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Abstract: In this work, we examine the privacy and safety issues of Internet of Things (IoT)-based
Precision Agriculture (PA), which could lead to the problem that industry is currently experiencing
as a result of Intellectual Property Theft (IPT). Increasing IoT-based information flow in PA will
make a system less secure if a proper security mechanism is not ensured. Shortly, IoT will transform
everyday lives with its applications. Intellectual Property (IP) is another important concept of an
intelligent farming system. If the IP of a wise farming system leaks, it damages all intellectual ideas
like cultivation patterns, plant variety rights, and IoT generated information of IoT-based PA. Thus,
we proposed an IoT enabled SDN gateway regulatory system that ensures control of a foreign device
without having access to sensitive farm information. Most of the farm uses its devices without the use
of its integrated management and memory unit. An SDN-based structure to solve IP theft in precision
farming has been proposed. In our proposed concept, a control system integrates with the cloud
server, which is called the control hub. This hub will carry out the overall PA monitoring system. By
hiring the farm devices in the agricultural system, these devices must be tailored according to our
systems. Therefore, our proposed PA is a management system for all controllable inputs. The overall
goal is to increase the probability of profit and reduce the likelihood of IPT. It does not only give
more information but also improves information securely by enhancing the overall performance of
PA. Our proposed PA architecture has been measured based on the throughput, round trip time, jitter,
packet error rate, and the cumulative distribution function. Our achieved results reduced around
(1.66–6.46)% compared to the previous research. In the future, blockchain will be integrated with this
proposed architecture for further implementation.

Keywords: intellectual property; precision agriculture; IoT; SDN; gateway; smart control

1. Introduction

Agriculture is tremendously important throughout the world. To provide the conver-
sion on the road to exploiting efficiency, sustainable production, and actual time, reliable
evidence about crop progress is vital today. PA can be seen as a new era of agriculture that
makes agriculture a more skillful and accurate way of utilizing expertise to raise cattle and
grow crops. This is the farm management method, the critical component of ICT is the
usage of sensors, regulator systems, robotics, stand-alone vehicles, automatic hardware,
Software Defined Network (SDN), Internet of Things (IoT), and variable technology. Preci-
sion agriculture based on IoT provides valuable insight into crop growth, development,
transformation, farming, and so on [1,2]. The IoT-based system for radar monitoring allows
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for high-cloud weather-based analysis. At the same time, the optical sensors discriminate
between crop type, soil pH, water level, and health and maturity. Hands-on crop nursing
is now possible through the latest information satellite and a scalable high-speed cloud
computation system for agricultural insurance resolutions. We can gain competitive in-
sights with advanced crop performance analytics, and advantages compare to the previous
ones. Receiving early warnings about cultivation failure or agriculture helps a farmer
make decisions.

Expositions of data relations and responses to potential threats or diseases, nutrients or
water deficiencies, crop production drought, risk mitigation, and infrastructure sustainabil-
ity provide proper predication in smart farming [3]. Farmers with a wealth of information
are also supplied with PA to build up their farm records, improve decision-making, foster
more traceability, increase agricultural products marketing, improve rental arrangements
and landowners’ relationships, improve farming quality inherently, and so forth. The
agricultural sector must adopt new technologies to achieve a much-needed edge to meet
the needs of the increasing population. Thus, SDN and IoT [4,5] enable the industry to
raise operational efficiency, reduce costs, and cut waste. It also manages delivery issues
and improves yield quality in new agricultural applications in smart agriculture and IoT
precision having an SDN enabled smart network. Farmers can also monitor the conditions
on the field from anywhere, which means remote monitoring. IoT’s intelligent agriculture
is highly efficient compared to the traditional method. In addition to the conventional,
large-scale farming processes involved in SDN and IoT-smart farming, the applications
may also provide new levers to uplift other crop and common trends in farming such as
organics, family agriculture (completive or small-scale areas, particular crops, high-quality
crops, etc.), and enhance the highly transparent system of agriculture [6,7]. The use of
IoT-SDN based intelligent farming means that a system with sensor aids (light, humidity,
temp, soil humidity, etc.) for monitoring crop fields is developed, and an irrigation system
is automated. When these external or foreign devices are employed temporarily in our
PA system, our proposed system by the intelligent hub will control the intelligent farming
system. These plans are also effort based on monitoring, based on intelligent farming
systems. The connection scheme of the farm system is a vital concern of these external
devices. These devices can generally work in the network system or can be customized
to operate.

