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Abstract: Multi-target tracking (MTT) generally requires either a network of Doppler radar receivers
distributed at different locations or a phased array radar. The targets moving with small/no ra-
dial velocity or angular velocity only cannot be detected and localized completely by deploying
Doppler radar without antenna arrays or multiple receivers. To resolve this issue, we present a new
MTT algorithm based on 2-D velocity measurements, namely, radial and angular velocities, using
dual-frequency interferometric radar. The contributions of the proposed research are twofold: First,
we introduce the mathematical model and implementation of the proposed algorithm by explicitly
establishing the relationship between 2-D velocity measurements and kinematic state of the target in
terms of Cartesian coordinates. Based on 2-D velocity measurement function, the proposed MTT
algorithm comprises the following steps: (i) data association using global nearest neighbor (GNN)
method (ii) target state estimation using interacting multiple model (IMM) estimator combined
with square-root cubature Kalman filter (SCKF) (iii) track management using rule-based M/N logic.
Second, performance of the proposed algorithm is evaluated in terms of tracking accuracy, compu-
tational complexity and IMM mean model probabilities. Simulation results for different scenarios
with multiple targets moving in different tracks have been presented to verify the effectiveness of the
proposed algorithm.

Keywords: MTT; 2-D velocity; interferometric radar; GNN; IMM; SCKF

1. Introduction

The problem of multiple target tracking (MTT) has received increased concern in the
fields of aircraft tracking [1], robotics [2], adaptive cruise control (ACC) [3], surveillance [4],
image processing [5], and medical services [6] to cite a few. The main purpose of a MTT
algorithm is to identify the number of potential targets in the radar’s field of view (FOV)
and estimate their kinematic states (position and velocity) from noisy radar measurements.
In the literature, various algorithms have been proposed to address the issue of MTT over
last three decades [7–11]. The work in [12] presents an algorithm for the detection and lo-
calization of multiple human targets based on range-breathing graph by employing FMCW
radar sensors operating at 24 GHz and 122 GHz. The range-breathing graph allowing the
recognition of multiple breathing targets is motivated by the range-Doppler technique.

MTT typically requires either a network of Doppler radar receivers distributed at
different sites or phased array radar. The Doppler radar can measure the target’s bi-static
range and Doppler frequency shift, which is directly proportional to its radial velocity [13].
However, the targets moving with small or no radial velocity do not generate significant
Doppler frequency shifts. Therefore, Doppler radar sensors cannot localize/track targets
moving tangential to the radar broadside [14]. To detect and track the targets completely
in 2-D space, the measurements from at least two Doppler radar receivers are required.
Multistatic radar system observing the targets at different angles with multiple range and
Doppler measurements provides the observability required to localize targets accurately.
It collects data at a central station to extract the Cartesian position and velocity of each
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target in the radar’s FOV [15,16]. Multistatic radars have gained popularity in many
real-time applications over the years [17,18]. The work in [19] presents an algorithm for
multiple maneuvering targets tracking using multistatic radar with bi-static range and
Doppler measurements from four receivers. The authors of [20] also offer a solution to
MTT problem using multistatic radar concept, where special attention is given to the
deghosting procedures. Algorithms for through-the-wall localization of multiple targets
using bi-static radar with multiple receivers have been presented in [21,22]. However, these
multistatic radar systems demand large number of iterations, high data throughput and
computational power attributed to the multiple receivers in the network. On the contrary,
expensive phased array radars are capable of measuring the azimuth and/or elevation
angles of the targets for localization. However, modern array processing techniques
for direction-of-arrival (DOA) measurement such as MUSIC and ESPRIT algorithms are
dependent on complex matrix operations [23]. Consequently, they inevitably increase the
computational complexity for the data processing unit [24].

MTT algorithms presented in the literature exploit either the range-azimuth (R,ϕ)
measurements or bi-static range-Doppler (R,vr) measurements for the purpose of track-
ing [15,16]. An algorithm for MTT using FMCW interferometric radar has been presented
in [25]. Although this method relies on 2-D velocity information for tracking in 2-D
Cartesian space, it does not measure the angular velocities of the targets directly from
interferometric output. By contrast, the range and radial velocity measurements from the
two receiving antennas are used to calculate the azimuth angle and angular velocities of
the targets. As the DOA measurement is extracted from the range information, it is very
sensitive to the error in range measurement and can cause distortion in angular velocity
measurement. To resolve the issue, in our previous work [26], we present a MTT algorithm
based on 2-D (radial and angular) velocity measurements using dual-frequency frequency
modulated continuous wave (DF-FMCW) interferometric radar. The high carrier frequency
waveforms are used for radial velocity measurement, while lower carrier frequency wave-
forms are used for angular velocity measurement, thereby suppressing the intermodulation
products generated in the interferometric response. Different from our previous work, in
the current paper, we propose the mathematical model of multi-target tracking algorithm
by explicitly deriving the relationship between 2-D velocity measurements and kinematic
state of the target in terms of Cartesian coordinates. This work seeks to estimate the trajec-
tories of non-maneuvering and maneuvering targets in the presence of clutter and evaluate
the performance of the proposed algorithm in terms of track accuracy, computational
complexity, and IMM mean model probabilities.

The objective of the proposed work is the development and implementation of multi-
target tracking algorithm based on 2-D velocity measurement function. The contributions
of this work are listed as follows.

1. We propose a multi-target tracking algorithm by establishing the relationship between
2-D velocity measurements and kinematic state of the target in terms of Cartesian
coordinates. Based on 2-D velocity measurement function, the proposed MTT algo-
rithm comprises the following steps: (i) data association using global nearest neighbor
(GNN) based on auction method, (ii) target state estimation using interacting multiple
model (IMM) estimator combined with square-root cubature Kalman filter (SCKF),
and (iii) track management using rule-based M/N logic.

2. We analyze the performance of the proposed algorithm in terms of tracking accuracy,
computational complexity and IMM mean model probabilities for different scenarios
with multiple (non-maneuvering and maneuvering) targets.

