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Abstract: The emergence of non-volatile memories (NVM) brings new opportunities and challenges
to data management system design. As an important part of the data management systems, several
new file systems are developed to take advantage of the characteristics of NVM. However, these
NVM-aware file systems are usually designed and evaluated based on simulations or emulations. In
order to explore the performance and characteristics of these file systems on real hardware, in this
article, we provide an empirical evaluation of NVM-aware file systems on the first commercially
available byte-addressable NVM (i.e., the Intel Optane DC Persistent Memory Module (DCPMM)).
First, to compare the performance difference between traditional file systems and NVM-aware file
systems, we evaluate the performance of Ext4, XFS, F2FS, Ext4-DAX, XFS-DAX, and NOVA file
systems on DCPMMs. To compare DCPMMs with other secondary storage devices, we also conduct
the same evaluations on Optane SSDs and NAND-flash SSDs. Second, we observe how remote
NUMA node access and device mapper striping affect the performance of DCPMMs. Finally, we
evaluate the performance of the database (i.e., MySQL) on DCPMMs with Ext4 and Ext4-DAX
file systems. We summarize several observations from the evaluation results and performance
analysis. We anticipate that these observations will provide implications for various memory and
storage systems.

Keywords: non-volatile memory; file systems; performance

1. Introduction

Emerging non-volatile memory (NVM) technologies, such as spin–torque transfer
memory [1], phase change memory [2], resistive memory [3], and Intel and Micron’s 3D
XPoint technology [4] promise to revolutionize I/O performance. NVM brings persistence
at latencies within an order of magnitude of DRAM [5,6] and creates a new level in the
storage hierarchy between DRAM and traditional secondary storage devices.

As the emergence of new hardware and platforms always leads to reconsideration of
how to design data management systems, the advent of NVM brings new opportunities
as well as new challenges to system design. The file system, as an important part of the
data management systems, is a hot topic for NVM application research. Many researchers
have designed and developed new NVM-aware file systems that make better use of NVM
features, such as BPFS [7], PMFS [8], and NOVA [9,10]. However, because the design and
evaluation of previous studies were usually based on simulations and emulations, their
exact performance in working on real NVM devices is unknown. Recently, the first byte-
addressable NVM product, Intel Optane DC Persistent Memory Module (DCPMM) [11],
has become commercially available. An evaluation on the real hardware can enable accurate
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assessment of the impact of NVM-aware file systems on applications and provide hints for
future system designs.

In this article, in order to understand the performance differences between NVM-
aware file systems and traditional file systems on NVM devices, we evaluate the perfor-
mance of NVM-aware file systems and traditional file systems at various workloads on
Intel Optane DCPMM. Because new devices do not always guarantee better results in all
cases, in order to help researchers and system designers make better choices about which
storage devices to use when designing future systems, we also evaluate the performance of
these file systems on Intel Optane SSDs [12] and NVMe SSDs to compare the performance
differences and characteristics of each file system under different storage devices. From
the evaluation results, we obtain the following observations that may be useful for future
system design: (1) Direct Access has a significant improvement on file system write per-
formance, but has a smaller impact on read performance. (2) Concurrent write access can
degrade the performance of DCPMMs while concurrent read access does not. (3) Access
from remote sockets reduces the write performance of DCPMMs but has little impact on
the read performance. (4) Redesigning low overhead metadata management strategy of file
systems is needed to fully utilize the performance of DCPMMs. (5) Organizing DCPMMs
from different sockets as a logical device can also bring out the full performance of the
devices. (6) DCPMM is better able to show its strengths for small size requests. (7) Even
with the same system APIs, we need to consider their different impact on normal block
devices and NVM devices under different hardware platforms.

This paper is an extended version of our previous work [13]. In the previous work, we
evaluated and analyzed the performance of file systems on DCPMMs by using file system
benchmarks (e.g., FIO [14] and Filebench [15]). In this paper, we evaluate and analyze the
performance of the database on DCPMMs with different configurations. In addition, we
analyze the results of each evaluation in more detail.

2. Background and Related Work

This article focuses on investigating the performance characteristics of traditional and
NVM-aware file systems on DCPMMs and comparing DCPMMs with other secondary
storage devices, thereby providing assistance in the design of future storage systems. In
this section, we first briefly present the features of Intel Optane DCPMM. Next, we explain
the similarities and differences between NVM-aware and traditional file systems. Finally,
we discuss the related work.

2.1. Intel Optane DC Persistent Memory Modules

Intel Optane DCPMM is the first commercially available byte-addressable NVM
product that is based on 3D XPoint technology [4]. DCPMMs connect to the CPU via the
integrated memory controller (iMC) and DDR-T protocol [16]. The iMC maintains read and
write pending queues for each DCPMM. DDR-T uses a 72-bit data bus and exchanges data
in a cache line unit (64-byte). As a result, the CPU can skip the page cache and perform
memory I/O operations directly on the DCPMM. The basic access unit inside the DCPMM
is 256 bytes; thus, any write request less than 256 bytes becomes a read–modify–write
operation, increasing the write amplification. To reduce the write amplification caused by
the two different access granularities, DCPMMs have a small internal write-combining
buffer for merging adjacent writes. To ensure persistence, write pending queues of DCPMM
and the internal write buffers are placed into Intel’s asynchronous DRAM refresh (ADR)
domain, which ensures that CPU stores that reach to the write pending queue will survive
a power failure [17].

