generating
training data, feature extractions, training, regression models, validation, and deployment approaches.
We have tested our prediction model by using ISPD 2016 FPGA benchmarks. Our prediction method
reports a very accurate localized congestion value in each channel around a configurable logic
block (CLB). The localized congestion is predicted in both vertical and horizontal directions. We
demonstrate the effectiveness of our model on completely unseen designs that are not initially part
of the training data set. The generated results show significant improvement in terms of accuracy
measured as mean absolute error and prediction time when compared against the latest state-of-the-
art works.

Keywords: routing congestion; machine learning; EDA prediction

1. Introduction

Advances in manufacturing technology and computer-aided design (CAD) tools have
resulted in field-programmable gate arrays (FPGAs) that can map several million gate
size designs. As the device size increases and the designs become more complex, the
effort required to successfully map designs on large devices also increases substantially.
Figure 1 shows a modern CAD design flow for FPGAs. The use of High-Level Synthesis
(HLS) tools for FPGA-based flows is becoming common as it permits easy conversion of
software descriptions into fairly accurate clocked hardware designs. HLS based design
methodologies enable designers to focus on algorithmic variations of high-level programs
to obtain the best micro-architectural trade-offs. HLS reduces the overall design time as
it allows the generation of different versions of a functionally equivalent design without
modifying the behavioral code. HLS is typically supported by design space exploration that
enables a designer to pick one of many functionally equivalent designs that are synthesized
from a behavioral description. HLS combined with the design space explorer consumes
substantial time from the overall design time. Another step that consumes the most
amount of time is routing, responsible for connecting the electrically equivalent signals
using the routing resources available on an FPGA. It is not uncommon for very high
chip utilization designs to fail in producing successful final wiring. Usually, the failed
routing requires an iterative design cycle where the placement has to be adjusted to create
congestion-free regions to enable wiring. Estimation of interconnect in the local regions
of FPGAs is of great interest and has been studied extensively. In Section 2, we discuss
various attempts and approaches that span from early-stage empirical models to analytical
and statistical models and, currently, machine learning-based prediction models.

Electronics 2021, 10, 1995. https://doi.org/10.3390/electronics10161995 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5019-7417
https://doi.org/10.3390/electronics10161995
https://doi.org/10.3390/electronics10161995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10161995
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10161995?type=check_update&version=1

Electronics 2021, 10, 1995 2 of 18

Figure 1. FPGA Design Flow.

Machine Learning (ML) has found its application in various Electronic Design Au-
tomation (EDA) problems, and has been used to make early prediction on various quality
related parameters. In EDA, ML finds its applications in yield prediction [1], timing [2,3]
and power optimization [4], auto-tuning of CAD tool parameters [3], and routing con-
gestion estimation [5–7]. Learning from prior designs and predicting performance and
closure issues has immense value in the EDA community. A recent announcement from
Xilinx about its ML-suite strongly affirms the idea that ML will play an important role in
Electronic Design Automation.

In FPGA physical design flow, routing is the most time-consuming task. It is prevalent
for a router to either fail or take a long time to complete the routing, especially for very
high logic utilization designs. Locally congested regions can result in failed routing or
sub-optimal designs with problems in timing closure. Usually, a designer must replace the
design in order to obtain better closure after a failed routing attempt. Routing Congestion
is measured as the ratio of the number of used routing tracks to the number of available
routing tracks. Routing congestion can be measured accurately only after the detailed
routing. Traditionally, in ASIC design flows, congestion is estimated after the global routing
using statistical models. Since Global Routing-based statistical and probabilistic prediction
models do not work well on smaller technology nodes and FPGAs, alternate approaches are
needed to predict the routing congestion before the router attempts a complete routing task.

2. Related Literature

Technological advancements and pressures on time to close a design result in many
approaches that predict design feasibility during early stages. Routing failures must be
predicted before a design is routed in detail. In [8], Liu et al. discuss a Global Route (GR)
based routing estimation tool where they take into consideration both local nets inside
a cell as well as global nets connecting multiple cells. The authors in [9] introduced a
new routing congestion analysis tool called CGRIP that operates on a flexible model of

Electronics 2021, 10, 1995 3 of 18

global routing and models the congestion estimation using Integer Linear Programming.
Statistical and probabilistic model-based routing congestion estimation tools are discussed
in [10]. Among the other works that employ non-machine learning-based models in order
to estimate routing congestion, [11,12] are some of the significant ones. They have converted
the routing estimation problem as a graph-based model, and a combination of three factors
calculates the routing demand, i.e., number of paths originating from a vertex, routing
demand of a bounding box, and routing demand due to large number of terminals in a
net [11]. Paper [12] is an enhancement of [11] in which the authors implemented parallel
zonal search to reduce prediction time in the high terminal and high fan-out nets. The
global routing-based congestion estimation models discussed in [5–9] work perfectly well
on larger technology nodes, i.e., greater than 45nm. However, as the process technology
size decreases, the miscorrelation between GR-based congestion prediction and actual
detailed route congestion increases because of high pin density, complex DRC rules, and
increased routing tracks per unit area. This is true for both FPGAs and standard cell-based
ASIC design technologies.

To cope with the decrease in technology nodes and ever-increasing complex design
rule checking (DRC) rules, researchers are creating Machine Learning models by collecting
data from previous design experiences in order to model and predict the behavior of newly
produced designs. Early routing congestion prediction is a valuable piece of information
that can help minimize unnecessary design iterations. Researchers have framed the routing
congestion prediction problem as a supervised learning model. In [5,7], the authors created
the routing congestion problem as a binary classification problem. They collected features
from placed or routed netlist and predicted whether DRC violations will be present or not
because of routing congestion after detailed routing. These papers only predict whether
shorts or violations are present after detailed routing. They do not predict the exact value
of the congestion on each cell of the design. In [5–7], the researchers addressed the routing
congestion estimation problem as a regression model. They do not mention common
performance metrics such as R2, mean square error, etc. The work presented in [6] predicts
the presence of DRC violations, but nothing has been mentioned about the location of
congested cells or the DRC violated cells. Most of the machine learning-based models can
correlate routing congestion and DRC violations much better as compared to the global
routing-based routing estimation model.