The key innovation of this paper is to derive and exploit the 2-D velocity measurement
function for multiple non-maneuvering and maneuvering targets tracking algorithm using
interferometric radar. The layout of this paper is as follows. Section 2 presents the mathe-
matical formulation of the MTT algorithm in terms of 2-D velocity measurement function.
Section 3 provides description of the proposed multi-target tracking algorithm. Sections 4–7
present several steps of the proposed algorithm which include data association, targets’ state
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estimation and track management. Section 8 provides simulation scenarios and their results
in terms of performance evaluation metrics. Last, Section 9 submits concluding remarks.

2. Mathematical Formulation of Problem

The linear velocity of an arbitrary moving point source is a vector. Its magnitude
represents the rate of change of its position, while direction is along the tangent to its
trajectory. The linear velocity vector is composed of two orthogonal components relative to
the surveillance radar: radial velocity and cross-radial velocity. The radial velocity points
along the radar line-of-sight (LoS), while the cross-radial velocity is perpendicular to radar
LoS. The radial and cross-radial velocities are complementary to each other.

2.1. The 2-D Velocity of a Point Source

Consider an arbitrary moving point source along a curved path with instantaneous
linear velocity (v) as shown in Figure 1. Here, R is the distance between the point source
and observing radar, ϕ represents the DOA of the point source which is the angle between
antenna array broadside and radar LoS, and α denotes the angle between linear velocity
v and the radar LoS. The radial and cross-radial velocities are represented as vr = v cos α
and vcr = v sin α, respectively. The relative radial motion of the object causes a Doppler
frequency shift fd in the radar’s received signal. The relationship between the Doppler
frequency shift and radial velocity is expressed as

vr =
fdλ

2
=

c fd
2 fc

(1)

where fc is the carrier frequency, λ is the wavelength, and c represents speed of light.

Figure 1. The representation of a moving point source’s instantaneous linear velocity.

The cross-radial velocity is responsible for angular displacement of moving object
relative to the observing radar, whereas the rate of change of ϕ with respect to time is
represented by angular velocity ω in rad/s. The relationship between the cross-radial
velocity and angular velocity can be represented as

ω =
∂ϕ

∂t
=

vcr

R
(2)
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The interferometric radar is capable of measuring the angular velocity of moving
object. It consists of two nominally identical receiving antennas separated by geometrical
distance D as shown in Figure 2. The angular velocity of a point source moving across the
interferometric beam causes fluctuation in the radar’s received signal.

Figure 2. The interferometric radar geometry.

The transmitted signal for FMCW radar with carrier frequency fc, bandwidth B, and
sweep duration T can be expressed as

ST(t) = exp{−j2π[ fcts +
B

2T
t2
s ]} (3)

where ts = t− nT is the time from the start of nth sweep. The signal reflected off of the
target is same as the transmitted one, but delayed by a round trip time τ. The signal
received by the first antenna can be written as

SR1(t) = exp{−j2π[ fc(ts − τ) +
B

2T
(ts − τ)2]} (4)

where τ = 2R/c = 2(R0 + vrnT)/c, R0 is the initial range of the target, and c represents the
speed of light. The transmitted and received signals are mixed to generate beat frequency
signal which is represented by

SB1(t) = ST(t)S∗R1
(t)

= exp{−j4π[
B(R0 + vrnT)ts

cT
+

R0

λ
+

vr

λ
nT − B(R0 + vrnT)2

c2T
]}

≈ exp{−j4π[
B(R0 + vrnT)ts

cT
+

R0

λ
+

vr

λ
nT]}

(5)

where λ = c/ f0 is the wavelength. The signal received by the second antenna SR2(t),
which is delayed by time τ0 due to the geometrical separation D between the two receiving
antennas is expressed as

SR2(t) = exp{−j2π[ fc(ts − τ − τ0) +
B

2T
(ts − τ − τ0)

2]} (6)

where time delay τ0 is denoted as

τ0 =
D sin ϕ

c
(7)



Electronics 2021, 10, 1969 5 of 24

Similarly, the second beat frequency signal is represented by

SB2(t) = ST(t)S∗R2
(t)

≈ exp{−j2π[
2B(R0 + VrnT)ts

cT
+

2vrnT
λ

+
2R0

λ
+ ( fc +

B
T

ts)
D sin ϕ

c
]}

(8)

According to the interferometric radar principle, the two beat frequency signals SB1(t)
and SB2(t) are correlated to generate the interferometric output,

yc = SB1(t)S
∗
B2
(t)

= exp{j2π( fc +
Bts

T
)

D sin ϕ

c
}

(9)

The time derivative of the phase term in Equation (9) provides the interferometric
frequency shift caused by the angular velocity [26].

fa =
D cos ϕ

λts

ω ≈ D
λts

ω (10)

where λts = c/( fc + Bts/T). By re-arranging Equation (10), the angular velocity can be
expressed as

ω =
faλts

D
(11)

2.2. Process Model and Measurement Model

As mentioned earlier, MTT problem is to identify the number of potential targets in
the radar’s FOV and estimate their kinematic states based on noisy radar measurements in
the presence of clutter due to false alarm. Suppose that the target’s dynamic motion model
can be represented by one of the r model hypotheses referred as Mi := {1, 2, · · · , r}. Mj

k−1
denotes the event that dynamic model j was effective during the period [tk−1, tk]. The jth
hypothesis process model is represented as

xk = Fj
k−1xk−1 + vj

k−1 (12)

where Fj
k−1 denotes the state transition matrix for model j at time instant k− 1, xk is the

state of the target at instant k and vj
k−1 is independent and identically distributed (i.i.d)

zero-mean Gaussian process noise with covariance Qj
k−1, i.e., vj

k−1 ∼ N (0, Qj
k−1).

Moreover, the state of target in terms of Cartesian coordinates at instant k is repre-
sented as

xk = [x, vx, y, vy]
T (13)

where (x, y) and (vx, vy) are the Cartesian coordinates and velocities of the target, respec-
tively, which satisfy vx = x

′
and vy = y

′
.