DCPMM can be used as memory or as persistent storage, depending on the operation
mode in which it is set to work [11].

Memory Mode: In this mode, DCPMMs and DRAM are fused into a single volatile
memory space. Because DRAM outperforms DCPMM, DRAM is used as a direct-mapped
write-back cache for DCPMM. It should be noted that, even though the storage medium
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of DCPMM is non-volatile, for data security, the data in DCPMMs is intentionally crypto-
graphically erased between power cycles in memory mode.

App Direct Mode: In this mode, DCPMMs are exposed to the system as permanent
storage devices. DCPMMs on the same CPU socket can be grouped into an interleaved
group. An interleaved group is similar to a RAID-0 device at the hardware level, which
increases bandwidth by data striping. In this article, because we are concerned with
exploring how file systems work on DCPMMs, we configure our DCPMMs to the App
Direct mode.

Intel has another product that uses 3D XPoint as storage media: the Intel Optane
SSD. Unlike DCPMMs the Optane SSD is connected to the machine via PCIe and NVMe
interfaces, so it cannot be used as memory. It is more like a NAND-flash SSD, but with
lower latency and no garbage collection.

2.2. NVM-Aware File Systems

Previous studies have proven that traditional file systems do not provide the full
performance of low-latency storage devices [18–20]. In order to better utilize the low
latency, high bandwidth, and byte-addressable characteristics of NVM devices, some
NVM-aware file systems, such as XFS-DAX [21], Ext4-DAX [22], BPFS [7], PMFS [8], and
NOVA [9] were developed.

The NVM-aware file systems usually use a technique called Direct Access (DAX) [23]
to bypass the operating system page cache and I/O stack, thus reducing the overhead and
latency caused by the software. DAX enables applications to map files on a NVM-aware file
system into their address space, so applications can access data directly through memory
load and store instructions. In contrast, traditional file systems do not support DAX. In
addition, some traditional file systems are designed to rely on the sector write atomicity
provided by the storage device. To support these file systems, DCPMMs need to maintain
an additional software layer called the Block Translation Table (BTT) to guarantee the atomic
sector update [24]. The overhead of maintaining BTT further widens the performance gap
between traditional file systems and NVM-aware file systems.

XFS-DAX and Ext4-DAX are NVM-aware versions of XFS and Ext4, which support
Direct Access. BPFS is a NVM-aware file system that uses a shadow paging technique to
reduce write amplification and data copy. PMFS provides consistent and durable updates
to file system metadata and enables DAX to applications via the mmap interface. NOVA
adopts the techniques of log-structured file systems to provide a separate log for each
inode, thus delivering high performance while ensuring strong consistency.

2.3. Related Work

NVM-aware file systems. In order to make the file system better adapted to NVM
devices, a number of file systems designed specifically for NVM have emerged. To take
advantage of the byte-addressable capability of NVM, BPFS [7] can process fine-grained
atomic updates to NVM. Therefore, BPFS provides good performance with strong reliability.
PMFS [8] is a light-weight POSIX file system that can enable Direct Access by applications.
It provides fine-grained logging for consistency by utilizing the processor’s paging and
memory ordering features. NOVA [9] aims to maximize performance on hybrid memory
systems with strong consistency. It uses the techniques of log-structured file systems to
provide a separate log for each file’s inode, thus exploiting the fast random access of NVM.
NOVA-Fortis [10] is a version of NOVA that provides greater reliability. Compared to
NOVA, NOVA-Fortis additionally uses snapshots, checksums, replication, and RAID-4
parity protection. In contrast to implementing new file systems, our article focuses on
verifying on real hardware as to whether these NVM-ware file system designs can actually
be useful in NVM.

NVM management. Because memory controller and CPU may reorder memory
writes, we need use memory fence and cache line instructions to guarantee data consistency.
NV-Tree [25] is a variant of B+ Tree that was designed for NVM. NV-Tree can reduce
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the number of cache line flushes that we need to maintain data consistency; as a result,
it can outperform the state-of-the-art consistent tree by up to 12X. AsymNVM [26] is
an architecture that helps with sharing NVM devices to multiple servers and provides
recoverable persistent data structures. This architecture decouples server machines from
NVM storage, enabling increased NVM utilization. Combining DRAM and NVM into a
hybrid memory can provide a large main memory capacity. However, the problem arises
of how to place the data. RTHMS [27] provides an algorithm for data placement on hybrid
memory systems. RTHMS analyzes applications in advance and then helps programmers
to determine how to place memory objects. Similarly, Dulloor et al. [28] propose a memory
management infrastructure that makes it easy for the programmer to decide where to put
the corresponding data when allocating memory. They also provide a profiling tool that
automatically analyzes the data access pattern and optimizes the data placement. Our
article is in line with these studies in terms of finding best practices for using NVM. In
contrast, we focus more on using NVM as persistent storage instead of the main memory.