The works discussed in [5–7] are congestion estimation on standard cell-based ASIC
technologies. Routing estimation has also been studied extensively in [13] where a heuristic-
based method predicts routing demand that various nets in a design exert on routing
resources of an FPGA. Two very recent works propose congestion estimation on FPGA
designs [14,15]. In [15], the authors made prediction based on three (feature) parameters.
They have reported around 90% accuracy when compared to post-placement routing
congestion estimation provided by the Xilinx Vivado Design Suite [16]. However, when
compared to the actual congestion reported after detailed routing, the result is around 0.60
R2 value [14]. This is also an indication that the post-placement congestion estimation
provided by Xilinx Vivado is very loose. Moreover, both [14,15] trained and tested their
model on ISPD 2016 routing contest benchmark suite [17]. Maarouf et al. [14] also used
additional 360 designs for training and testing and reported their accuracy in terms of the
R2 value. It is not clear if it is the best or the average R2 value. They extracted four features
from the post placed and post routed netlists, where the fourth one is a combination of
the first three features. Furthermore, for testing purposes, [14] used the standard data
splitting into 70–30 ratio, trained the models on the 70% data, and reported the results on the
remaining 30%. The testing is not performed on individual designs; instead, the testing data
may import many characteristics from the training data elements. Many of these related
works assume that exact geometric placement coordinates of various cells are known and
assume congestion in estimated post-placement. Balachandran et al. [18] extended the
idea of congestion estimation at a higher level of abstraction by presenting methods for
estimating the interconnect before the placement. Their approach derives characteristics

Electronics 2021, 10, 1995 4 of 18

from a circuit netlist and then provides wirelength and interconnect estimation. More
recently, Zhao et al. [19] have attempted to estimate the routing congestion at the high-level
synthesis (HLS) level. They have proposed a machine learning-based method that guides
high congestion regions in a design to the high-level source code.

This work addresses a critical need for current designers. Upon completing the
placement step, a robust and accurate estimation of congestion in each routing channel
would help the designer decide on routing feasibility. Instead of providing a generalized
idea about congestion in localized regions, an accurate estimate in every horizontal and
vertical channel is a beneficial design aid. Such a fine-grained view of local channel
congestion can also help incremental localized placement improvement without routing.
In particular, the methodology presented in this work will be highly desirable for the FPGA
architectures where the horizontal wiring resources are different from the vertical wiring
resources. We leverage the knowledge obtained from previously completed designs to
build a machine learning model that helps us in rapidly estimating the localized wiring
congestion for random blind designs. We have expressed the routing congestion estimation
problem as a regression model. We have outlined the methodology for generating data, for
the training of models, for the testing of models, and for integration with commercial CAD
tools for comparison.

The rest of the paper is organized as follows. In Section 3, we describe the internal
architecture of the Xilinx Ultrascale+ FPGA device. In Section 4, the proposed routing
congestion prediction framework is described. In Section 5, the results from the experiments
performed are presented. Finally, Section 6 concludes the paper.

3. FPGA Architecture Description

A heterogeneous FPGA device consists of various types of resources inside it, the most
prominent of which are CLBs (Configuration Logic Blocks), BRAMs, DSPs, and IO blocks.
Each CLB location is surrounded by vertical and horizontal wiring resources spread in
the routing channels. Switchbox and the Connection Box allow the wires to connect between
horizontal and vertical channels and to connect from the CLB to the wiring resources in the
channels, respectively.

We have modeled our routing congestion prediction model for the Xilinx Virtex
Ultrascale+ architecture, which is based on TSMC 16nm process node [20]. Figure 2 shows
an illustration of the Xilinx Ultrascale+ device. The device is divided into multiple super
logic regions (SLR). SLRs are only present on devices that use stacked silicon interconnect
Technology (SSIT). SSIT, also known as a 2.5D packaging technology, uses interposers for
interconnection SLRs. In SSIT, multiple dies are packaged together, and each die becomes
a super logic region. SLRs contain a 2D array of fabric sub-regions (FSRs). FSRs are also
popularly called clock-regions. In one clock region, the clock is routed so that a single
clock supplies each element present in that region. This ensures a near zero-skew clock to
each element within the same clock region. In the Xilinx Ultrascale+ devices, each clock
region is 60 CLBs tall and is 30 columns wide. The FPGAs are divided into different clock
regions so that a particular design is synchronous and meets the timing requirements. For
design running in multiple clock domains, each of the IPs required to run at the same
clock frequency is placed in the same clock region. The Virtex architecture consists of 8
to 24 clock regions. For logic to communicate between SLRs, the UltraScale architecture
employs special tiles in the Clock Region neighboring the abutment of two SLRs. A column
of CLBs is removed and replaced with special tiles called Laguna tiles that have dedicated
flip flop sites to aid in crossing the SLR divide [21,22]. FSRs contain configurable logic blocks
(CLBs), and all FSRs are 60 CLBs tall in the UltraScale architecture, but their width will
vary depending on the mix of tile types used in its construction. Each clock region or an
FSR contains an array of CLBs. Every CLB contains one slice with eight 6-input LUTs and
sixteen storage elements. The LUTs in the logic slice is organized as a column with an 8-bit
carry chain per CLB, called CARRY8. Wide-function multiplexers combine LUTs to create
any function of 7, 8, or 9 inputs or some functions of up to 55 inputs. SLICEL is the name

Electronics 2021, 10, 1995 5 of 18

used to describe CLB slices that support these functions. The LUT in a SLICEM, where the
M is for memory, can be configured as a look-up table, 64-bit distributed RAM, or a 32-bit
shift register. The CLB for a SLICEL is also referred to as a CLE_L tile, and the CLB for the
SLICEM is referred to as a CLE_M tile.

Figure 2. Architecture of Xilinx Ultracale+ FPGAs. The hierarchical architecture has lowest level of
granularity at CLB sites. CLB sites are surrounded by horizontal and vertical wiring.

Generally, more than 95% of the FPGA resources and the designs are consumed by
LUTs, and Flip Flops present inside the CLB slices. CLBs are surrounded by a limited
number of vertical and horizontal routing resources. Commonly, a CLB and its surrounding
routing are also called a gcell. The Xilinx Vivado routing congestion reporting tool calculates
and reports the vertical and horizontal congestion for each CLB block inside an FPGA.
In order to correlate and compare the routing congestion predicted by our model with
the actual values reported by the Xilinx Vivado routing congestion tool after the detailed
routing stage, we also measured the congestion values only for the CLB blocks. Fine-
grained prediction of congestion around each CLB is a precious tool for designers as it
helps them improve the localized placement to locally adjust or remove over-congested
regions. Xilinx Vivado reports horizontal and vertical congestion separately for each gcell.
It calculates the congestion by taking the ratio of the number of routing tracks available to
the number of tracks used. Mathematically, congestion is given by the following.

congestion =
number of tracks required
number of tracks available

(1)

A design is generally considered highly congested if it contains a very large number
of gcells for which its congestion value is greater than 90%.