1.1. Scientific Progression in IoT Based PA

IoT is playing a role in transforming our everyday lives with different types of appli-
cations. There are already 31 billion connected IoT [8] devices around the globe that help
us to carry out daily tasks with added ease. When devices monitor our activities and know
what we need to achieve, we have less to worry about. Thus, the expansion of IoT products
has spread worldwide [9]. The use of IoT has boosted many industries by using low-cost
sensors and IoT platforms, data collection, real-time insight, and process automation. In
this way, the agriculture and agriculture industry, in general, can truly take advantage
of the IoT solution [10]. It is also a key solution to the growing concern over the global
population’s food and environmental impact, not only a smart agricultural approach but
also today’s innovative agricultural technique.

PA is one of today’s most curved issues. IoT-based PA covers various technologies,
including sensors, Media Access Control (MAC), Global Positioning System (GPS), drones,
satellite images, and big data. IoT-based PA covers a range of technologies. The use of IoT
in farm machinery enables farmers to practice compared with fewer inputs that reduce
costs rather than produce higher amounts. IoT also comprises hardware, such as sensors,
machine-to-machine and long-range, decision support software, and web-based software.
The most advantageous point of using this technology is that it can be combined at a very
affordable price, allowing countries to stop precision farming approaches. The production
concerns farmers’ special and results-oriented efforts. By using IoT, farmers can assess
the aspects of agriculture and take appropriate steps to obtain results. The production of
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farmers with IoT using sensors, robotics, control systems, and more to forecast the results is
guaranteed if they follow the analysis results and instructions. PA helps farmers determine
where the problem is by providing the best services and forecasts of what to plant and
regular seeding updates, analysis, and delivery of highly advanced combined sensors to
soil moisture specifications.

1.2. Current Situation of Intellectual Property in PA

IP contains intangible human intellect conceptions. Many forms and some countries
identify more than others as IP. Copyrights, patents, trademarks, and business secrets are
the most well-known kind. The existing IoT-based farming is limited to hiring foreign
devices when these devices are required in smart agriculture. It is like a usual process.
When we engage these foreign agents, these devices can quickly look up every system of an
intelligent farming system. It is very easy to steal any information or intellectual property
such as plant patterns, employee skills, or farming policies for these foreign agents. It was
only in the late 20th century that intellectual property was employed in most legal schemes
worldwide. IP is primarily aimed at inspiring the development of an extensive range of
IP rights. Intellectual property gives individuals and companies the right of information
and intellectual property, usually for only a limited time. Intellectual Capital (IC) means
a change in the value of knowledge for a company. Thus, the debit and IC are the credit
or share of intellectual property such as people, patents, processes, brand names, etc. If
this IP idea is shared or accessed somehow, then the concept could easily be implemented
in another smart farming system. As a result, the goal of that farming system may not be
adequately obtained. Now, there is no control hub procedure of the current smart farming
system. If we hire a device in a smart farming system, it can easily access my farming
information due to the existing IoT-based PA infrastructure.

1.3. Impact of Intellectual Capital Theft in PA

IP theft includes removing an individual or company from trade secrets or soft prod-
ucts, known as ‘cultural property’, from ideas, inventions, or creative expressions. From
new crop production and farm equipment design, commercializing and labelling of farm
products are essential. Intellectual goods have a long-term effect and significant importance
in the many agricultural sectors. However, the interaction between intellectual property
law and agriculture has had comparatively less interest or attention. The situation has
reformed over the past decade mainly because of increasing awareness of the role of IP law
in food safety. If the business secret or policy is publicly disclosed, there will be a massive
impact on this particular enterprise. The corporate competition might also be a public
structure. If IP theft takes place in a specific agricultural system, a catastrophic drawback
from that agricultural system will be imposed. The adoption of nano-based biomarkers
to trace patented products through new scientific and technical innovations throughout
the food chain uses molecular markers in breeding. To track proprietary products or data-
based intelligent agriculture information, the adoption of nano-based biomarkers might be
communicated throughout the world. The guardian of IP is serious about promoting inno-
vation. Innovation, farms, and individuals would not benefit from the full support of their
inventions without protecting ideas and would focus less on research and growth. Artists
would therefore not be fully paid for their creations, and their cultural strength would
suffer. Intellectual property is a category of property that includes intangible creations of
the human intellect in a PA. It has a direct impact on a smart farming system. Cultivation
patterns, plant variety rights, and IoT generated information from a smart farming system
are the intellectual properties that are protected by the IoT-SDN gateway hub.