Evaluation of fast storage devices. With the advent of new fast storage devices,
researchers have done a lot of work to evaluate the performance of the applications working
on new devices. Weiland et al. [29] explore the performance of high-performance scientific
applications working on DCPMMs in both Memory and App Direct modes. The evaluation
results show that a larger memory capacity has better efficiency for scientific applications.
Gotze et al. [30] evaluate several tree-based data structures on DCPMMs. From the result,
they summarize 16 insights to help design data structures for NVM devices. Wu et al. [31]
conduct a performance evaluation of the Intel Optane SSD using the micro benchmark.
They propose seven best practices for using NVM-based block devices by analyzing the
evaluation result and the Intel Optane SSDs. The comparison reveals that if these best
practices are violated, it will have a significant impact on the throughput and latency.
Son et al. [32] perform a thorough performance evaluation of NVMe NAND-flash SSDs
and compared them to SATA SSDs. Xu et al. [33] evaluate the performance of commonly
used database systems (i.e., MySQL, Cassandra, and MongoDB) on NVMe drivers. They
present a detailed analysis of the characteristics of NVMe drivers. The result shows that
NVMe-backed databases can outperform SATA-based databases by up to eight times. Our
study is in line with these studies in terms of evaluating the performance of emerging
fast storage devices. In contrast, our study concentrates on comparing the performance
characteristics between traditional block-based file systems and NVM-aware file systems
on DCPMMs. In addition, we also compare the DCPMMs with Intel Optane SSDs and
NAND-flash SSDs.

3. Evaluation Settings and Methodology

In this section, we introduce our experiment platform and the methodologies that
we used to conduct the evaluations. The specifications of our experiment platform are
shown in Table 1. Our machine has four sockets, and each socket has a CPU with 16 cores.
During the evaluation, we disable the hyper-threading machine. We have two Intel Optane
DCPMMs, which are installed in two different sockets. In this article, we always configure
DCPMM to the App Direct mode because we concentrate on observing the performance of
file systems on DCPMMs. In order to observe the performance differences of file systems
when working on different storage devices, we also use one Intel Optane SSD and one Intel
P4610 NAND-flash SSD, which sit on the PCIe interface.

The traditional file systems that we evaluate in this article are Ext4, XFS, and F2FS [34].
The NVM-aware file systems that we evaluate are Ext4-DAX, XFS-DAX, and NOVA. Ext4
and XFS are two mature file systems designed for block devices that have been developed
for over 20 years. F2FS is a file system designed to make better use of modern NAND-flash
storage devices. Ext4-DAX, XFS-DAX, and NOVA are NVM-aware file systems that can
enable the Direct Access feature.

First, we use FIO [14] as a micro benchmark to evaluate the performance of different
file systems on DCPMMs, Optane SSDs, and NAND-flash SSDs. If not specified, we only
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use processors on the same socket with the DCPMM to eliminate the influence of NUMA
effects. FIO generates four simple workloads, such as sequential read, sequential write,
random read, and random write. The I/O engine is set to sync. All workloads use a 1 GB
file size for each thread, and the request size (i.e., the blocksize option) is fixed to 4 KB. We
issue a fsync() system call after each request in the case of write workloads. Thus, we
avoid the impact of delayed allocation. Each test case runs for 30 s. The number of threads
varies from 1 to 16, and each thread accesses a different file.

Table 1. Evaluation platform specifications.

Processor Intel Xeon Gold 6242 Processor

Cores 16 cores × 4 sockets (hyper-threading disabled)

Memory Controller 2 iMCs × 3 channels × 2 sockets

NVM 128 GB Optane DC Persistent Memory Module × 2

Optane SSD 480 GB Intel Optane SSD 900P

NAND-flash SSD 3.2 TB Intel SSD DC P4610

DRAM 16 GB 2933 MHz DDR4 × per CPU socket

Operating System Ubuntu 20.04 LTS with Linux kernel 5.1.0

Database System MySQL InnoDB 8.0.25

In addition, to observe how remote NUMA node access can affect the performance
of DCPMMs, we intentionally use the numactl command to access the DCPMM using
processors from other sockets, and run previous four FIO workloads.

Second, both direct I/O and DAX bypass the page cache. To investigate whether there
is a performance difference between them, for DCPMM, we also test the performance of
each file system under simple read/write workloads when turning on the direct option
of FIO.

Third, we use filebench [15] as a macro benchmark to observe the performance of file
systems working on DCPMM under more realistic workloads. We use four predefined
workloads from filebench, namely, fileserver, varmail, webserver, and webproxy. In contrast
to the simple workloads generated by FIO, there is a mix of reads and writes in the filebench
workloads, and the request size varies between requests. The details of these workload
configurations are listed in Table 2.

Table 2. Filebench workload configurations.