4. FPGA Routing Congestion Prediction Framework

Accurate prediction of post-route congestion around each CLB is valuable information
for designers to ensure a rapid and feasible design closure. Therefore, we have formulated
the routing congestion estimation problem as a machine learning-based regression model
in order to accomplish precise congestion prediction. Figure 3 illustrates our overall
methodology where we have described a flow to train a regression model using the features
described in the Section 4.2, and then the trained model is used to predict the routing
congestion on completely unseen data during the test phase of our design flow.

Electronics 2021, 10, 1995 6 of 18

4.1. Prediction Framework Flow

The proposed training and deployment model for our regression-based routing con-
gestion estimation is illustrated in Figure 3. Two design flows are used for (i) creating
the model for predicting the routing congestion and (ii) testing and predicting congestion
using the trained model. It is significant to note that the testing flow uses never-before-seen
designs and is, thus, utterly blind to any data properties that belong to the test design set.

Training Netlist
Data

Place and Route

Feature Extraction
and Target Labelling

Features

Trained Model

Unseen Netlist

Place Design

Feature Extraction

Features

Predicted Congestion

Tr
ai
ni
ng

 F
lo
w

Te
st
in
g
Fl
ow

Figure 3. Design flow for congestion prediction model training and model-based congestion prediction.

The training flow in Figure 3 takes a design netlist as an input. The design is placed
and routed for a selected FPGA device using the Xilinx Vivado 2018.3 toolset. As we have
stated later, in our experiments, we have used Xilinx Ultrascale Virtex (Xilinx XCVU095)
devices for mapping the designs. This placement and routing step results in determining
actual post-route horizontal and vertical congestion for each CLB site (gcell). These actual
values of horizontal and vertical congestion around each used CLB are retained as a label
for creating the model. Using the feature extraction methodology described in Section 4.2,
we extract nine features for each of the utilized CLB sites for the mapped design mapped.
The extracted features and corresponding labels are used for building regression-based
models for the prediction of congestion. The regression models are described in Section 4.3,
and we have used CometML [23] machine learning platform for our experiments.

The testing flow in Figure 3 takes the netlist of the design under test and performs
placement by using the Xilinx Vivado toolset. Again, we extract the same nine features for
each of the utilized CLB sites for the design mapped on the Xilinx XCVU095 device. The
feature map is then passed through the trained model to predict the routing congestion for
each utilized CLB site or the gcell. The offline training of our model is performed using the
data extracted from the initial examples of the ISPD 2016 FPGA Placement benchmarks [17].
As illustrated in Figure 4, E1–E4 are used for extracting the training and cross-validation
data. Finally, the correctness and robustness of our trained model are verified by using
(unseen/blind) test data during the testing phase of routing estimation (prediction). We
have used twelve of the ISPD 2016 FPGA Placement contest benchmarks to final test our
proposed methodology. It is noteworthy that the testing phase uses completely unseen
data that were never exposed during the training phase of the model. We have verified the
correctness of our prediction by computing the mean absolute percentage error against the
actual congestion reported by the industry standard Xilinx Vivado router.

Electronics 2021, 10, 1995 7 of 18

E1 E2 E3 E4 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Training and Validation Data Test Data (unseen)

Figure 4. Experimental data. The training and validation data, E1–E4, are used to create a model.
Prediction model is tested on completely unseen data, F1 through F12. ISPD 2016 placement contest
benchmarks are used for experiments.

4.2. Feature Extraction for Placed Netlists

The congestion prediction model takes input in the form of features that are extracted
from the placed netlists. The features must capture the design and device specific charac-
teristics, and we are interested in the smallest set of most essential features that will help
us in quick training of the model and the prediction of the congestion. As in the case of any
machine learning application, the selection of features also known as Feature Engineering is
one of the most crucial and challenging stages. Correct selection of features allows us to
build a robust model for accurate congestion prediction, and too many redundant features
may result in noise and overfitting.

We explored many features related to FPGA device architecture and the mapped
design characteristics. These included (i) super logic region ID or the distribution of
placed logic on a specific super logic region (SLR), (ii) placement within specific clock-region,
(iii) gcell belonging to a specific CLE type, and (iv) total number of LUTs, Flip-Flops, and
Multiplexors in a CLB. The CLE type is a categorical feature and does not assume any
numerical value. However, the functional usage of each CLE type is very different, and we
expected that the routing demand would differ around each different CLE type. In addition
to these device specific features, we also explored features that we believed will have
impact on routing congestion as a result of mapping of a design on a specific device. The
following is the list of important features for each of the utilized CLBs/gcells described in
Section 3. We have numbered the features as f1 to f9. Along with each feature’s description,
we also describe our intuition for selecting the feature.
i. Number of Utilized Cells (f1): A Xilinx Ultrascale+ CLB slice consists of four

different types of cells, viz., LUT, Flip-Flops, Multiplexers, and Carry Chains. One
CLB has multiple units of each cell type. The number of cells utilized by a net inside
each CLB tile plays an important role in measuring the congestion around each
CLB block. When more and more cells within a CLB tile are used, more wiring
resources would clearly be required to interconnect them. Based on this intuition,
we calculated the number of cells used inside each of the CLB slices and used it
as a vital parameter in our ML based prediction model. If more cells are used, the
probability of congestion around the CLB increases proportionately.

ii. Number of Pins (f2): Each cell in the CLB slice contains a certain number of pins.
For example, a H6LUT contains eight pins (6 inputs and 2 outputs), a mux contains
four pins, and a flip-flop contains five pins. When pins are connected to wires, they
are an indicator of local congestion inside the CLB tile. We keep track of the number
of used pins in each CLB tile as a useful feature.

iii. Number of incoming/outgoing nets (f3 and f4): If a net has pins spread across
multiple CLB slices all over the FPGA, it can be considered as a multi-CLB net.
Each multi-CLB net can be covered by a bounding box. The number of multi-
CLB incoming and outgoing nets passing through a CLB slice provides us with
the number of bounding boxes that crossed that particular CLB. The greater the
number of bounding boxes passing through a CLB slice, the higher the congestion
results. Hence, the number of bounding boxes passing through a CLB slice is an
important feature for estimating the routing congestion around it.

iv. Number of Local/Buried nets (f5): Local nets or buried nets represent nets where
all the cells are present in the same CLB slice. Even if all the cells are placed inside
one CLB, the wires use the routing tracks present in the gcell to route the signals.
Hence, this feature also contributes to routing congestion in the gcell.