When foreign devices are hired in a PA, these devices must load the IoT-SDN operating
system. The foreign devices are operated by the direction of this IoT-SDN intelligent hub.

IoT based precision agriculture is a new era of technology for smart farming systems.
In the previous research works, intellectual property theft has not been protected. In our
research work, firstly, we have proposed an SDN-IoT framework to protect intellectual
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property. In our proposed framework, we have approached an SDN-GW connection hub
that will manage the foreign devices. Secondly, in this research, we have proposed an
algorithm that will control the apparatus according to the PA criteria. Finally, foreign
device mobility management has been simulated and executes better performance than
other mobility management.

The structure of this paper has been described as follows. In Section 2, literature
survey is described. Section 3 describes the architecture of the proposed framework. In
Section 4, evaluation and result analysis are illustrated. Section 5 presented the overall
conclusions of the paper relating to the future work.

2. Literature Survey

Agriculture is the essential sector for sustainable development in the fourth industrial
(4I) revolution [10]. Since technology is rapidly growing rationally with modern civilization,
the agriculture sector has also adopted intelligent tools and techniques [11]. As a result,
IoT is facilitating better and faster services in recent agriculture. Another new technology,
SDN, has also been introduced in several sectors, including agriculture [12]. SDN has also
been implemented to manage the network traffic in multipath routing [13]. SDN has also
been inaugurated in IoT based monitoring in 5G networks [14]. The use of smart devices,
especially IoT in agriculture, is termed as PA and provides valuable information on crop
growth, development, processing, cultivation, etc. Satellite and scalable high-speed cloud
and edge computing systems are also used for proactive crop cultivation [15]. They can also
provide competitive insights with advanced crop performance analytics and advantages
from previous information. Early warnings of cultivation failure help a farmer to make
decisions accordingly. Expositions of data relations and responses to potential threats to
gas or diseases, nutrients or water deficiencies, and crop production drought. If the farmer
can establish a sustainable infrastructure of a firm, then they can mitigate the risk and
forecast the market viability.

To store farm records, improve decision-making, promote traceability, and enhance
agricultural products’ marketing, IoT can oversee the challenges [16]. To improve the
rental arrangements and the relationship of landowners, improve farming quality and so
forth, farmers will also receive a wealth of information. According to the current growing
population, it is now expected to reach 9.6 billion by 2050 [17]. Agriculture must grow
its demand, irrespective of environmental challenges, including unpleasant conditions
and climate change. The agricultural sector has to adopt new technologies to achieve an
extended production edge to meet the needs of the increasing population. IoT might be
a suitable addition to agriculture to enable the agricultural industry to raise operational
efficiency, reduce costs, cut waste, manage its delivery, and improve yield quality in new
agricultural applications [18].

SDN-enabled IoT’s intelligent agriculture is highly efficient compared to the tradi-
tional method [18]. The application of SDN and IoT-oriented smart farming could target
the conventional, large-scale farming processes and ensure the secured and scalable preci-
sion agriculture. Preserving high-quality varieties and improving the highly transparent
agriculture system SDN and IoT integration have been studied in intelligent homes and
industries. However, the integration of SDN in IoT based PA is an entirely new concept
and more challenging issue. Thus, we have proposed precision agriculture compiled with
IoT and SDN. Most of the researchers have researched SDN to outperform IoT devices
and make them more secure. Some also work on NFV and blockchain technology. Their
focus is on building, city, network and mobility management. Very few have done security
concern in precision agriculture. Thus, we have focused on the security aspects of the IP
in precision agriculture. We have also shown a comparison of our proposed model along
with the other researchers in Table 1.
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Table 1. Qualitative comparison of our proposed model along with previous work.