Fileserver Varmail Webserver Webproxy

# of files 500 K 1 M 500 K 1 M

meandirwidth 20 1 M 20 1 M

average file size 128 K 32 K 64 K 32 K

# of thread 16 16 16 16

R/W Ratio 1:2 1:1 10:1 5:1

• Fileserver emulates the I/O activities of a file server. It is a write-intensive workloads
that mixed operations of create, write, read, delete, and append.

• Varmail represents mail server workload that saves each email in a separate file. The
workload consists of create, delete, append, and fsync operations.

• Webserver is a read-intensive workload that consists of open, read, close, and log
append activities.
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• Webproxy represents the I/O activities of a simple web proxy server. The workload
consists of create, write, open, delete, and log append operations.

Then, because only DCPMMs on the same socket can be organized as an interleaved
region, to explore the performance of DCPMMs on different sockets when they work
together, we use the Linux device mapper (i.e., dm-stripe) to combine DCPMMs located in
different sockets into one logical device and run FIO to evaluate the performance.

Finally, we use the TPC-C benchmark [35] to evaluate how MySQL [36] works on
DCPMMs with traditional and NVM-aware file systems. By default, we set the size of
the buffer pool as 1 GB and the flushing method as direct I/O (O_DIRECT). We create 500
warehouses. The warm up time is set as 180 s, and the execution time is set as 10 min. We
change the page size and consistency settings to observe the impact of these configurations
on performance.

4. Evaluation
4.1. Micro-Benchmark Results

In this section, we use FIO [14] to generate simple workloads, such as sequential
read/write and random read/write, to observe the best throughput of file systems on
DCPMMs, Optane SSDs, and NAND-flash SSDs. Figure 1 shows the performance of file
systems on DCPMMs, Optane SSDs, and NAND-flash SSDs.
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Figure 1. The read/write performance of traditional and NVM-aware file systems on Optane DCPMM, Optane SSD,
and NAND-flash SSD.
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First, we focus on the read and write performance of file systems on DCPMMs. From
the datasheet of DCPMMs, the read and write bandwidth of the 128 GB Optane DCPMM
are 1.85 GB/s and 6.8 GB/s, respectively [37]. As shown in the figure, read and write
operations show different characteristics. In terms of write operations, there is a significant
performance gap between traditional file systems and NVM-aware file systems. The best
performance of Ext4 and XFS is only about 60% of that of their NVM-aware versions.
In contrast, both traditional file systems and NVM-aware file systems show good read
performance on DCPMMs. NVM-aware file systems outperform the traditional file system
by up to 20% in the sequential read workload; with the random write workload, there is no
significant different in the peak performance between the two types of file systems.

We infer that the performance difference between traditional file systems and NVM-
aware file systems is mainly due to the page cache. Because traditional file systems use
page cache, data are copied twice when I/O is performed, once from the user space to page
cache and once from the page cache to DCPMMs, which introduces overhead. However,
for read workloads, first, readahead can reduce access to storage devices by prefetching
continuous data; second, subsequent reads of the same data can be handled by the page
cache, which reduces latency and access to storage devices. Therefore, the performance
gap for read workloads is smaller.

From the above evaluations, we obtain the following observation: direct access achieves
a significant improvement in file system write performance, but has a smaller impact on read
performance.

The number of threads accessing DCPMMs at the same time also affects the perfor-
mance of file systems. In terms of write operations, the three NVM-aware file systems ,
Ext4-DAX, XFS-DAX, and NOVA, can utilize the full write bandwidth of DCPMMs when
the number of threads is around 4. As the number of threads increases, XFS-DAX can
maintain the full bandwidth but the performance of Ext4-DAX and NOVA drops dramati-
cally. In terms of read operations, file systems can reach the best performance at 8 threads.
After that, the performance is flat or slightly decreases as the number of threads increases,
but there is no drastic performance drop as in the case of write operations.

We assume that the cause of this performance pattern is the contention in the integrated
memory controller (iMC). As we introduced in Section 2.1, DCPMMs are installed in the
memory slot and communicate with CPU through iMC. Requests to DCPMMs are queued
in the read/write pending queues that are maintained by iMC. Because the iMC can only
allow a limited number of simultaneous accesses to a channel, when the number of threads
increases, the later threads need to wait for the preceding threads to complete their requests.
Since the read performance of DCPMMs is significantly better than the write performance,
requests in the read pending queue are processed faster, so read requests are less affected
by simultaneous access than write requests.

From the above evaluations, we obtain the following observations:

• A small number of threads is enough to saturate the write bandwidth of one DCPMM. In some
situations, more threads may even degrade the performance.

• The read performance of DCPMMs is greatly superior to its write performance. Concurrent
read access does not degrade the read performance significantly.