The measurement model which establishes the relationship between the target state
vector and radar measurements vector zk is expressed as

zk = h(xk) + wk (14)

where h(xk) is the nonlinear measurement function and wk is assumed to be i.i.d. zero-mean
Gaussian measurement noise with covariance Rk, i.e., wk ∼ N (0, Rk) and E{vkwT

k } = 0.
The measurement function is expressed as

h(xk) =

[
vr
ω

]
(15)
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Now, we derive the measurement function in terms of the dynamic state of the target.
We know that vr = dR/dt and ω = dϕ/dt. The relative range R of the target from radar
and its DOA ϕ can be expressed as

R =

√
(x− xs)

2 + (y− ys)
2 (16)

and

ϕ = tan−1 (x− xs)

(y− ys)
(17)

where (xs, ys) are coordinates of the radar location which is stationary. By taking the time
derivative of Equation (16),

vr =
dR
dt

=
(x− xs)vx + (y− ys)vy√

(x− xs)
2 + (y− ys)

2
(18)

Now by rearranging Equation (17) and then taking its time derivative,

tan ϕ =
(x− xs)

(y− ys)
(19)

(sec2 ϕ)
dϕ

dt
=

(y− ys)vx − (x− xs)vy

(y− ys)
2 (20)

ω =
dϕ

dt
= [

(y− ys)vx − (x− xs)vy

(y− ys)
2 ](cos2 ϕ) (21)

ω = [
(y− ys)vx − (x− xs)vy

(y− ys)
2 ][

(y− ys)
2

R2 ] (22)

ω =
(y− ys)vx − (x− xs)vy

(x− xs)
2 + (y− ys)

2 (23)

According to Equations (18) and (23), the nonlinear measurement function h(xk) can
be expressed as

h(xk) =

[
vr
ω

]
=


(x−xs)vx+(y−ys)vy√

(x−xs)
2+(y−ys)

2

(y−ys)vx−(x−xs)vy

(x−xs)
2+(y−ys)

2

 (24)

Based on this measurement function, our objective is to estimate the state x̂k|k =

E{xk|zk} and error covariance Pk|k = E{[xk − x̂k|k][xk − x̂k|k]
T |zk} for each target in the

radar’s FOV. Moreover, the average number of clutter points assumes Poisson distribution
and they are uniformly distributed in 2-D measurement space.

From Equation (23), it is clear that the angular velocity ω representing the angular rate
of change is a relative measurement depending on the range of the target from the radar.
It scales with the square of the relative range R. Therefore, the proposed MTT algorithm
based on 2-D velocity measurements is applicable to short range surveillance applications
for human targets and UAVs detection and tracking.

3. The Proposed Multi-Target Tracking Algorithm

This section describes the design and implementation of the proposed MTT algorithm
as delineated in Figure 3. The DF-FMCW radar is capable of operating in two different
modes corresponding to fc1 = 6 GHz and fc2 = 24 GHz. It consists of two transmitting
antennas (one operating at carrier frequency fc1 and second operating at carrier frequency
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fc2) [26]. There are three receiving antennas, Rx1 corresponding to fc2 and Rx2 and Rx3
corresponding to fc1 as shown in Figure 3.

1. Detection and radial velocity measurement mode:
For the purpose of detection and radial velocity measurement mode, the transmitting
and receiving antennas operating at carrier frequency fc2 are connected to the process-
ing unit. For detection, the radar scans the region of interest and range-radial velocity
map is obtained by applying 2D fast Fourier transform (2D-FFT) to the beat frequency
signal at the receiving antenna Rx1, providing the number of potential targets and
their initial ranges. After detection, time-varying Doppler spectrogram is obtained
by performing short-time Fourier transform (STFT) to the same beat frequency sig-
nal. According to Equation (1), the radial velocities of the targets are calculated by
extracting their instantaneous frequencies from Doppler spectrogram.

2. Angular velocity measurement mode:
For angular velocity measurement, one transmitting and two receiving antennas
operating at carrier frequency fc1 are connected to the processing unit. The two
beat frequency signals at Rx2 and Rx3 are fed to the interferometric correlator to
generate the output. Then, STFT is applied to the interferometric output to obtain the
time-varying interferometric spectrogram. According to Equation (11), the angular
velocities of targets are calculated by extracting their instantaneous frequencies from
interferometric spectrogram.

Figure 3. The block diagram of multi-target tracking algorithm based on 2-D velocity measure-
ment function.
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Data association and state estimation by filtering are two major blocks of a multiple
target tracking algorithm. Moreover, the two main data structures that include tentative
and the confirmed tracks lists are handled by track management block. The track manage-
ment block is responsible for new track initiation, tentative track confirmation (satisfying
the confirmation criteria) and deletion of tentative and confirmed tracks (satisfying the
deletion criteria). The confirmed tracks are less likely to be deleted as compared to the
tentative tracks.

During each scan, when a new 2-D velocity measurement set from interferometric
radar is received, it is first tested for association with the confirmed tracks. The data
association for measurement-to-track pairing includes GNN method, which resolves the
measurement conflict situations in terms of assignment problem. The auction method is
the most efficient one to solve the assignment problems. The 2-D velocity measurements
unassociated with confirmed tracks are then checked for association with the existing
tentative tracks. The measurements that are still unassociated with any existing tracks are
used for new track initiation.

The 2-D velocity measurements associated with the confirmed and tentative tracks
are used for filter measurement update process. From Equation (24), it is clear that there is
a nonlinear relationship between the kinematic state of the target and radar measurements.
Therefore, a nonlinear filter algorithm is required for the target’s state prediction and
measurement update steps. In the proposed tracking algorithm, IMM-SCKF estimator
based on 2-D velocity measurement function is used for state estimation of different non-
maneuvering and maneuvering target trajectories. The basic blocks of MTT algorithm are
explained in detail in the subsequent sections of this paper for better understanding of
the algorithm.