Authors Focus Technology Platform Protocol QoS Throughput

T. Maksymyuk, et al. [14] Network
Monitoring 5G, SDN and IoT – MQTT

Signal Strength
compared among
small and macro

cell

–

P. K. Sharma et al. [19]
Distributed

Network
Management

IoT, SDN and
Blockchain Mininet 2.1.0 OpenFlow DistFlow

Compared
Bandwidth of

OpenFlow with
DistSoft

–

B. K. Mukherjee et al. [20] Smart City
Management IoT, SDN and NFV Mininet WiFi OpenFlow

Compared RTT
with OpenFlow

Protocol for three
cluster

Compared with
OpenFlow Protocol

for three cluster

Y. Wang et al. [21] Mobility
Management SDN Mininet 2.1.0 Network Layer-3

Compared RTT for
3 different protocols

with handover
–

A. Rahman et al. [22] Smart City
Management IoT, SDN and NFV Mininet 2.2.1 OpenFlow

Compared RTT
with OpenFlow

Protocol

Compared with
OpenFlow
Protocol

A. Rahman et al. [23] Building
Management

IoT, SDN and
Blockchain Mininet WiFi OpenFlow

Compared RTT for
3 different size
networks with

OpenFlow Protocol

Compared with
extended MINA

architecture

D. Sinh, et al. [24] Network
Management SDN, NFV and IoT Mininet 2.0.0 OpenFlow Reachability and

network slicing –

F. Cauteruccio, et al. [25] Smart City
Management IoT MIoT IPSO Average running

time
Anomaly degree
and percentage

Proposed
Security in
Precision

Agriculture
IoT and SDN Mininet WiFi OpenFlow

Compared RTT,
Jitter, PER with

mobility

Compared with OF
protocol and 3

different
clusters

A comprehensive analysis has been highlighted in the table. The key focus features
along with the implemented protocol and the measurement matrices have been analyzed.
Most researchers have studied structural and network management using SDN, NFV,
IoT, and blockchain. Researchers have clarified their work as having QoS throughput
measurement. SDN and IoT based OpenFlow and MQTT protocol have been considered
for the implementation. We have considered LoRa and OpenFlow protocols in our pro-
posed framework, and Mininet Wi-Fi have been chosen for simulation. We have also
compared our obtained results and the previous research evaluating PER, CDF, Jitter, RTT,
and throughput.

SDN and IoT-based intelligent farming means that a system with sensor aids (light,
humidity, temp, soil humidity, etc.) for monitoring crop fields is developed, and an ir-
rigation system is automated. Traditionally, any automatic farm consists of its native
intelligent devices. Sometimes, farmers need to hire some foreign devices occasionally for
strip cropping, large scale irrigation and so on, which can expose the farming information,
production mechanism, intellectual property, and some other confidential resources. Exter-
nal or foreign devices are vulnerable threats for security purposes. Handle foreign devices
are the critical concerns of the researcher. To the best of our knowledge, no one introduces
SDN in IoT to facilitate the farmers for better and qualified PA. Hence, we have proposed
a framework to provide a better quality of service in PA and network management. We
have also proposed an algorithm to efficiently handle the foreign devices and manage the
intellectual assets of any precision agriculture. In the end, to control the foreign mobile
devices, we have also compared the improved quality of service (QoS) of our proposed
model along with previously implemented mobile architecture in multiple controllers’
domains [26].

3. Architecture of the Proposed Framework

Hereby, this framework mainly contributes to reducing IPT in precision farming
presented in Figure 1.
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Figure 1. System workflow of the proposed framework.