Third, we compare how file systems work on the Optane SSDs and NAND-flash SSDs.
Since these two devices are not NVM devices, we only test XFS, Ext4, and F2FS. The write
performance of file systems on these two devices is similar, and they all rise as the number
of threads rises. The read performance is much different. In terms of sequential read
workload, both Optane SSDs and NAND-flash SSDs perform well because of the benefits
of readahead. With fewer threads, file systems perform better on Optane SSD than on
NAND-flash SSD. However, the performance of NAND-flash is better when the number of
threads increases. In terms of random read workload, the performance of file systems on
Optane SSD is significantly better than that on NAND-flash SSD, with a nearly four-times
difference in optimal performance between them.
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Because DCPMMs sit in the memory bus, access from remote NUMA nodes can affect
the performance. Figure 2 shows the performance of file systems when using processors in
a remote socket to access DCPMMs. As shown in the figure, remote access has a different
performance impact on read and write operations. For read operations, there is almost
no performance difference between remote access and local access. However, in terms of
write operation, remote access significantly degrades performance, regardless of whether
it is a traditional file system or an NVM-aware file system. The writing performance of
remote access is only 60% of that of local access, and as the number of threads increases,
the performance drops sharply.

Figure 2. The performance of traditional and NVM-aware file systems on DCPMM when accessed from remote socket.

From the above evaluations, we get the following observation: access from remote
sockets reduces the write performance of DCPMMs but has little impact on the read performance.
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4.2. DAX vs. Direct I/O

Similar to DAX, direct I/O also bypasses the page. However, their call paths are not the
same. Direct I/O avoids data copy between the page cache and user space, but it still goes
through the generic block layer. Theoretically, this introduces an unnecessary overhead. To
determine if this overhead has a performance impact, we evaluate the performance of each
file system, using FIO with direct I/O.

Figure 3 shows the performance of file systems on DCPMMs when using direct I/O.
As shown in the figure, when the page cache is bypassed, the performance of traditional
file systems and the performance of their NVM-aware versions are similar to each other.
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Figure 3. The read/write performance of traditional and NVM-aware file systems on Optane DCPMM when using direct I/O.

In terms of the two write workloads, XFS and XFS-DAX almost show the same
performance. However, there is a performance gap between Ext4 and Ext4-DAX with the
random write workload. We assume that the difference in performance between Ext4 and
XFS comes from their different direct I/O implementations. In the kernel we are using
(i.e., kernel 5.1.0), Ext4 uses __generic_file_write_iter() to send I/O request and then
calls generic_write_sync() to make sure the previously completed write requests are on
non-volatile storage before the next request starts. However, XFS uses iomap_dio_rw() to
process I/O, which does not need generic_write_sync().

For read workloads, only in the sequential read can we observe a consistent perfor-
mance gap between traditional file system and their NVM-aware counterpart of about
5%. Since no one uses the page cache, we speculate that this small performance difference
comes from the block layer and the alignment checking of direct I/O.

As a result, there can be a small performance gap between DAX and direct I/O, but it
is dependent on the specific direct I/O implementation. We note that DAX has other
advantages over direct I/O. First, the request size of direct I/O has an alignment restriction,
so it is not available for all workloads. Second, DAX is byte-addressable, while direct I/O
is not.

4.3. Macro-Benchmark Results

In order to observe how file systems on DCPMMs work in more realistic workloads,
in this section, we generate requests by using filebench with fileserver, varmail, web-
server, and webproxy workloads. The details of of each workload configuration are listed
in Table 2.

Figure 4 shows the performance of each workload on different file systems by IOPS.
As shown in the figure, NVM-aware file systems do not always outperform traditional
file systems. For example, when running read-intensive workloads, such as webserver, all
traditional file systems outperform NVM-aware file systems.

This is because read-intensive workloads benefit from page cache and readahead.
Readahead enables read requests to prefetch the data adjacent to the current request into
the page cache, thus it reduces the number of storage accesses, according to the spatial
locality. Similarly, since the data are stored in the page cache, the subsequent accesses to
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the same data are handled by the main memory, resulting in lower data access latencies. In
contrast, because DAX bypasses the page cache, every I/O request has to access DCPMM.

From the above evaluations, we obtain the following observation: DAX does not always
provide better performance. Page cache may provide better performance for read-intensive workloads.
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Figure 4. The filebench performance of file systems on DCPMMs.

Webproxy is also a read-intensive workload; however, NOVA outperforms traditional
file systems that use page cache in this workload. We suspect the reason is that NOVA’s
metadata management strategy for NVM is efficient on workloads with a huge directory
width, such as webproxy (i.e., 1 million files per directory). NOVA builds radix trees in
DRAM for each directory inode; this strategy makes the file search operation very efficient,
even for large directories. For the same reason, NOVA also has the best performance in
varmail, a workload with large directories.

The IOPS of the fileserver workload is much lower compared with other workloads;
however, because fileserver is a write-intensive workload, Ext4, XFS, F2FS, and NOVA
have actually achieved the write bandwidth of DCPMMs. In workloads with high write
ratios, such as fileserver and varmail, Ext4 and XFS have a similar or better performance
than their DAX-enabled versions. We assume there are two reasons for this: first, tra-
ditional file systems can benefit from the page cache. Data from multiple requests are
first buffered in the page cache and then written to the DCPMM in a single pass. Second,
Ext4-DAX and XFS-DAX still use the journaling mechanism designed for block devices.
In block-based journaling, a whole metadata block is stored into the journaling space in
persistent storage, even if the metadata change affects only a single byte. This results in
the updating of the metadata being accompanied by unnecessary data writes, resulting in
write amplification [38].