4. Data Association Using Global Nearest Neighbor (GNN) Method

Measurement-to-track association is a critical issue in case of multiple targets and
cluttered environment. The main function of data association procedure is to determine
the source of measurements received where multiple targets compete with each other
for measurements or a single target validates multiple measurements. Allocating false
measurements to the existing target tracks generally terminates these tracks.

Different techniques exist to solve the problem of data association which include
nearest neighbor (NN), global nearest neighbor (GNN) [8,9], joint probabilistic data associ-
ation (JPDA) [27–30], multiple hypothesis tracking (MHT) [31], and many more. The GNN
algorithm makes hard assignment for measurement-to-track association, while the JPDA
algorithm evaluates the probabilities of measurement-to-track association for multiple
targets and combines them to obtain the state estimation. MHT is a powerful yet more
complex method for MTT that evaluates the likelihood of a target existing given a train
of measurements [8,9]. The authors of [32], evaluating the performance of different MTT
algorithms for radar applications, assert the fact that GNN algorithm for data association
outperforms other data association techniques in terms of tracking and robustness. GNN
is the optimal data association technique for MTT which propagates single global hypoth-
esis and resolves the measurement-to-track association in terms of optimal assignment
problem [27,33].

Based on 2-D velocity measurement function represented by Equation (24), the data
association procedure first forms an ellipsoid gate around the target’s predicted measure-
ment, which is followed by GNN method to find the optimal assignment of measurements
to tracks.

4.1. Ellipsoid Gating

Gating is a hard-decision technique to discard the unlikely measurement-to-track
associations on the basis of dynamic motion model of the target [34]. All the measure-
ments satisfying the gating relationship are considered to update the target track. The
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primary function of gating in data association is to reduce the computational complexity in
advance [8,9].

For a measurement to fall within the ellipsoid gate of a track at instant k, the norm of
the residual vector d2 must satisfy the following criteria [8]:

d2
k = ṽT

k S−1
Z,kṽk ≤ G (25)

where SZ,k is the measurement residual covariance matrix and G is the gate size. The mea-
surement residual vector ṽk based on 2-D velocity measurement function from Equation (24)
is expressed as

ṽk = zk − h(x̂k|k−1) (26)

Generally, d2 has chi-distribution (χ2
nz ) for correct data association, where nz represents

the dimension of measurement vector. The relationship between gate size G and probability
of 2-D measurement vector to fall inside the gate PG(nz) is expressed as [27]

PG(2) = 1− exp(
−G

2
) (27)

4.2. Global Nearest Neighbor (GNN) Method

GNN is the most commonly used data association method which propagates a single
global hypothesis by allocating the most eligible measurement to each track. It resolves
the measurement conflict issue by forming and solving an assignment matrix. Input
measurements occupy the rows of assignment matrix. The first columns of the assignment
matrix are filled with the existing tracks, while the rest of the columns are occupied by new
tracks, equal to the number of input measurements in the worst case scenario. The elements
of assignment matrix are represented in terms of a score gain represented by:

αij = G− d2
ij (28)

Here, αij is the margin with which the normalized statistical distance d2
ij passed

the gate for measurement i to track j association. The score gain for new track to a given
measurement is set as zero. The forbidden assignments are represented by−∞. The optimal
assignment solution is the measurement set that not only maximizes the score gain, but
maximizes the number of assignments as well [8,20].

Different methods exist to solve the problem of optimal assignment including Hun-
garian algorithm [35], Munkres algorithm [36], JVC algorithm [37], and Auction algorithm
to list a few. Currently, the most efficient assignment algorithm is the auction algorithm
which aims to maximize the score gain [8,9].

In the current work, based on 2-D velocity measurement function, we have imple-
mented ellipsoid gating and GNN combined with auction method for data association. The
difference from the existing work lies in the fact that conventional algorithms use either
(R, ϕ) or (R, vr) measurements for all the steps of MTT algorithm. However, we have
implemented the MTT algorithm based on 2-D velocity measurement for the target state
estimation in terms of Cartesian coordinates and proved the effectiveness of the proposed
algorithm for tracking.

Note that in conventional systems, the GNN method does not work well for closely
spaced targets or crossing track patterns. However, in the proposed work based on 2-D
velocity measurement function, it is not necessarily the case as closely spaced targets or
crossing tracks may have different (vr, ω) measurements even if they have same measure-
ments in (R, ϕ) space. This fact has been verified in Section 8.5, simulation scenario 3 for
crossing target tracks.
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5. Target State Estimation Using IMM-SCKF Estimator

The primary objective of an estimation filter is to estimate the state of the detected
target from noisy sensor measurements. The measurements associated to the targets during
the data association procedure are used during the filter measurement update step.

According to Equation (24), as there is nonlinear relationship between 2-D velocity mea-
surements and the state of the target, this work requires nonlinear estimation filter [27,33,38].
The Extended Kalman Filter (EKF) is the most common choice for nonlinear filtering prob-
lems [19]. However, for highly nonlinear systems, it tends to diverge quickly and has increased
computational complexity [39]. The Unscented Kalman Filter (UKF) is capable of resolving
these problems by using nonlinear unscented transform (UT). The UKF deterministically
computes sigma points to calculate the mean and covariance of the propagated Gaussian
distribution for nonlinear systems [40].

For nonlinear systems with additive Gaussian noise, the Cubature Kalman Filter (CKF)
provides the closest approximation to Bayesian filtering [41]. The CKF is a cubature point
filter which employs third-degree spherical-radial cubature rule for multidimensional
integral approximation. It is numerically stable, computationally efficient and outperforms
UKF for multidimensional nonlinear systems [42–44].

5.1. Square-Root Cubature Kalman Filter (SCKF)

In CKF, the matrix operations of inversion and square-root may cause the loss of
symmetry and positive semi-definiteness properties of error covariance matrix leading
to inaccurate results. The SCKF is numerically more stable and accurate than CKF as it
propagates the square-roots of the error covariance matrix without the need of complex
matrix operations [41,45]. One cycle of SCKF algorithm is presented below [46].