Electronics 2021, 10, 1995 8 of 18

v. Location of the gcell inside the FPGA (f6 and f7): The absolute location of a gcell
is not very relevant. When a group of cells is placed in a localized region, every
cell in the group impacts congestion of other cells in the group. Analysis shows
that the location of a tile inside the FPGA plays one of the crucial roles in routing
congestion estimation, as a tile in an already congested region will experience
greater congestion. This is because the neighboring gcells of a gcell play an important
role in the congestion. Gcells which are surrounded by high cell density or high pin
density gcells will have high routing congestion.

vi. LUT (f8) and Flip Flop (f9) Utilization: Each CLB or gcell consists of 8 LUTs and
16 FFs. This feature represents the percentage of LUTs and FFs used inside a
gcell. These features also contribute to congestion, but their effect is very low than
compared to the other features discussed above.

We selected many features but, after rigorous experiments and passing the features
through a feature importance measuring tool [24], we discarded extra features. We used
the ELI5 [24] Python package to analyze the feature importance on the regressor models.
ELI5 computes feature importance by measuring how the accuracy of a model decreases if
one of the features is not available. This method is called “Permutation Importance”. Since
removing processes and retraining processes are computationally intensive, ELI5 replaces
the feature column with random noises in the test dataset. ELI5 inserts noise by repeatedly
shuffling the value of that feature with some other row’s value. All of the nine features were
found to be important, and their importance in the decreasing order is listed as follows:
{ f5, f1, f6, f f , f2, f8, f9, f3, f4}. Table 1 illustrates an example of a data-frame that depicts
values associated with various features. All of the useful features are listed in the columns
of Table 1, and rows list four sample data elements for four gcells. The discarded features
include the following:

1. Super Logic Region id;
2. Placement of logic within a specific clock-region in an SLR;
3. CLE type;
4. Total number of LUTs, Flip-Flops, and Multiplexors in a CLB.

The discarded features are related to the characteristics of the FPGA device used. The
regional device specific characteristics that include the CLE type, clock-region, and SLR
region do not have any impact on the model quality or prediction quality.

Table 1. Sample dataframe showing the features and four example data points.

f1 f2 f3 f4 f5 f6 f7 f8 f9

2 8 6 2 7 3 86 12.5 6.25

8 41 33 8 24 4 86 62.5 18.75

5 22 17 5 19 4 88 25 18.75

4 21 17 4 18 4 90 25 12.5

4.3. Creation and Training of Regression Model

Features f1 to f9 provide important data related to the characteristics of mapping of
a design on an FPGA design. In order to create a model for predicting the local channel
congestion, we need the data and corresponding labels. We have placed and routed the
benchmark circuits by using Xilinx Vivado tools. As stated in Section 4, the placement and
routing step results in determining the actual post-route horizontal and vertical congestion
for each CLB site (gcell). These actual values are used as training labels for the prediction
models. We have trained our model by using four different regression models. The training
data generated in Section 4.4 is divided into 70% for training and 30% for validation.
We also used four-fold cross validation by using all of the databins generated from four
example designs used for training. Training is conducted locally on an Intel Core I7

Electronics 2021, 10, 1995 9 of 18

3.6 GHz octacore processor. We also trained and validated the model on Amazon AWS
Sagemaker [25] for cloud based training and deployment by using T2 medium instance.
We used Comet ML [23], an open source ML tool, for training and hyperparameter tuning.
A brief theoretical description of the regression models used is described here.
i. Linear Regression: Linear regression is a method to find relationship between

two continuous variables, where one is independent and the other is dependent.
Linear regression tries to create a statistical relationship which may not be always
deterministic. Linear regression tries to obtain a straight line which shows the
relationship between the independent and the dependent variable. For most of
the linear regression models, the error is measured by using least squared error.
A linear regression line has an equation of the form Y = a + bX, where X is the
independent variable and Y is the dependent variable. The slope of the line is b,
and a is the intercept, which are both determined during training of the model.

ii. Random Forest Regression: Random forest is a supervised learning method that
uses ensemble methods for learning. Ensemble learning is a technique that com-
bines multiple weak learners to create a strong learner. In random forest, these weak
learners are decision trees. The outputs from the individual learners are averaged
in order to generate the final output. Random forest belongs to the bagging class
of learners where, during training, data samples are selected at random without
replacement. Bagging makes each model run independently and then aggregates
the outputs at the end without preference to any model. Due to the introduction of
the bagging method, the chances of overfit are lower in random forest. Random
forest is a very fast method of training because each tree can be trained in parallel,
and the inputs and outputs of each individual tree are not related to another. To
summarize, the Random Forest Algorithm merges the output of multiple decision
trees to generate the final output.

iii. Multivariate Adaptive Regression Splines (MARS): Multivariate adaptive regres-
sion splines (MARS) [26] is an algorithm that automatically creates a piecewise
linear model which creates a non-linear model by combining multiple small linear
functions known as steps. In MARS, non-linearity is introduced by using step
functions. There are no polynomial terms in the MARS equation. Equation (2)
shows the linear step wise equation:

yi = β0 + β1C1(xi) + β2C2(xi) + · · ·+ βdCd(xi) + εi (2)

MARS is an adaptive procedure for regression and is well suited for high-dimensional
problems (i.e., a large number of inputs). The bends in the step functions are known
as “knots”. If there are multiple knots present in the MARS equation, it may result
in overfitting.

iv. Multi Layer Perceptron based Regression (MLP: MLP based regression models
are made up of multiple perceptrons also known as neurons. This type of model
falls into the feedforward class of artificial neural networks. Generally, ANNs are
used for classification. However, they can also be used for regression. MLP based
models are trained using backpropagation algorithm. Each network consists of an
input layer of neurons, few hidden layers, and an output layer. The output of each
neuron is linear. In order to make the output non-linear and to simulate the real
world behavior, activation functions such as “tanh” and “sigmoid” are added.

The regression models have a varying degree of complexity and take different times
to train a prediction model. Out of the four regression models presented in the Section 4.3,
linear regression was easily discarded because of its inferior accuracy. This is because of the
high dimensional feature space; the linear regression model is not able to converge. Figure 5
shows the training time for the four models. The y-axis is a log-scale time expressed in
minutes. Linear Regression has the fastest training time while Neural Network based MLP
regressor is the slowest. Random forest divides the training datasets randomly, and each
sub-dataset is independently processed through a prediction classifier such as a decision

Electronics 2021, 10, 1995 10 of 18

tree; hence, it is relatively fast compared to other classifiers. Due to the presence of multiple
inputs, hidden and output layers, and the slow convergence time of backpropagation, MLP
is substantially slower than others.