From the above evaluations, we obtain the following observation: file systems need to
redesign their metadata management strategy to ensure data consistency while effectively utilizing
the full potential of NVM devices.

4.4. Remote Socket Stripping

To further increase the bandwidth of DCPMMs, Intel provides a technique called
Interleaved Region. This technique can make multiple DCPMMs on a single socket appear
as a single logical virtual address space. An interleaved region is similar to a RAID-0 device
with a 4 KB stripe size. Because DCPMMs are managed by iMC, the limitation of interleave
region is that only DCPMMs that sit in the same socket can be combined into a set. In order
to use DCPMMs located in the different sockets as a group, one way is to use the Linux
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device mapper to organize them as a single logical device. To date, there are two target
drivers, dm-stripe and dm-linear, supporting DAX [39].

We configure two DCPMMs located in different sockets as a dm-stripe device. As
with the interleaved region, the stripe size is set to 4 KB. We use FIO to evaluate the read
and write performance of the dm-stripe device. The request size is fixed as 4 KB, and the
number of threads varies from 1 to 32. We allow only the cores in the two sockets as the
DCPMMs to access the logical device (16 cores per CPU, 32 cores total).

Figure 5 shows the read and write performance of the Ext4 file system on the dm-
stripe DCPMM device. (We have followed the instructions given from Intel [39] to set up
a DAX-aware dm-stripe device or LVM device. However, we could not enable the DAX
feature successfully on the dm-stripe and LVM devices. We will evaluate the performance
of DAX-enable file systems on the dm-stripe target device once we address the problem.)

Similar to the evaluation result in Section 4.1 when using a single DCPMM, there is
no significant difference in performance between the sequential read and random read for
the dm-stripe device. Performance increases as the number of threads rises, peaking when
the number of threads reaches 12. The read performance can reach 11 GB/s; continuing to
increase the number of threads does not affect the performance. The write performance im-
proves and then decreases as the number of threads increases. The best write performance
is achieved when the number of threads is 8, reaching 2.5 GB/s.
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Figure 5. The read and write performance of the Ext4 file system on a dm-stripe DCPMM device that
is organized by two DCPMMs sitting in different sockets.

As shown in Figure 1, when using one DCPMM, the best write performance of Ext4
is around 1.2 GB/s and the best read performance of Ext4 is around 5.3 GB/s. The dm-
stripe device that combined with two DCPMMs almost doubles the performance of a
single device.

From the evaluation, we obtain the following observation: under proper settings, or-
ganizing the DCPMMs distributed in different sockets can also bring out the full performance of
the devices.

4.5. Database on DCPMMs

In this section, we evaluate the performance of MySQL [36] on DCPMMs with the
Ext4 and Ext4-DAX file systems. To find the best settings to achieve the better database
performance on DCPMMs, we analyze the performance of the database using the TPC-
C benchmark with different configurations. The TPC-C workload [35,40] is an online
transaction processing (OLTP) workload that involves a mix of five concurrent transactions.
By default, we set the size of the buffer pool as 1 GB and the flushing method as direct
I/O (O_DIRECT). We create 500 warehouses and set the warm-up time as 180 s and the
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execution time as 10 min. We also use the same workloads and configurations on Optane
SSDs and NVMe SSDs to compare with DCPMMs.

4.5.1. Effect of Page Sizes

A page is the basic unit of I/O performed by InnoDB. In MySQL InnoDB, users can
choose different page sizes by changing the configuration. The default page size is 16 KB.
Larger page sizes have better performance on HDDs because the main source of latency
in disk is the seeking time of the disk head. However, as shown in Figure 6, storage
devices such as DCPMM and SSDs that do not have mechanical components do not benefit
from large page sizes. All three storage devices and both Ext4 and Ext4-DAX file systems
reflect the same trend. The performance of the database system decreases as the page size
increases. This is because large pages may access unnecessary data.
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Figure 6. TPC-C results on DCPMMs (a,b), Optane SSDs (c), and NAND SSDs (d). The InnoDB page
size varies from 4 KB to 16 KB. The number of connected clients varies from 8 to 512.

In particular, the performance of DCPMMs is very sensitive to the page size. As
shown in Figure 6a,b, when using the Ext4 file system, the 4 KB page size has 76% and
160% transaction per minutes (tpmC) increases, compared to 8 KB and 16 KB page sizes
in the case of 16 connected clients, respectively. When using the Ext4-DAX file system,
the corresponding tpmC increase is 44% and 192%, respectively.

Compared to Optane SSDs and NAND SSDs, DCPMM is more sensitive to the page
size, due to its ultra-low latency and inability to support too many simultaneous accesses.
When the page size is small, data can be flushed into DCPMMs in a very short period of
time, which in turn reduces memory controller contention to some extent. When the page
size is larger, it takes longer to read and write a page, and may increase the number of page
I/Os because of the possibility of accessing unnecessary data and the limited buffer space.

From the evaluation, we obtain the following observation: DCPMM is better able to
show its strengths from small size requests.