1. Calculate the cubature points set Xi : (i = 1,2,...,m, where m = 2nx)

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (29)

P = SST (30)

ξi =

√
m
2
[1]i (31)

where nx is the dimension of state vector, ξi represents weights of cubature points ,
and S represents square-root error covariance matrix.

2. Time update: Propagate the cubature points and evaluate the predicted state and
square-root error covariance.

X∗i,k|k−1 = f(Xi,k−1|k−1) (32)

x̂k|k−1 =
1
m

M

∑
m=1

X∗i,k|k−1 (33)

Sk|k−1 = Tria([X ∗k|k−1 SQ,k−1]) (34)

where
Qk−1 = SQ,k−1ST

Q,k−1 (35)

X ∗k|k−1 =
1√
m
[X∗1,k|k−1 − x̂k|k−1 X∗2,k|k−1 − x̂k|k−1...

X∗m,k|k−1 − x̂k|k−1]
(36)

where f(.) and SQ represent nonlinear function of dynamic state equation and square-
root process noise covariance matrix, respectively. Tria represents triangularization al-
gorithm for matrix decomposition. Here, QR decomposition algorithm has been used.
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3. Measurement update: Calculate the propagated cubature points and update the state
and square-root error covariance estimates.

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (37)

Z∗i,k|k−1 = h(Xi,k|k−1) (38)

ẑk|k−1 =
1
m

M

∑
m=1

Z∗i,k|k−1 (39)

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1) (40)

Sk|k = Tria([Xk|k−1 −WkJk|k−1 WkSR,k]) (41)

where SR represents square-root measurement noise covariance matrix. Square-root
innovation covariance Szz,k|k−1, cros-covariance Pxz,k|k−1, and square-root cubature
Kalman gain Wk are represented by following equations.

Szz,k|k−1 = Tria([Jk|k−1 SR,k]) (42)

Rk = SR,kST
R,k (43)

Pxz,k|k−1 = Xk|k−1J
T
k|k−1 (44)

Xk|k−1 =
1√
m
[X1,k|k−1 − x̂k|k−1 X2,k|k−1 − x̂k|k−1 · · ·

Xm,k|k−1 − x̂k|k−1]

(45)

Jk|k−1 =
1√
m
[Z1,k|k−1 − ẑk|k−1 Z2,k|k−1 − x̂k|k−1 · · ·

Zm,k|k−1 − ẑk|k−1]

(46)

Wk = (Pxz,k|k−1/ST
zz,k|k−1)/Szz,k|k−1 (47)

5.2. Interactive Multiple Model (IMM) Estimator

As the moving target does not necessarily follow a single dynamic model, the modern
tracking systems typically use IMM estimator for maneuvering targets tracking. The IMM
estimator is capable of running multiple single model filters in parallel, with each filter
following a different dynamic model with different process noise parameters [19,20]. The
IMM-SCKF estimator has been used for maneuvering target tracking based on range-rate
measurements from Doppler radar [45]. A single cycle of the IMM estimator is explained
below [27].

1. Mixing probabilities calculation:

cj =
r

∑
i=1

pijµ
i
k−1|k−1 (48)

µ
(i,j)
k−1|k−1 = P{Mi

k−1|M
j
k, Zk−1

1 } = 1
cj pijµ

i
k|k−1 (49)

where µ represents model probability and pij are elements of model transition proba-
bilities matrix. Zk−1

1 represents the measurement history from start to instant k− 1.
2. Interaction of state mean and covariance:

x̂0j
k−1|k−1 =

r

∑
i=1

x̂i
k−1|k−1µ

(i,j)
k−1|k−1 (50)
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P0j
k−1|k−1 =

r

∑
i=1

µ
(i,j)
k−1|k−1{S

i
k−1|k−1(S

i
k−1|k−1)

T+

[x̂i
k−1|k−1 − x̂0j

k−1|k−1][x̂
i
k−1|k−1 − x̂0j

k−1|k−1]
T}

(51)

3. State estimate update: The initial condition state estimate x̂0j
k−1|k−1 and covariance ma-

trix P0j
k−1|k−1 are fed to the SCKF algorithm described in previous section to compute

the updated estimates x̂j
k|k and Sj

k|k for each filter model.

4. Computing model likelihood function:

ṽj
k = zk − h(x̂j

k|k−1) (52)

Sj
Z,k = Aj

k(A
j
k)

T (53)

∧j
k =

1√
|2πSj

Z,k|
exp{−0.5[ṽj

k]
T [Sj

Z,k]
−1[ṽj

k]} (54)

5. Updating the model probability:

c =
r

∑
j=1
∧j

kcj (55)

µ
j
k|k = P{Mj

k|Z
k
1} =

1
c
∧j

k cj (56)

6. Combining state mean and covariance estimates for output:

x̂k|k =
r

∑
j=1

x̂j
k|kµ

j
k|k (57)

Pk|k =
r

∑
j=1

µ
j
k|k{S

j
k|k(S

j
k|k)

T + [x̂k|k − x̂j
k|k][x̂k|k − x̂j

k|k]
T} (58)

In the current work, IMM-SCKF based on the 2-D velocity measurement function
has been used for filtering the targets present in confirmed track list. If a target in the
track list does not receive any measurement, then the predicted state and error covariance
matrix become the estimated state and error covariance matrix during the filtering process.
Concerning the targets present in tentative track list, simple SCKF with nearly constant
velocity (NCV) motion model is used. Depending on the clutter density, the number of
tentative tracks is always greater than the number of confirmed tracks. Only a few of
them qualify the criteria to be included in the confirmed track list. Therefore, using IMM-
SCKF algorithm for the tentative tracks will result in computational load and increased
complexity at the processing end.

6. Initial State Estimation

Initial state estimation is very crucial in target tracking applications, particularly in
case of nonlinear process model or measurement model [19,20]. In the current work, as
there is a nonlinear relation between the target state and measurements received, it is
not possible to find analytical solution directly from the measurement model. However,
according to the authors of [26], the initial measurements of range and azimuth angle (R,ϕ)
in the interferometric mode can be utilized to extract 2-D Cartesian initial position (x,y) of
the target.