45

420

1.6

270

1

10

100

RF MLP Linear Regression MARS

Ti
m

e
in

 m
in

ut
es

Model Used
Figure 5. Model training time for different regression methods.

4.4. Generation of Training Data

In order to extract information and various features, we have divided the FPGA into a
number of Global Routing cells or gcells which act as databins for the features. Figure 2
shows the architecture of one databin. Although we are using only four benchmarks for
training our model, the benchmarks are large and diverse. Combining all the utilized gcells
present in the four training benchmarks can generate around 160,000 databins. Figure 6
shows the post-routed floorplan of the largest of the four examples (FPGA Example 4)
inside the Xilinx XCVU095 device. It can be observed from Figure 6 that Example 4 is highly
dense and congested and covers more than 80% of resources present inside the FPGA device.
Table 2 shows the statistics of the resources consumed by the four training datasets, while
we have shown the total number of units of each resource present inside the XCVU095
device in Table 3. The number of utilized gcells is also noted in the databins column.

Table 2. Statistics of the training data. The examples E1–E4 are from the ISPD 2016 placement
contest benchmarks.

Number of Units Used

Design Name FF LUT BRAM Databins

EXAMPLE 1 1260 1968 2 325

EXAMPLE 2 237,012 289,036 384 44,565

EXAMPLE 3 175,585 244,435 495 46,161

EXAMPLE 4 344,295 447,021 1114 66,728

Total 157,779

Electronics 2021, 10, 1995 11 of 18

Figure 6. Routed Floorplan of FPGA Example 4 design, which consists of around 67k databins.

Table 3. Physical resources in an FPGA device—Xilinx XCVU095 FPGA.

LUT FF BRAM

537,600 1,075,200 1728

5. Experiments and Results

We have trained and tested our model on an Intel Core I7 3.6 GHz octa-core processor
with 16GB RAM. The description of the training dataset is described in Section 5. We can
extract more than 160k databins that are of heterogeneous and varied nature. We tested our
model on the 2016 FPGA placement contest benchmarks. The prediction and validation are
performed on both PC and AWS Cloud using free version of Sagemaker, which allows us to
use low-speed T2 medium instance for inference. The characteristics of the test benchmarks
used are mentioned in Table 4. Column one lists the benchmark names, column two lists
the number of nets in each benchmark, column three lists the total number of cells (LUT
and FF elements) in each benchmark, and column four lists the number of databins or gcells
in each benchmark. The designs shown in Table 4 are completely unseen and were not part
of the training/validation set. The design size varies from about 10K to 66K databins.

For prediction, we partitioned the placed netlists into databins where each databin
consists of one CLB tile also known as the gcell. We extracted the same high impact and
most relevant f1 to f9 features which are same as the training dataset. We also routed the
placed netlists to obtain the actual value of routing congestion for each gcell, which are
used for evaluation and comparison. We trained our model using the data listed in Table 2
by using an open-source tool called Comet ML [23] and compiled our code on Anaconda
Python interpreter by using Python 3.5.6 version. The hyperparameters and the weights
generated by Comet ML is used in the remaining 12 test benchmarks to predict congestion
values. Around 70% of the training time shown in Figure 5 is used in hyperparameter
tuning of the models, while the actual training takes 30–40% of the total training time.

Electronics 2021, 10, 1995 12 of 18

Table 4. Statistics of the testing data. The examples FPGA1 to FPGA12 are from the ISPD 2016
placement contest benchmarks.

Benchmark # of Nets # of Cells #of Databins

FPGA1 104,061 103,958 10,161

FPGA2 165,380 163,780 17,326

FPGA3 424,679 416,877 40,332

FPGA4 426,857 419,056 42,281

FPGA5 431,127 423,332 50,115

FPGA6 658,627 649,435 62,369

FPGA7 684,910 675,699 66,194

FPGA8 722,314 714,515 66,814

FPGA9 876,754 867,954 67,200

FPGA10 786,967 778,207 64,821

FPGA11 822,378 816,034 66,522

FPGA12 966,389 959,025 66,063

5.1. Analysis of Accuracy

In this section, we compared the performance of the four regression models. The
effectiveness of a regression model is measured using the R-squared value, which is known
as the coefficient of determination. R-squared is a statistical measure for measuring how
close the data are to the fitted regression line.

R2 is defined in the Equation (3). N is the number of samples used in the regression,
yi is the actual value of sample i, ŷi is the predicted value using a regression model based
on observations, and ȳi is the mean of the actual values.

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳi)2

(3)

We measured the performance of our models by using R2 values. The R2 is always
ranged between 0 and 1, 0 being the worst fit and 1 being the best. Practically, a R2 value
of 1 is impossible if we try to predict on completely unseen data. However, a R2 value of 1
is possible during training, but it may indicate a highly overfitted model. Any R2 value
above 0.8 for the type of data we have is considered a good value. We calculated the R2

value for congestion on both vertical and horizontal directions by using each of the four
models, and the results are shown in Figure 7.

As it can be observed from Figure 7, random forest and MLP regression, which use
gradient descent based neural networks, produce the best R2 value. This is because random
forest is an ensemble method in which each tree is trained by using a different method,
and the random forest combines the output of each tree to give us a prediction. Due
to the presence of a large number of neurons in the hidden layers and robust tuning of
hyperparameters, the accuracy of MLP regressor is almost equal to that of random forest.
We achieved an average R2 value of above 85% for both vertical and horizontal routing
congestion by using random forest and above 82% by using MLP based regressor. MARS is
a piecewise linear regression which works well on training data, but it fails in unseen data
because of overfitting. From our experiments, we found out that Linear Regression does
not work for routing congestion because of the large variance and the variety of features
and data we have. Figure 7 shows the graphical representation of average R2 value for each
of the 12 test designs. We selected random forest and multi-layer perceptron for building
prediction models to estimate localized congestion in FPGA routing channels.

Electronics 2021, 10, 1995 13 of 18

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
2

va
lu

es

benchmarks

LR Average MARS Average MLP Average RF Average

Figure 7. Average R2 value for the 12 benchmarks using 4 regression models. LR: Linear Regression;
MARS: Multivariate Adaptive Regression Splines; MLP: Multi Layer Perceptron; RF: Random Forest.