4.5.2. Multiple Clients

We change the numbers of clients to see how it affects the performance of MySQL on
DCPMMs. The number of clients varies from 8 to 512. As shown in Figure 6, DCPMMs and
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Optane SSDs—the two devices that use 3D XPoint as the storage medium—and NAND
SSDs reflect different patterns. As the number of clients increases, the tpmC of NAND SSDs
first rises and then stabilizes. In contrast, the tpmC of DCPMMs and Optane SSDs rises
and then falls. This result is in line with our evaluation in Section 4.1, where DCPMMs can
achieve great performance with a small number of requests, but the performance decreases
instead as the number of simultaneous requests increases.

As shown in Figure 6a,b, DCPMMs perform best when the page size is 4 KB and
the number of clients is 16 (56,406 tpmC when using Ext4 and 62,378 tpmC when using
Ext4-DAX). When the page size is 16 KB, the performance is best in the case of 8 clients. This
confirms our previous observation that as the page size becomes larger, the time required
for a single request becomes longer, and the contention for the memory controller increases.

4.5.3. Consistency Techniques

Ensuring data consistency is a top priority for databases. The MySQL InnoDB storage
engine uses redundant writes to guarantee atomicity and utilizes frequent fsync() system
calls to ensure durability. In this section, we evaluate and analyze how these mechanisms
affect the performance of MySQL on DCPMMs, Optane SSDs, and NAND SSDs with Ext4
and Ext4-DAX file systems.

Redundant writes for atomicity. For consistency and recovery, the database should
write pages to storage atomically. However, because a page is usually greater than the size
of the atomic write unit that storage devices guarantee, if a system crash occurs during a
page write, the page will have a mix of old and new data that are not known to the database.
In this situation, the partial written page cannot be recovered by Write-Ahead Logging,
thus the database cannot maintain data consistency. To resolve this problem, InnoDB
provides a mechanism for writing a page atomically by redundant writes, which is called
Doublewrite Buffer (DWB). The doublewrite buffer is a storage area where the database
writes pages from the buffer pool before writing the pages to their proper positions in the
data files. Although data are written twice, the doublewrite buffer does not require twice
as much I/O overhead. Data are written to the doublewrite buffer in a large sequential
chunk, with a single fsync() call to the operating system.

During the evaluation, we fix the number of clients to 16. Figure 7 shows the impact
of the doublewrite buffer on the performance of DCPMMs, Optane SSDs, and NAND SSDs.
NAND SSDs appear to receive very little impact from DWB, while DCPMM is heavily
impacted by DWB. As shown in Figure 7a,b, relative to no DWB, when using the Ext4 file
system, DWB reduces performance by 14.5%, 49.6%, and 36.8% for 4 KB, 8 KB, and 16 KB
pages, respectively. When using the Ext4-DAX file system, DWB reduces performance
by 9%, 45.8%, and 46.1% in the case of 4 KB, 8 KB, and 16 KB pages, respectively. When
the page size is 4 KB, DWB has the least impact on performance. This coincides with the
previous performance impact of the page size.

Data flushing for durability. The databases issue a fsync() system call after writing
pages to persistent storage. The fsync() is expensive, but it is essential to databases, as
it guarantees durability. InnoDB provides several data flushing methods to control how
data are persisted to storage devices, which can affect the I/O throughput. O_DIRECT is
the default method that bypasses page cache and issues fsync() every time after writing
pages. Like O_DIRECT, the O_DIRECT_NO_FSYNC method also bypasses page cache,
but skips the fsync() system call after each write operation.

It is reasonable to assume that using O_DIRECT_NO_FSYNC will improve perfor-
mance, compared to using O_DIRECT. However, as shown in Figure 7c,d, using O_DIRECT-
_NO_FSYNC result in little performance improvement in our evaluation. There are two
reasons for this result. First, MySQL uses a group commit technique that allows multiple si-
multaneous transactions to fsync() the log file once for all the transactions waiting for the
fsync(), which reduces the number of calls to fsync(). Second, because removing all the
fsync() is not suitable for file systems, such as XFS and Ext4, which require an fsync() sys-
tem call to synchronize file system metadata changes, MySQL does some modifications to
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the O_DIRECT_NO_FSYNC method after version 8.0.14. Even if O_DIRECT_NO_FSYNC
is used, fsync() will still be called after creating a new file, after increasing the file size,
and after closing a file. Hence, this method does not completely avoid fsync().
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Figure 7. TPC-C results on DCPMMs (a,b), Optane SSDs (c), and NAND SSDs (d) with different
consistency settings. The number of clients is fixed to 16. (Default: flush method is O_DIRECT and
enable double write buffer; No fsync: flush method is O_DIRECT_NO_FSYNC and enable double
write buffer; No DWB: flush method is O_DIRECT and disable double write buffer; Neither: flush
method is O_DIRECT_NO_FSYNC and disable double write buffer.)