R2 − R1 = D sin ϕ (59)
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The target’s position estimates at two consecutive time steps are then used to estimate
the target’s initial velocity from vx = (x2 − x1)/T and vy = (y2 − y1)/T.

As the DOA ϕ is extracted from the range measurements, it is very sensitive to the
error in range measurement. Therefore, we cannot rely on (R,ϕ) measurements for the
target tracking and state estimation. This information is used for initialization purpose
only. Tracking is accomplished based on the 2-D velocity measurement.

7. Track Management Using Rule-Based M/N Logic

In MTT applications, the number of targets in the scan region does not remain constant.
The function of the track management block is to handle the appearance and disappearance
of these targets.

The GNN method, standalone, is not capable of handling track management. There-
fore, we include rule-based M/N logic in track management step. The track management
block represented by Figure 4 includes initiation of new tentative tracks, confirmation of
tentative tracks, and deletion of tentative and confirm tracks when the targets no more
exist. The output of data association block is fed to the track management unit to manage
the tentative and confirmed track lists based on predefined rules. In both the tracks lists,
each track consists of the following.

1. State estimate x̂k|k
2. Square-root of error covariance estimate Sk|k
3. Residual covariance SZ,k
4. Hit counter H
5. Miss counter M

When a new set of 2-D velocity measurements arrives, these measurements are first
examined for association with confirmed tracks. The measurements unassociated with
confirmed tracks are then checked for association with tentative tracks. The unassociated
measurements left after this step are used for new tentative track initialization and their
‘Hit’ and ‘Miss’ counters are set to 1 and 0, respectively. As a result of data association,
if a tentative track gets associated with a measurement, its ‘Hit’ counter is increased,
while ‘Miss’ counter remains unchanged. On the contrary, if a tentative track does not
get associated with a measurement, its ‘Miss’ counter is increased, leaving ‘Hit’ counter
unchanged.

In order for the tentative tracks to be inserted in the confirmed track list, it must fulfill
2/2 and 2/3 rule. If a tentative track receives measurements during first two consecutive
scans, and then receives measurement at least twice during next three consecutive scans,
then it fulfills the criteria to enter the confirmed track list. Otherwise, its delete flag is set
to 1 and the tentative track will be deleted from the list. Once a tentative track enters the
confirmed track list, its ‘Hit’ counter is set to 5 and ‘Miss’ counter is set to 0.

The deletion logic is less stringent when it comes to the confirmed tracks. If a con-
firmed track does not receive any measurement during data association, its ‘Hit’ counter
is decreased and ‘Miss’ counter is increased. If the track does not receive measurements
during five consecutive scans, i.e., Hit = 0 and Miss = 5, the delete flag for the confirmed
track is set to 1 and the track is deleted from the confirmed track list.
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Figure 4. Track management block of multi-target tracker algorithm based on 2-D velocity measure-
ment function.

8. Performance Evaluation Simulations

This section presents the performance evaluation of the proposed MTT algorithm
on the basis of a set of performance evaluation metrics. Simulation results for different
multiple targets scenarios (moving tangential to the radar broadside, crossing tracks and
maneuvering targets) have been presented to verify the effectiveness of the proposed
MTT algorithm.

8.1. Performance Evaluation Metrics

The performance evaluation metrics presented in this paper for the proposed MTT
algorithm include the following.

1. Root mean square error (RMSE) in position: Assume [xk, yk] and [x̂k, ŷk] represent the
true and estimated positions, respectively, of a target at time instant k in xy-plane. The
RMSE in position in terms of Cartesian coordinates at time instant k can be written as

RMSEXY
k =

√
(x̂k − xk)

2 + (ŷk − yk)
2 (60)

2. Root mean square error (RMSE) in velocity: Similarly, if [vxk , vyk ] and [v̂xk , v̂yk ] repre-
sent the true and estimated velocities, respectively, of a target at time instant k, then
the RMSE in velocity at time instant k can be written as

RMSE
vxvy
k =

√
(v̂xk − vxk )

2 + (v̂yk − vyk )
2 (61)
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3. Posterior Cramer–Rao lower bound (PCRLB): PCRLB states that if both the state and
measurement are random, then the state covariance matrix for an unbiased estimator
is bounded as;

Pk|k ≥ J−1
k (62)

where Jk represents Fisher information matrix (FIM) [47]. The PCRLB for the compo-
nents of state vector can be calculated as

PCRLB{[x̂k]j} = [J−1
k ]jj (63)

4. Mean execution time for one data scan (TE): Mean execution time of algorithm for one
cycle is computed by laptop computer. The specifications of computer are 1.9 GHz
processor, 4 GB RAM and Windows10 for Matlab2018. The total execution time is
composed of time for data association (TDA), target’s state estimation by filtering (TF)
and track management (TTM) steps.

5. IMM mean model probabilities: IMM mean model probabilities for maneuvering
targets reflect how efficiently IMM algorithm can recognize different dynamic motion
models of the targets and switch accordingly.