We have used Mean Absolute Percentage Error (MAPE) as a precision indicator to
characterize the error in prediction. This approach is consistent with other research reported
in [14]. The MAPE is stated in Equation (4), where N is the number of samples used in the
regression, yi is the actual value of sample i, and ŷi is the predicted value using a regression
model based on observations.

MAPEest =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (4)

We have placed and routed each of the twelve benchmarks by using Xilinx Vivado
tools. The post-routing congestion is reported for each channel around CLB site(s) by the
Xilinx tools. This forms the set of yi values in the above equation. We also extract features
from the placed designs and pass them through the trained models. The model generates
predicted values of congestion in the localized horizontal and vertical channels. These
form the ŷi set of values in the above equation. Each ŷi, 1 ≤ i ≤ N is an estimate of the local
congestion value, a valuable aid to the designer for being able to observe the congestion
value without ever routing the design. As our results illustrate below, ŷi is a very correct
and accurate estimate of the actual congestion value. MAPE is computed for each design
when N databins are used for generating features. In Table 5, we have reported the MAPE
values of both horizontal and vertical congestion by using MLP and random forest based
regression method. As observed from the Table 5, we achieved average MAE of 4.1% and
4.4% for all the designs using Random Forest Regressor and MLP Regressor, respectively.

In order to illustrate the accuracy of our prediction models, we have plotted congestion
density maps, also called heat maps, for a representative set of designs. Figure 8 shows the
comparison of the congestion heat map (average of horizontal and vertical congestion). The
illustration was created using MATLAB and is based on the real reported congestion value
as well as the predicted congestion value. The Xilinx congestion reporting tool presents
horizontal and vertical congestion values as a percentage value. Since our training process
makes use of the labels generated by the Xilinx tool, the scale in figure map represents
congestion values from 0 to 100%. There is marked resemblance between the plots in the
left column with the plots in the right column. In order to further illustrate the accuracy at
local channels where congestion percentages are evaluated, we have shown a graphical
comparison between the actual and the predicted congestion values in Figure 9. Since each
benchmark mapping on an FPGA contains several thousand gcells, we have illustrated the
congestion values at a subset of gcells. The graphical representation is illustrated for the
same three benchmarks that are also illustrated in congestion density plots in Figure 8.

Electronics 2021, 10, 1995 14 of 18

Table 5. MAPE values for predicted congestion values for Random Forest and Multi-Layer Percep-
tron models.

Random Forest MLP

Design Vertical Horizontal Vertical Horizontal

FPGA1 1.689 4.649 4.894 1.910

FPGA2 2.186 1.721 2.159 2.805

FPGA3 3.370 2.998 3.237 3.653

FPGA4 4.638 3.949 4.117 4.746

FPGA5 5.311 4.870 4.965 5.250

FPGA6 3.591 3.634 3.694 3.379

FPGA7 4.745 4.847 4.650 4.760

FPGA8 4.498 3.886 4.349 5.395

FPGA9 5.263 6.103 4.863 5.467

FPGA10 3.868 3.859 4.117 4.169

FPGA11 5.373 5.318 6.157 5.859

FPGA12 7.994 5.318 5.365 8.205

Figure 8. Visual comparison of congestion density plots between actual congestion reported by Xilinx tools and the congestion
predicted by the prediction model.

Electronics 2021, 10, 1995 15 of 18

0

20

40

60

80

100
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

2
3

1

2
3

6

2
4

1

2
4

6

2
5

1

2
5

6

2
6

1

2
6

6

2
7

1

2
7

6

2
8

1

2
8

6

2
9

1

2
9

6

3
0

1

C
o

n
g

e
st

io
n

 V
a

lu
e

s

Gcells

0

10

20

30

40

50

60

70

80

90

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

2
3

1

2
3

6

2
4

1

2
4

6

2
5

1

2
5

6

2
6

1

2
6

6

2
7

1

2
7

6

2
8

1

2
8

6

2
9

1

2
9

6

3
0

1

C
o

n
g

e
st

io
n

 V
a

lu
e

s

Gcells

0

10

20

30

40

50

60

70

80

90

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

2
3

1

2
3

6

2
4

1

2
4

6

2
5

1

2
5

6

2
6

1

2
6

6

2
7

1

2
7

6

2
8

1

2
8

6

2
9

1

2
9

6

3
0

1

C
o

n
g

e
st

io
n

 V
a

lu
e

Gcells

FPGA 5

FPGA 4

FPGA 2

Figure 9. Graphical comparison of congestion density values between actual congestion reported by Xilinx tools and the congestion
predicted by the prediction model.

5.2. Discussion

Early estimation of routing congestion is important to ensure rapid convergence and
routability of a given design. Our congestion prediction models make use of nine very
important features in order to predict the resulting congestion for a given design. The
predicted congestion value is highly localized and helps providing an early assessment of
routability of a given design. Many previous studies related to congestion and routability
estimation have been stated in Section 2. Two closely related works highlighted in [14,15]
are worthy of comparison. Reference [14] was later extended in a publication [27].
Pui et al. [15] presented an ML based congestion estimation method that makes use of
three features. It was later shown in [27] that only two of the three features used in [15]
were actually relevant. The average MAPE reported in [15] is around 8%. The authors
of [14] also makes use of a total of three (f1, f2, and f3) features (which can be seen as
four features as feature f3 is further divided into two types) and an extensive training and
testing framework in order to produce far superior MAPE values for congestion prediction.
Both [14,15] make use of standard training and testing framework where entire data are
divided according to the standard and generally accepted rule of 70% for training and
30% for testing. In particular, Maarouf et al. [14] make use of a large set of 372 bench-
marks. The 372 designs consist of 12 ISPD 2016 Placement Contest designs and another
360 benchmarks that were generated using a netlist generation tool. The work presented in
this paper demonstrates a carefully crafted regression model based congestion prediction
method. As described in the previous sections, our model construction was performed
by carefully examining the design mapping on an FPGA. The localized features are easily
derived from the mapped design and do not require much computation overhead. There is
a slight difference for congestion reporting in [14] and our approach. We report congestion
in the horizontal and vertical channels around the CLB site. This is consistent with the way
congestion is reported by the tools within Xilinx Vivado. Therefore, our prediction result
can integrate directly with the Xilinx Vivado tool flow. The congestion value, as reported

Electronics 2021, 10, 1995 16 of 18

in [14], is computed at the switchbox location. Thus, while the prediction MAPE can be
compared, their actual interpretation would be slightly different. Our report is consistent
with the values reported within the Xilinx tool flow. The average reported MAPE for [14]
is 4.69% while our prediction method achieves a MAPE of 4.1%. Likewise, the maximum
R2 value reported in [14] and for our method is 86% and 94%, respectively. Usually, the
actual value of congestion would be known after routing. In Table 6, we have show the
effectiveness of our model based congestion prediction. Columns 2 and 3 in Table 6 show
the congestion prediction executing time in seconds by using the multi-layer perceptron
and random forest models, respectively. In order to illustrate the advantage of early predic-
tion, we have also listed the actual routing execution time using Xilinx Vivado 2018.3 in
column four of Table 6. Although there is substantial execution time difference between
the congestion prediction times reported by the MLP and RF models, the prediction still is
orders of magnitude faster than full FPGA routing.