In Figure 7b, we can observe an interesting, but counter-intuitive, phenomenon. That
is, on DCPMM with Ext4-DAX file system, the performance is lightly better with fsync()
than without it. We assume that this is because the underlying implementation of fsync()
is different. In non-DAX mode, data flows through the file system and storage stack as
normal. In DAX mode, because the DCPMM is mapped directly to process’s address space,
data is exchanged directly between the CPU cache and the DCPMM. In order to provide
the original semantics of the POSIX APIs while ensuring proper operation on DCPMMs,
operating system developers have reimplement fsync() in DAX mode. More specifically,
in Linux, the kernel uses the radix tree to hold DAX exceptional entries that track the
state of the persistent-memory pages used by DAX. These exceptional entires store several
pieces of information, such as the page size, the sector offset within the persistent-memory
storage, and some flags. From these exceptional entires, DAX knows which dirty pages
need to be flushed from the processor cache when an fsync() is called from user space,
which avoid unnecessary page flush. In addition, DAX fsync() uses CLWB instruction to
flush out the cache line. On some platforms, CLWB will retain the flushed out cache line
in the cache hierarchy in non-modified state, which reduces the possibility of cache miss
on a subsequent access. For the above reasons, using fsync() in DAX mode may instead
bring a slight performance boost. However, it is important to note that the performance
improvement depends on the specific API implementation and hardware platform.

From the above evaluations, we get the following observation: Even with the same APIs,
we need to consider their different impact on normal block devices and NVM devices under different
hardware platforms.

Database atomicity and durability on DCPMMs. When using databases on DCP-
MMs, doublewrite buffer and fsync() are required to guarantee data consistency. Even
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though the ADR feature of Intel platforms can flush the write-protected data buffers and
place the DRAM in self-refresh, it is limited in the amount of data it can flush and, more
importantly, it does not save CPU caches. If there is no doublewrite buffer, it is possible
that pages are mixing old and new data. There is also a risk of having data only written to
the processor caches without the cache flush command that guarantees data durability.

Figure 7a,b show that disabling fsync() after each write does not bring noticeable
performance gains. Doublewrite has a significant impact on DCPMMs and is related to the
page size. Consequently, we recommend using database on DCPMMs with the DWB and
O_DIRECT options on and choosing a smaller page size to balance the trade-off between
data atomicity, data durability, and system performance.

4.5.4. Effect of Direct Access

As shown in Figure 6a,b, the best performance of DCPMM with Ext4-DAX outper-
forms that of DCPMM with Ext4 by 10.6%, 18.7%, 17.8% when using 4 KB, 8 KB, and 16 KB
pages, respectively. DAX removes the extra copy operation by performing reads and writes
directly to the storage device, which operates like memory to get the lowest latency. Thus,
DCPMM in DAX mode has better performance, but also more sensitive to settings that
affect latency. For example, when the page size is 8 KB, database gets the best performance
at 16 clients, instead of 8 clients in non-DAX mode. However, when the optimal perfor-
mance is reached, as the number of clients increases, there is a huge slump in performance
when DAX mode is used. In contrast, the performance drop in non-DAX mode is much
smoother. Specifically, the drop between the optimal and suboptimal performance is 9.1%,
12.1%, 11.2% for 4 KB, 8 KB, and 16 KB page sizes in Ext4, while the difference is 16.1%,
33.2%, 25.9% for Ext4-DAX, respectively.

5. Conclusions

In this article, we evaluate the performance of commonly used traditional file systems
and NVM-aware file systems on Intel Optane DCPMMs. First, we use micro benchmark to
exploit the performance of file systems on DCPMMs with simple read/write workloads. In
addition, we explore how NUMA affects the performance of DCPMMs. Second, we use
filebench as a macro benchmark to evaluate performance of file systems on DCPMMs with
more realistic workloads. Third, we investigate the performance a logical device formed
by DCPMMs located on different socket, which we call remote socket stripping. Last, we
evaluate the performance of MySQL InnoDB on DCPMMs with traditional file systems
and NVM-aware file systems. In addition, we compare the performance characteristics of
DCPMMs with those of Intel Optane SSDs and NAND-flash SSDs. From these evaluations,
we obtain the following observations that may be helpful for future system designs:

• From the micro benchmark evaluation, we observed the following:

1. Direct access has a significant improvement in the file system write performance
but has a smaller impact on the read performance.

2. A small number of threads is enough to saturate the write bandwidth of one
DCPMM. In some situations, more threads may even degrade the performance.

3. The read performance of DCPMMs is greatly superior to its write performance.
Concurrent read access does not degrade the DCPMM read performance signifi-
cantly.

4. Accessing from remote sockets reduces the write performance of DCPMMs
significantly, but has a small impact on the read performance.

• From the macro benchmark evaluation, we observed the following:

5. Page cache may provide better performance than DAX for read-intensive work-
loads.

6. A low overhead metadata management strategy is needed to fully utilize the
potential of NVM devices.

• From the remote evaluation of socket stripping, we observed the following:
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7. Under proper settings, organizing the DCPMMs distributed in different sockets
can also bring out the full performance of the devices.

• From the evaluation of databases on DCPMMs, we observed the following:

8. DCPMM is better able to show its strengths from small size requests.
9. Even with the same APIs, we need to consider their different impact on normal

block devices and NVM devices under different hardware platforms.
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