The entire PA monitoring system will be implemented according to this proposed
system. The framework is divided into two different device and network layers. An
IoT-SDN gateway connected the layers to provide consistent remote control of the smart
farming devices. Based on the operational behavior, devices are separated into the home
and foreign agent. Native devices are termed home agents that are managed by home
access points operated with LoRa protocol. SDN is used to manage the external devices
that are called the foreign agent. Since SDN offers dynamical modification according to
the user’s expectation, agricultural information can be protected from the outside world.
OpenFlow protocol based SDN access points can handle the foreign agent. The home
and foreign agent can be inclined with the IoT-SDN gateway for network management.
In this work, the devices are perfectly in line with our gateway hub system and enhance
the efficiency of the intelligent farming system. SDN operational functionality, modified
mechanical strategy, and proposed framework algorithm are described below.

3.1. Precision Agricultural Network

In PA, most smart devices are assigned with their specific tasks like moister, GPS, tem-
perature, smoke, pH sensors, sprinkler, camera, drone, etc. Some smart devices occasionally
need the same tractor, irrigator, harvester etc. These types of devices are called foreign
devices and are hired once or twice in an agricultural session. These devices are varied in
number based on the size of a PA. In a small farm, almost 15–30 smart devices are installed,
including networking devices. This number is increased to 30–60 for a medium-size PA.
More than 70 numbers of devices are installed for large size PA. Thus, we have considered
three different size network clusters containing 25, 50, and 100 nodes respectively for small,
medium, and large size in our proposed PA architecture.
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3.2. Management of IP Rights and Foreign Agents

Today, several different analog farming methods exist. For every farmer, agricultural
store, and agronomic, technology has become an integral part of their company. Farming
requires a lot of techniques and efforts to develop smart farming. Agriculturists utilize
technology to enhance efficiency and control expenses. With the development and modern-
ization of digital technology, IoT-based smart farming concepts have emerged. Application
of IoT in agriculture promises previously unavailable efficiency, reduced resources and cost,
automation, and data-driven processes. In agriculture, these benefits act as improvements,
but the solutions for the whole industry turn into a range of dangerous problems such
as IP theft. Cultivation patterns, plant variety, copyright, trademarks, internal database
management, employee competence, and IoT device generated information from a smart
farming system are examples of IP rights.

The core of smart farming is derived from the ability to extract value from IP data.
When foreign agents know the IP data, such as internal database management, it must
possibly leak these IP rights. To protect this leakage, we have proposed the foreign agents’
management policy which has been shown in Figure 2. When these IoT-based foreign
agents are hired, we have a customized setting to control these agents. These devices are
loaded and operated according to the criteria of PA. Since we customize the setting for
foreign agents, these foreign agents have strong restriction to accessing all PA things. Since
these devices are controlled by an IoT-SDN control hub, data generated from these devices
are stored in separate cloud servers. As a result, IP rights can be easily protected.
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3.3. IoT-SDN Gateway Integration

A smart SDN based gateway is a server to manage both the home and foreign agents
outside the network. The computer system within the IoT based agricultural networks are
portal nodes in the big intelligent farming system. The general insight architecture of the
IoT-SDN gateway is presented in Figure 3. A gateway-based connection hub with internal
networks is embedded by an operating system. A portal is the complete form of a number of
devices essential for the system’s interoperability as system translators. Sensing [27] devices
connected with this gateway are smartly controlled by defining the devices’ functionality.
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OpenFlow as an SDN and LoRa as IoT communication protocols describe the routing rule
system [28,29]. These protocols permit the transfer of information through any physical
quantity between two or more communication nodes. If one device communicates with the
others, they comply with the gateway protocol rules. The tracking module monitors the
entire system with its operating system. The external devices are connected to the home
network according to the algorithmic structure. All of the communication among the IoT-
based smart devices and the network information management is stored in the database.
SDN is deployed with the IoT devices for the foreign device’s control [30,31]. Thus, the
SDN based IoT gateway has been established, where SDN plays a network management
role over the IoT devices [32]. The foreign devices are managed based on this intelligent
farming gateway system. When the foreign devices are hired in the smart farming system,
the devices are joined according to the algorithm structure setting based on that farming
system. If these devices are not joined by a proper method, these devices will be rejected or
released to load the embedded operating system. Completing the registration process, the
foreign devices load the embedded operating system with smart farming. Since a farming
loaded operating system is enabled in these foreign devices, it must be controlled by a
farming system. The monitoring module monitors the foreign with the help of a tracking
module. The gateway module will help to exchange data among the foreign devices and
home devices.
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3.4. Proposed Algorithm