Table 6. Prediction time using ML model vs. Actual Xilinx Vivado 2018.3 Routing Time.

Design
MLP RF Actual Routing

Seconds Minutes

FPGA1 15.023 0.955 15

FPGA2 73.586 1.542 24

FPGA3 143.336 3.761 24

FPGA4 226.608 4.005 36

FPGA5 276.508 5.038 66

FPGA6 266.521 6.165 84

FPGA7 427.346 6.583 114

FPGA8 368.471 5.985 132

FPGA9 411.258 5.896 141

FPGA10 189.253 5.854 150

FPGA11 288.107 6.309 168

FPGA12 221.788 6.442 192

It can be observed from the results that random forest is the best suitable model
for the type of features we have both in terms of accuracy and prediction time. We also
observe that we cannot compare the model training times for our method and the ones
proposed in [14,15] as the characteristics and size of training data are very different. We
have demonstrated that with a mere 160K databins that are derived from the example set
E1, ..., E4 of ISPD Placement Contest benchmarks, we can train a robust model that produces
reliable congestion predictions for a large set of unseen benchmark designs. For prediction
time, a fair comparison cannot be made since we predict on one design at a time, but [14]
predicts on the 30% of the total dataset, which contains a significantly greater number of
gcells than one single design. For our model, the maximum congestion prediction time
using the random forest regression model is about 7 s, as observed in the Table 5.

6. Conclusions

In this paper, we have proposed a robust regression based routing congestion estima-
tion method that predicts the congestion after placement in FPGAs. It is on an average
around 25 to 50 times faster than Xilinx Vivado based routing calculation tool which reports
actual congestion after detailed routing. The following are the major characteristics and
contributions of our work:

Electronics 2021, 10, 1995 17 of 18

1. The methodology is to generate a robust congestion prediction model that makes
use of easily obtained features from a placed design. The model exhibits an average
MAPE of 4.1% and maximum R2 value of 94% on completely unseen designs. These
are the best known and tightest results.

2. The post-placement congestion prediction values provide accurate congestion in
horizontal and vertical channels. The report is consistent with the post-route con-
gestion estimation that Xilinx Vivado tools provide after routing. This enables easy
integration of our model based prediction in the Xilinx Vivado tool flow.

3. Our methodology demonstrates that a carefully crafted set of features based model
can be trained with a relatively small set of training data. Our models were trained
with about 160K databins derived out of four benchmark examples. The test data
were completely unseen data.

Our models produce highly accurate predictions of congestion. Although the error is
very low, we feel that the model accuracy can be improved by training the models by using
a larger and more diverse data set. We demonstrated that with four large benchmarks,
we can achieve high accuracy for completely unseen test data sets. The accuracy will
improve if the training data sets were more diverse. Hyper-parameter tuning has impact
on the model accuracy, and we feel that the model can be made more accurate by careful
tuning of the hyper-parameters. These are several extensions that can improve the overall
ML based design flow. We are working on an automatic CAD parameter suggesting tool
using ML, which can be integrated with the congestion estimation tool such that it will
automatically tune the tool parameters in order to minimize very high congestion areas
after design placement.

Author Contributions: Conceptualization, methodology, formal analysis—P.G. and D.B.; software,
validation—P.G.; resources, supervision D.B.; writing of original draft—P.G.; writing review and
editing—D.B. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All of the data and related python code files for building machine
learning models are available for download [28].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, X.; Matsunawa, T.; Nojima, S.; Kodama, C.; Kotani, T.; Pan, D.Z. A Machine Learning Based Framework for Sub-Resolution

Assist Feature Generation. In Proceedings of the International Symposium on Physical Design (ISPD 2016), Santa Rosa, CA, USA,
3–6 April 2016; ACM: New York, NY, USA, 2016; pp. 161–168. [CrossRef]

2. Yanghua, Q.; Ng, H.; Kapre, N. Boosting convergence of timing closure using feature selection in a Learning-driven approach.
In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne,
Switzerland, 29 August–2 September 2016; pp. 1–9. [CrossRef]

3. Kapre, N.; Ng, H.; Teo, K.; Naude, J. InTime: A Machine Learning Approach for Efficient Selection of FPGA CAD Tool Parameters.
In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
22–24 February 2015; ACM: New York, NY, USA, 2015; pp. 23–26. [CrossRef]

4. Chang, W.; Lin, C.; Mu, S.; Chen, L.; Tsai, C.; Chiu, Y.; Chao, M.C. Generating Routing-Driven Power Distribution Networks with
Machine-Learning Technique. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2017, 36, 1237–1250. [CrossRef]

5. Chan, W.T.J.; Ho, P.H.; Kahng, A.B.; Saxena, P. Routability Optimization for Industrial Designs at Sub-14Nm Process Nodes
Using Machine Learning. In Proceedings of the 2017 ACM on International Symposium on Physical Design, Portland, OR, USA,
19–22 March 2017; ACM: New York, NY, USA, 2017; pp. 15–21. [CrossRef]

6. Zhou, Q.; Wang, X.; Qi, Z.; Chen, Z.; Zhou, Q.; Cai, Y. An accurate detailed routing routability prediction model in placement. In
Proceedings of the 2015 6th Asia Symposium on Quality Electronic Design (ASQED), Kuala Lumpur, Malaysia, 4–5 August 2015;
pp. 119–122. [CrossRef]

7. Tabrizi, A.F.; Darav, N.K.; Xu, S.; Rakai, L.; Bustany, I.; Kennings, A.; Behjat, L. A Machine Learning Framework to Identify
Detailed Routing Short Violations from a Placed Netlist. In Proceedings of the 55th Annual Design Automation Conference,
San Francisco, CA, USA, 24–29 June 2018; ACM: New York, NY, USA, 2018; pp. 48:1–48:6. [CrossRef]

http://doi.org/10.1145/2872334.2872357
http://dx.doi.org/10.1109/FPL.2016.7577302
http://dx.doi.org/10.1145/2684746.2689081
http://dx.doi.org/10.1109/TCAD.2017.2648842
http://dx.doi.org/10.1145/3036669.3036681
http://dx.doi.org/10.1109/ACQED.2015.7274019
http://dx.doi.org/10.1145/3195970.3195975

Electronics 2021, 10, 1995 18 of 18

8. Liu, W.; Wei, Y.; Sze, C.; Alpert, C.J.; Li, Z.; Li, Y.-L.; Viswanathan, N. Routing congestion estimation with real design constraints.
In Proceedings of the 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 29 May–7 June
2013; pp. 1–8.