8.2. Parameter Selection and Simulated Data Generation

In order to evaluate the performance of the MTT algorithm, the targets are considered
as point sources in far filed relative to the observing radar. A DF-FMCW interferometric
radar with fc1 = 6 GHz and fc2 = 24 GHz is simulated with bandwidth B = 500 MHz
and sweep time Tc = 1 ms. The sampling frequency is set to be fs = 128 kHz. The radar is
placed at the origin of xy-plane and the two interferometric antennas corresponding to fc1

are located at (0,0) and (0,D), where D = −3.
To simulate the trajectories of the targets, two motion models have been considered.
Model 1: nearly constant velocity (NCV) motion model is used to simulate the uniform

motion of the target. The NCV model for target state xk = [xx, vxk , yk, vyk ]
T along with

discrete white noise acceleration (DWNA) model for process noise can be expressed as [27]

xk+1 = FNCV
k xk + Γ1v1k (64)

where

FNCV
k =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (65)

and

Γ1 =


1
2 T2 0
T 0
0 1

2 T2

0 T

 (66)

T is sampling interval and v1k is zero-mean white Gaussian noise for small acceleration.
Model 2: nearly coordinated turn (NCT) motion model is used to simulate the circular

or maneuvering segments of the target motion. The NCT model for target state xk =

[xx, vxk , yk, vyk , Ωk]
T along with DWNA model for process noise can be expressed as [27]

xk+1 = FNCT
k xk + Γ2v2k (67)
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where

FNCT
k =



1 sin ΩkT
Ωk

0 −(1−cos ΩkT)
Ωk

0

0 cos ΩkT 0 − sin ΩkT 0

0 (1−cos ΩkT)
Ωk

1 sin ΩkT
Ωk

0

0 sin ΩkT 0 cos ΩkT 0

0 0 0 0 1


(68)

and

Γ2 =


1
2 T2 0 0
T 0 0
0 1

2 T2 0
0 T 0
0 0 T

 (69)

Ω represents the turn rate and v2k is zero-mean white Gaussian process noise.
The standard deviations associated with linear and circular segments of target motion

are assumed to be σv1 = 0.2 and σv2 = 0.1. Further, the radial velocity and angular velocity
measurement error standard deviations are set as σvr = 0.15 m s−1 and σω = 0.15 rad s−1,
respectively. The probability of gate detection PG = 0.99999 which corresponds to gate size
G = 23.

The clutter points assume Poisson distribution and are uniformly distributed in the
measurement region. Each clutter point is composed of (i) a radial velocity measurement
distributed in the range of [vrmin , vrmax ] and (ii) an angular velocity measurement distributed
in [ωmin, ωmax]. The average number of clutter points is set as 5 for each scan.

The model transition probabilities matrix for IMM filter is

π =

[
0.99 0.01
0.01 0.99

]
(70)

The initial model probability for each filter model is chosen to be µj = 0.5, where
j = 1, 2. The sampling interval is T = 0.02 s.

8.3. Scenario 1: Three Non-Maneuvering Targets Moving Tangential to the Radar Broadside

The radar and three non-maneuvering targets geometry for simulation scenario 1 is
shown in Figure 5. Table 1 lists the initial states of the targets moving along the tangential
to the radar following NCT motion model.
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Figure 5. The radar and targets geometry for scenario 1.

Table 1. Scenario 1.

Targets Initial States of Targets
x (m) vx (m s−1) y (m) vy (m s−1) Ω (rad s−1)

1 −4 7.9 6.6 4.8 −1.2
2 4 −6.6 5.5 4.8 1.2
3 3 −9.5 4.4 6.4 2.1

The range-radial velocity map ( fc2 = 24 GHz) plotted in Figure 6a clearly shows
three distinct targets with initial ranges of R01 = 7.7 m, R02 = 6.8 m, and R03 = 5.3 m,
respectively. The initial radial velocities of the targets are vr1 = vr2 = vr3 = 0 m s−1.

Time-varying Doppler spectrogram ( fc2 = 24 GHz) and interferometric spectrogram
( fc1 = 6 GHz) are presented in Figure 6b and Figure 6c, respectively. As the three targets are
moving along the tangential to the radar broadside, the Doppler frequency shifts caused by
the radial velocities are zero. Concerning the interferometric spectrogram, target 1 moving
clockwise induces instantaneous interferometric frequency due to angular velocity in the
positive zone, while target 2 and target 3 moving in counterclockwise direction induce
instantaneous interferometric frequencies in the negative zone. Equations (1) and (11)
are used to calculate the radial and angular velocities of the targets after extracting their
instantaneous frequencies from the Doppler and interferometric spectrograms, respectively.
Figure 6d,f represents the ideal and extracted radial and angular velocities of the targets,
respectively.

Based on 2-D velocity measurements, the real and estimated target tracks are shown
in Figure 6f. The real target tracks are plotted following NCT motion model from
Equation (67), while the estimated tracks are the output of the proposed GNN-IMM-SCKF
algorithm using 2-D velocity measurement function. To access the performance of the
proposed algorithm, Figure 6g,h presents the RMSE in positions and velocities of three
targets along with PCRLB. The large RMSE in the beginning is attributed to the state and
error covariance matrix initialization. With the increasing number of measurement samples,
the IMM-SCKF estimator converges and the RMSE decreases.
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(a) The range-radial velocity map (b) Doppler spectrogram

(c) Interferometric spectrogram (d) Radial velocity measurement

(e) Angular velocity measurement (f) Real and estimated target tracks

(g) RMSE in position (h) RMSE in velocity

Figure 6. Scenario 1: Three non-maneuvering targets moving tangential to radar broadside.

For simulation scenario 1, it is evident that the three targets moving tangential to
the radar do not produce any Doppler frequency shift. Therefore, based on the Doppler
frequency shift only, it is not possible to track these targets unless we have angular veloc-
ity information along with radial velocity measurement. The simulation results clearly
demonstrate that the proposed MTT algorithm based on 2-D velocity measurements from
interferometric radar is capable of tracking multiple targets moving with angular velocity
only in 2-D Cartesian space which is not possible without Doppler radar network or phased
array radar antennas.

8.4. Scenario 2: Two Non-Maneuvering Targets with Circular Motion

The initial states of the targets for simulation scenario 2, presented by Figure 7, are
summarized in Table 2. The two targets following NCT motion model are moving in
circular path.
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Figure 7. The radar and targets geometry for scenario 2.

Table 2. Scenario 2.

Targets Initial States of Targets
x (m) vx (m s−1) y (m) vy (m s−1) Ω (rad s−1)

1 −1 3 3.8 0 4.8
2 1.5 −2.2 3 0 −4.8

The range-radial velocity map for scenario 2 in Figure 8a depicts the presence of
two targets with initial ranges of R01 = 4 m, R02 = 3.48 m and initial radial velocities of
vr1 = −0.5 m s−1 and vr2 = −0.7 m s−1.