Since the intelligent gateway is designed to manage the foreign agent, we have to
set the operational functionality. The administrator of the PA defines the rules to access
resources inside the farm. The Algorithm 1 has been integrated with the IoT-SDN gateway.
The network administrator defines the execution time, speed, and acceptable delay of each
foreign device. The Algorithm 1 is described as follows:



Electronics 2021, 10, 1987 9 of 19

Algorithm 1: Proposed Foreign Agent Selection Algorithm

Input: Number of External Devices (E), Registered with Password (R), Operational Time (T), Operational Speed (S) and
Acceptable Delay (D)
Output: Foreign Agent Selection, Time and Delay
1: Initialize the Variables
2: while (1) do
3:
4:
5:
6:
7:

T[0]←T //Initialize Time
S[0]← S //Initialize Speed
D[0]← D //Initialize Acceptable Delay
Time = 0 //Initial total execution time
Delay = 0 //Initial total delay

8: for i← 1 to E do
9: if (PW[i] != R) then
10: PW[i]← R
11: end if
12: if (T[i] != T[0] and S[i] != S[0] and D[i] != D[0]) then
13:
14:
15:
16:

T[i]← T //Update Time
S[i]← S //Update Speed
D[i]← D //Update Acceptable Delay
FA [i]← E[i] //Foreign Agent Selection

17: PA[i]← PA[i] + E[i]
18:
19:

else
FA [i]← E[i] //Foreign Agent Selection

20: PA[i]← PA[i] + E[i]
21:
22:
23:
24:

end if
Time← Time + T[i] * S[i]
Delay← Delay + D[i]
return FA[i] //Return Selected Foreign Agent

25:
26:
27:

end for
Timeavg = Time/E
Delayavg = Delay/E

28: end while

At first, the algorithm initializes the measurement criteria like time, speed, and accept-
able delay for the foreign devices. Then, it checks whether the external device is registered
or not. If it is already registered, the password has been discarded for loading existing
resources. Otherwise, it provides the suggestion of foreign devices for completing the
registration and loading the operating system of existing PA farming. When these devices
are loaded with the operating system of PA farming, it successfully allowed for accessing
the farming information and returning the selected foreign agent. Otherwise, the rejection
function will be active for these foreign agents. It also checks the criteria for successful
attachment with the PA. Cumulative time and delay have been stored and averaged to
measure the network performance. Based on the implementation of this algorithm, the
overall network performance has been discussed in the Results section.

3.5. Mechanical Modification

We proposed a model that was described in Figure 1 to solve intellectual property theft
in precision farming. Figure 1 shows that the device is controlled by the IoT-SDN gateway.
This control hub carries out the overall PA monitoring system. If a foreign device needs
to be employed in the farming system, this device must be adapted based on the owner’s
need. Consequently, these devices work due to the control plate system perfectly, and there
is no information leakage. Therefore, our proposed PA is a management system for all
controllable foreign devices depicted in Figure 4. The functional requirements are imposed
on the guest device through the proposed algorithm whenever the algorithm executes the
operational behavior that is stored in the memory. Thus, the explosion probability of the
information is reduced. It can rarely guarantee a positive outcome by securely determining
the overall system performance.
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3.6. SDN Implementation

Whenever the IoT-SDN gateway forwards the information toward the network layer,
it deals with further remote monitoring, traffic control, routing, and so on. Apart from
this, SDN decouples the data plane from the control plane compared to the traditional
network scheme [19,20]. The data plane forwards the packet according to the instruction
from the control plane. The control plane consists of the network operating system (NOS).
This controller is integrated with northbound API for traffic control, routing table, and
security concerns. The upper layer of the control plane is known as the application plane.
Applications are applied for future network virtualization. Figure 5 presents the visual
representation of the overall operational functionality of SDN. Since SDN decouples the
control plane from the data plane, the networking devices are performing as forwarders.
They only execute the instructions from the control plane. The control plane consists of the
network operating system installed in a network controller. Well defined API is used to
execute the required operation of the end user. The API is placed in the application plane.
It acts as a bridge among the users and the SDN network. Packet monitoring, routing,
mobility, accounting, authentication, and security operations are done by the API.
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4. Evaluation and Results Analysis

This section describes the simulation and result analysis of the proposed framework. It
will cover the simulation environment, architecture, and performance measurement metrics.