9. Shojaei, H.; Davoodi, A.; Linderoth, J.T. Congestion analysis for global routing via integer programming. In Proceedings of
the 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 7–10 November 2011;
pp. 256–262. [CrossRef]

10. Saeedi, M.; Zamani, M.S.; Jahanian, A. Evaluation, Prediction and Reduction of Routing Congestion. Microelectron. J. 2007,
38, 942–958. [CrossRef]

11. Kannan, P.; Balachandran, S.; Bhatia, D. fGREP—Fast Generic Routing Demand Estimation for Placed FPGA Circuits. In
Field-Programmable Logic and Applications; Brebner, G., Woods, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 37–47.

12. Balachandran, S.; Kannan, P.; Bhatia, D. On metrics for comparing interconnect estimation methods for FPGAs. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2004, 12, 381–385. [CrossRef]

13. Kannan, P.; Bhatia, D. Interconnect Estimation for FPGAs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2006, 25, 1523–1534.
[CrossRef]

14. Maarouf, D.; Alhyari, A.; Abuowaimer, Z.; Martin, T.; Gunter, A.; Grewal, G.; Areibi, S.; Vannelli, A. Machine-Learning Based
Congestion Estimation for Modern FPGAs. In Proceedings of the 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), Dublin, Ireland, 27–31 August 2018; pp. 427–4277. [CrossRef]

15. Pui, C.; Chen, G.; Ma, Y.; Young, E.F.Y.; Yu, B. Clock-aware ultrascale FPGA placement with machine learning routability
prediction: (Invited paper). In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 929–936. [CrossRef]

16. Vivado Development Team. Xilinx Vivado. Available online: https://www.xilinx.com/products/design-tools/vivado.html
(accessed on 17 August 2021).

17. Yang, S.; Gayasen, A.; Mulpuri, C.; Reddy, S.; Aggarwal, R. Routability-Driven FPGA Placement Contest. In Proceedings of the
2016 on International Symposium on Physical Design, Santa Rosa, CA, USA, 3–6 April 2016; ACM: New York, NY, USA, 2016;
pp. 139–143. [CrossRef]

18. Balachandran, S.; Bhatia, D. A-priori Wirelength and Interconnect Estimation based on Circuit Characteristics. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2005, 24, 1054–1065. [CrossRef]

19. Zhao, J.; Liang, T.; Sinha, S.; Zhang, W. Machine Learning Based Routing Congestion Prediction in FPGA High-Level Synthesis.
In Proceedings of the 2019 Design, Automation Test in Europe Conference Exhibition (DATE), Florence, Italy, 25–29 March 2019;
pp. 1130–1135. [CrossRef]

20. Xilinx Ultrascale+ Product Details. Available online: https://www.xilinx.com/support/documentation/product-briefs/virtex-
ultrascale-plus-product-brief.pdf (accessed on 17 August 2021).

21. Large FPGA Methodology Guide, Including Stacked Silicon Interconnect (SSI) Technology. Available online: https://www.xilinx.
com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf (accessed on 17 August 2021).

22. Xilinx Architecture Terminology. Available online: https://www.rapidwright.io/docs/Xilinx_Architecture.html (accessed on
17 August 2021).

23. Comet ML Supercharging Machine Learning Tool. Available online: www.comet.ml (accessed on 17 August 2021).
24. ELI5 Tool. Available online: https://eli5.readthedocs.io/en/latest/ (accessed on 17 August 2021).
25. Amazon SageMaker Machine Learning for Every Data Scientist and Develope. Available online: https://aws.amazon.com/

sagemaker/l (accessed on 17 August 2021).
26. Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Statist. 1991, 19, 1–67. [CrossRef]
27. Al-Hyari, A.; Abuowaimer, Z.; Martin, T.; Gréwal, G.; Areibi, S.; Vannelli, A. Novel Congestion-Estimation and Routability-

Prediction Methods Based on Machine Learning for Modern FPGAs. ACM Trans. Reconfigurable Technol. Syst. 2019, 12.
[CrossRef]

28. Data Repository for Machine Learning Based Congestion Estimation. Available online: https://personal.utdallas.edu/~dinesh/
Data/ (accessed on 17 August 2021).

http://dx.doi.org/10.1109/ICCAD.2011.6105337
http://dx.doi.org/10.1016/j.mejo.2007.07.122
http://dx.doi.org/10.1109/TVLSI.2004.825865
http://dx.doi.org/10.1109/TCAD.2005.857312
http://dx.doi.org/10.1109/FPL.2018.00079
http://dx.doi.org/10.1109/ICCAD.2017.8203880
https://www.xilinx.com/products/design-tools/vivado.html
http://dx.doi.org/10.1145/2872334.2886419
http://dx.doi.org/10.1109/TCAD.2005.850868
http://dx.doi.org/10.23919/DATE.2019.8714724
https://www.xilinx.com/support/documentation/product-briefs/virtex-ultrascale-plus-product-brief.pdf
https://www.xilinx.com/support/documentation/product-briefs/virtex-ultrascale-plus-product-brief.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
https://www.rapidwright.io/docs/Xilinx_Architecture.html
www.comet.ml
https://eli5.readthedocs.io/en/latest/
https://aws.amazon.com/sagemaker/l
https://aws.amazon.com/sagemaker/l
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1145/3337930
https://personal.utdallas.edu/~dinesh/Data/
https://personal.utdallas.edu/~dinesh/Data/

	Introduction
	Related Literature
	FPGA Architecture Description
	FPGA Routing Congestion Prediction Framework
	Prediction Framework Flow
	Feature Extraction for Placed Netlists
	Creation and Training of Regression Model
	Generation of Training Data

	Experiments and Results
	Analysis of Accuracy
	Discussion

	Conclusions
	References