Time-varying Doppler and interferometric spectrograms are shown in Figure 8b and
Figure 8c, respectively. The sinusoidal patterns for both the Doppler and interferomet-
ric spectrograms caused by the radial and angular velocities of targets are in complete
agreement with the circular motion of the targets in radar’s FOV.

The ideal and extracted radial and angular velocity measurements are plotted in
Figure 8d and Figure 8e, respectively. The instantaneous radial and angular velocity
extracted from time-varying Doppler and interferometric spectrograms are fed to the
proposed MTT algorithm, which performs the data association, target state estimation
and track management steps utilizing 2-D velocity measurement function. The real target
tracks following Equation (67) and the output of the algorithm in the form of estimated
target tracks in 2-D Cartesian space are shown in Figure 8f. The RMSE in positions and
velocities of the targets shown in Figure 8g and Figure 8h, respectively, prove the validity
of the proposed MTT algorithm for non-maneuvering target trajectories.
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(a) The range-radial velocity map (b) Doppler spectrogram

(c) Interferometric spectrogram (d) Radial velocity measurement

(e) Angular velocity measurement (f) Real and estimated target tracks

(g) RMSE in position (h) RMSE in velocity

Figure 8. Scenario 2: Two non-maneuvering targets with circular motion.

8.5. Scenario 3: Two Maneuvering Targets with Crossing Track Patterns

The geometry of radar and two maneuvering targets following NCV and NCT mo-
tion model is shown in Figure 9. The initial states of targets for simulation scenario are
summarized in Table 3.

The range-radial velocity map for this scenario presented in Figure 10a shows two
targets with initial ranges of R01 = 4.38 m, R02 = 4.08 m and initial radial velocities of
vr1 = −1.51 m s−1 and vr2 = −0.71 m s−1. Time-varying Doppler and interferometric
spectrograms in Figure 10b,c are used to calculate the instantaneous radial and angular
velocities of targets following Equations (1) and (11), respectively. Figure 10d,e represents
the ideal and extracted radial and angular velocities of the targets, respectively.

The real tracks of two maneuvering targets following Equations (64) and (67) and
the output of the proposed MTT algorithm presented in Figure 10f clearly show that the
estimated target tracks follow the real target trajectories. Here, note that although the two
targets are coming closer and cross each other near origin, GNN based on 2-D velocity
measurement function is capable of performing correct data association which can be a
problem with (R, ϕ) measurements.
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Figure 9. The radar and targets geometry for scenario 3.

Table 3. Scenario 3.

Targets Initial States of Targets
x (m) vx (m s−1) y (m) vy (m s−1) Ω (rad s−1)

1 −2.25 3 3.5 0 4.8
2 1.5 −2 3.5 0 −4.8

To evaluate the performance of the proposed algorithm, RMSE in position and velocity
of the targets have been plotted in Figure 10g,h. It can be clearly seen that the RMSE for
GNN-IMM-SCKF algorithm is less as compared to the RMSE for the GNN-SCKF algorithm
during maneuvering phases of the targets, which establishes the fact that the proposed
algorithm with 2-D velocity measurements can be applied to IMM estimators for tracking.
Figure 10i presents the IMM mean model probabilities for NCV and NCT models, where
it is evident that IMM algorithm can efficiently distinguish and switch between different
target motion models.

Finally, Table 4 reports the execution times for all the three simulation scenarios. It can
be clearly seen that the data association time TDA dominates the execution times for filtering
TF and track management TTM steps, which is approximately 50–54%. Furthermore,
concerning scenario 3 total execution time for GNN-IMM-SCKF algorithm is increased
as compared to GNN-SCKF algorithm. GNN-IMM-SCKF algorithm requires 38% more
execution time than the time required for GNN-SCKF algorithm.

Table 4. Execution times.

Scenario Execution Time
TE (ms) TDA (ms) TF (ms) TT M (ms)

1 (IMM-SCKF) 18.8 9.37 (50%) 6.02 (32%) 3.41 (18%)
2 (IMM-SCKF) 16.3 8.61 (53%) 4.56 (28%) 3.13 (19%)
3 (NCV-SCKF) 14.1 7.61 (54%) 3.52 (25%) 2.96 (21%)
4 (IMM-SCKF) 19.4 9.90 (51%) 6.50 (33%) 2.98 (16%)
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(a) The range-radial velocity map (b) Doppler spectrogram

(c) Interferometric spectrogram (d) Radial velocity measurement

(e) Angular velocity measurement (f) Real and estimated target tracks

(g) RMSE in position (h) RMSE in velocity

(i) IMM-SCKF mean model probabilities for maneuvering targets

Figure 10. Scenario 3: Two maneuvering targets with crossing track patterns.

9. Conclusions

The paper presented multi-target tracking algorithm based on 2-D velocity measure-
ments using dual-frequency FMCW interferometric radar, which removes the need of
Doppler radar networks or expensive phased arrays to localize targets moving with small
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or no radial velocity in 2-D Cartesian space. First, we presented the mathematical model
and implementation of the proposed MTT algorithm based on the derived 2-D veloc-
ity measurement function which established the relationship between the 2-D velocity
measurements and state of the target in terms of Cartesian coordinates. Data association
was performed using GNN method, and the states of the targets were estimated using
IMM-SCKF estimator. The track management was accomplished using rule-based M/N
logic. Second, the performance evaluation of the proposed algorithm was conducted for
different scenarios with multiple targets including targets moving tangential to the radar
broadside, crossing track patterns and maneuvering targets. In all scenarios, the perfor-
mance was analyzed in terms of RMSE in position and velocity, PCRLB, execution time,
and IMM mean model probabilities (for maneuvering targets) in the presence of process
and measurement noise and cluttered environment. Simulation results established the fact
that the proposed MTT algorithm based on the 2-D velocity measurement function using
interferometric radar is robust, accurate, and can be implemented for practical real-time
applications regardless of the target trajectories.
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