4.1. Environmental Setup

An Intel Core-i5 based Central Processing Unit (CPU) with 2.11 GHz processing
speed and 8 GB RAM has been used to set up the simulation environment. In addition,
a 64-bit Ubuntu (18.04) operating system was used for virtually designing the network
architecture. Three different sizes of network clusters are considered for the performance
analysis. At first, 25 nodes were used for deploying the proposed network architecture.
Then, the network added another 25 nodes as a medium-size network. Finally, the network
performance has been analyzed for 100 nodes. Mininet Wi-Fi as a simulator and Ryu as a
controller are used for the simulation to create the virtual network. OpenFlow is used as
a two-way communication protocol. After deploying the network, Wireshark was used
to capture the packets of the virtual network. Then, the network performance is visually
represented by using MATLAB (2020a). The remaining simulation parameters are shown
in Table 2.

Table 2. Simulated parameters setting for the network architecture.

Parameters Parameter Values

Simulator Mininet WiFi

Simulation Area 300 m × 300 m

Number of Nodes 1–100

SDN Controller 1

OpenFlow Switches 5

Gateway 1

Simulation Times 120 s

Data Rate 110 Kbps

Routing Protocol OpenFlow

Measurement Metrics
Throughput, Round Trip Time (RTT), Cumulative

Distribution Function (CDF), Jitter and Packet Error
Rate (PER)
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4.2. Network Configuration

To analyze the proposed framework, a small size single controller-based PA has been
considered for first tire simulation. Figure 6 presents the topological view of a small smart
farm installed with some basic sensors and monitoring control. Three access points are
connected with the internet. The SDN controller is set to the network administration
building. The farm owner can monitor the PA system from his own residence.
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Figure 6. Single controller based network topology of precision agriculture.

Figure 7 presents the graphical visualization of the simulated network. Access point
2 is connected with the controller depicted by sta1. The mobile monitoring host inside
the farm is associated with access point 4, indicated by sta2. Since the network nodes
are mobile, mobility frequency has been set to 0.1, 0.25, 0.50, and 0.75 in several time
simulations. Only two mobilities 0.25 and 0.50 have been presented in Figure 6 concerning
a and b.
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4.3. Performance Matrices

Analysis of the performance, i.e., throughput, RTT, CDF, jitter, and PER based on the
mobility of the proposed framework, has been calculated and described as QoS matrices.
Iperf (command) is used to measure the performance of the network. Based on our
proposed algorithm, we have calculated the throughput and RTT for measuring the network
performance. Drone and foreign devices are moveable in their operational behaviors.
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Thus, we have to consider the impact of mobility on the network. As a result, we have
measured the CDF, Jitter, and PER with another mobile network containing multiple
controllers’ domains [26]. Four different mobile frequencies, 0.1, 0.25, 0.5, and 0.75, have
been considered for performance comparison.

A. Throughput

The successful data transfer rate from source to destination is known as throughput.
We have simulated our proposed architecture based on small, medium, and large size of
the network including 25, 50, and 100 nodes. Throughput is calculated by Equation (1):

Throughput = Number of Packets/Time (1)

The higher the throughput and the lower the RTT complies, the better the network
performance. Figure 8 represents the average throughput of the proposed network for
three different clusters. Figure 7 shows that the smallest cluster gives the best throughput
compared to the medium and the most extensive sized network. However, in the broader
sense, the difference in the throughput is negligible. The throughput of medium and large
size networks is almost identical. An acceptable throughput is slightly reduced for larger
size network nodes in our architecture.
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B. Round Trip Time

Round trip time is one of the significant measurements parameters of any network
architecture. In our proposed framework, the session time between the home agents
and the foreign agents have been considered for RTT. If any session has already been
established before joining any foreign agent, the time has been marked as previous RTT.
RTT is obtained as Equation (2):

RTT = (1− α)× reviousRTT + α× PresentRTT (2)

where α is constant weight factor.
Figure 9 represents the RTT for 25, 50, and 100 node network architecture. RTT

is the time calculated with the summation of the packet requested by the sender and
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the acknowledgement provided by the receiver. RTT is increased proportionally with
the simulation time. The RTT of the small and medium-size networks is nearly similar.
However, the RTT is very high for an extensive sized network.
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C. Cumulative Distribution

Since the foreign agent will be hired, mobility needs to be considered for performance
measurement. Hence, the cumulative distribution function (CDF) represents the geometric
distribution of the packet handled per second with the corresponding probabilities. Four
different frequently used possibilities of mobility frequencies have been shown in Figure 10.
The figure shows that the distribution’s efficiency decreases with the increasing number of
packets. CDF has been calculated using Equation (3):

y = F(x|p) = 1− (1− p)x+1

x = 0, 1, 2 . . . n
(3)

where p is the probability of success.
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D. Jitter

The delay variations are known as jitter. The jitter of the network architecture has
been presented in Figure 11. More than 150 packets have been captured and considered
for jitter calculation in a microsecond. The y-axis represents the jitter corresponding to the
packet number depicted on the x-axis. Since mobility was one of the challenging issues
for the proposed architecture, we have shown the jitter comparison with [26]. Higher jitter
is decreasing the network performance. The figure represents that our proposed network
architecture facilitated lower jitter than the network simulated in [26].
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E. Packet Error Rate

The ratio of error packets over the total number of transmitted packets in a network
is termed packet error rate (PER). Our proposed PA is implemented in a single IoT-SDN
controller domain. Since foreign devices are moveable, the mobility frequencies of 0.1, 0.25,
0.50, and 0.75 PER have been compared with the multiple controllers’ environment [26].
Figure 12 presented the comparative PER among single and various controllers. At the time
of handling the session handover, PER increased with the increasing mobility frequency.
The figure clearly shows that our proposed PA reduces the PER by around 3.53% compared
to the multiple controllers. PER is calculated by Equation (4):

PER =
Error Packets

Transmitted Packets
·100% (4)
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F. Quantitative Error Rate Comparison with Existing Works

Since mobility has been considered for handling the moveable devices, we have
compared our proposed model with multiple controllers’ domain. We have reduced the
error rate 3.53% on average in four different mobile frequencies. The error rate varies with
the implemented technology and the protocol. Several researchers have done their research
on PA implementing both IoT and SDN. Frequently used OpenFlow, MQTT, EADC, CHP,
and LoRa protocols have been considered for comparison with our proposed model. Our
proposed model reduces the error rate (1.66~6.46)% compared to the other protocols. A
comprehensive comparison of the error rate of our proposed model has been compared in
Table 3.
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Table 3. Comparison of error rate for the use of different protocol.

Author Technology Protocol Error Type Error Rate

M. H. Rahman et al. [26] SDN OpenFlow Packet 6.87%

R. Shete et al. [33] IoT MQTT Information 8.65%

A. S. Hosen et al. [34] IoT
EADC

Packet
9.8%

CHP 9.23%

J. Jin et al. [35] IoT LoRa Information 5.7%

E. Boonchieng et al. [36] IoT + NETPIE MQTT Information 5%

Proposed IoT + SDN LoRa + OpenFlow Packet 3.34%

5. Conclusions and Future Work

Geospatial skills help to develop more efficient and effective methods of farming.
They are used for the analysis of soil data and crop health from afar and cover large areas
simultaneously. These technologies can contribute to the improvement of food production
and safety throughout the world. Efficient management of resources and persistent and
timely monitoring of crop health are more and more critical. Specific areas where PA may
be at risk or vulnerable are increasingly connected to the Internet and other equipment. The
final area of device corruption is now widely recognized as a danger in many institutions.

Consequently, we have proposed a smart IoT-SDN gateway control system that will
ensure the authenticity of foreign devices since IP rights are very sensitive pieces of
information in a PA system. A smart hub will be used to perform the overall PA monitoring
system. If new guest equipment or external devices are to be hired for this agricultural
system, they must be tailored to our needs. Therefore, these devices work following the
control plate system perfectly, and there is no information leakage. Our plan is to add a
blockchain to this research work.
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