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Abstract: The most aggressive form of brain tumor is gliomas, which leads to concise life when high
grade. The early detection of glioma is important to save the life of patients. MRI is a commonly
used approach for brain tumors evaluation. However, the massive amount of data provided by
MRI prevents manual segmentation in a reasonable time, restricting the use of accurate quantitative
measurements in clinical practice. An automatic and reliable method is required that can segment
tumors accurately. To achieve end-to-end brain tumor segmentation, a hybrid deep learning model
RMU-Net is proposed. The architecture of MobileNetV2 is modified by adding residual blocks to
learn in-depth features. This modified Mobile Net V2 is used as an encoder in the proposed network,
and upsampling layers of U-Net are used as the decoder part. The proposed model has been validated
on BraTS 2020, BraTS 2019, and BraTS 2018 datasets. The RMU-Net achieved the dice coefficient
scores for WT, TC, and ET of 91.35%, 88.13%, and 83.26% on the BraTS 2020 dataset, 91.76%, 91.23%,
and 83.19% on the BraTS 2019 dataset, and 90.80%, 86.75%, and 79.36% on the BraTS 2018 dataset,
respectively. The performance of the proposed method outperforms with less computational cost
and time as compared to previous methods.

Keywords: semantic segmentation; BraTS 2020; BraTS 2019; BraTS 2018; deep learning; MobileNetV2;
U-Net; ResNet

1. Introduction

A tumor is a bunch of abnormal cells that grow within the brain. These abnormal cells
can cause death if not detected in the early stages. A brain tumor is classified into two main
types: benign, which is not cancer, and malignant, a severe type of cancer. Gliomas are the
most ordinary kind of brain tumor in adults, which is categorized into two different grades:
high-grade gliomas (HGG) proliferate, while low-grade gliomas (LGG) are slowly growing
tumors [1]. Primary tumors started within the brain and came from the cells, infiltrating
the brain and the nervous system [2]. Secondary tumors begin in one part of the body
and metastasize to the brain [3]. Tumors like meningiomas can be easily segmented, while
glioblastomas and gliomas are challenging to find and localize due to high contrast and
diffusion. In addition, its appearance varies in size, shape, and form, which makes it more
challenging to detect. A study concluded that 25 people out of 100,000 have tumors, of
which 33% of people were critical [4].

Medical images such as X-rays, CT images, and MRI were used for the diagnosis
of diseases. Medical Resonance Imaging has been widely used to detect and treat brain
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tumors [5]. It provides high-quality images of the brain, which helps for the diagnosis and
treatment of tumor. Segmentation of brain tumor using MRI has excellent improvements
in diagnosis, treatment, and growth rate. It is essential to separate tumor regions from
MRI-captured images accurately. The structure of a brain tumor is complex, which makes
it challenging to separate cancer from the brain. Therefore, an automated segmentation
technique is required to detect more accurately and segment tumor regions easily. Hand-
crafted segmentation is time-consuming and can lead to human errors.

Machine learning-based techniques provide a powerful mechanism for the analysis
of medical images. Mounting advanced deep learning models can achieve quick and
automatic segmentation of medical images. Several deep learning models such asFCN [6],
SegNet [7], U-Net [8], Theory-based [9], and region-based [10] are available for image
segmentation. U-Net provides a great perfection in image segmentation among all these
models and has attracted attention due to its tremendous performance. U-Net for im-
age segmentation depends on two purposes: First, it works well on small datasets when
trained end-to-end. Although it gives better performance as compared with other ap-
proaches, it also consumes too much time. We changed the encoding part of U-Net with
MobileNetV2 [11], which Google introduced for real-time visual applications and mobile
devices to decrease computation cost. It provides superior accuracy with a minimum num-
ber of parameters. The proposed hybrid model is named RMU-Net as it is providing the
best results by joining the MobileNetV2 with residual blocks and U-Net. The contribution
of the proposed work is given below:

• To introduce a novel end-to-end brain tumor segmentation technique that performs
classification on the pixel level.

• To extract discriminant features for introducing a unique approach with adequate
results for a clinical setting.

• To develop an efficient network that reduces the computational cost while maintaining
high accuracy.

• We are adapting the MobileNetV2 [11] as an encoder for U-Net architecture and
identifying the changes in performance.

2. Materials and Methods

Machine learning and digital image processing have been modernized through the
innovation of deep learning technology. The power of deep learning methods focuses
on images’ ability to generate stable, discriminatory, and useful semantic characteristics.
The word deep refers to the addition of more layers to increase the network size. Deep
learning has created advancements in many fields such as medical image analysis [12],
security applications [13], and agriculture [14]. Convolutional neural networks are the most
frequently used technique to solve image-based problems. In the proposed CNN model,
various combinations of layers are used. A threshold-based deep learning model was
proposed [15] in which a multi-level neural network was used to diagnose glaucoma using
fundus images. The dataset was collected locally and pre-processed using an adaptive
histogram equalizer to remove noise. Two deep learning models are used, one for glau-
coma detection as detection-net and another for classification of affected and non-affected
glaucoma images. The outcome of the network performs well as compared to previous
approaches. The deep LSTM used by Ghulam Ali et al. [16] and the IoT sensors integra-
tion helps detect the availability of available parking slots. Birmingham parking dataset
was used for the evaluation of the model. Three different experiments were performed
based on the different regions and time. This models outperforms from the state-of-the-art
methods.Different convolutional network models are U-Net [8], AlexNet [17], ResNet [18],
VGG16 [19], DenseNet [20], and Inception [21].

This research aims to segment LGG (low-grade gliomas) brain tumours from MRI im-
ages using three models. The first model used is MobileNetV2 [11], released by Google and
belongs to the family of neural network architectures used on machines with limited com-
putational power, such as mobile devices. The complete architecture of the MobileNetV2
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is shown in Figure 1. It provides promising accuracy results while requiring less compu-
tational memory as well as computational power. Moreover, it makes them a high-speed
network for image processing tasks. MobileNetV2 is a lightweight convolutional neural
network used in synchronous functions for two reasons; first, the number of trainable
parameters is less than traditional convolution; it reduces computational costs because of
the minimum number of parameters.

Figure 1. MobileNetV2 architecture for segmentation of brain tumor implemented in this research.

In the second network, the standard encoder-decoder architecture of U-Net [8] was
maintained. However, we replaced the encoder part with the MobileNetV2. The upsampled
part of U-Net is used as a decoder. The architecture of MU-Net with encoder-decoder parts
is shown in Figure 2. The features from the input dataset are extracted with MobileNetV2.
These features are passed to the decoder part of MU-Net for the segmentation task.

Figure 2. The MU-Net architecture was implemented in this research for brain tumor segmentation.
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The third model takes inspiration from the ResNet [18] deep learning model, in which
a residual learning framework was used to train deeper models. In this model, the residual
blocks are added to the network architecture of MobileNetV2, as shown in Figure 3. As
a result, the gradient becomes very small due to the deeper residual network, and the
training errors decrease due to the additional layers. This modified network is used as an
encoder part in the final proposed model named RMU-Net.

Figure 3. The proposed RMU-Net architecture is implemented in this research.

One can observe the main difference between this model and the standard U-Net
architecture, which has a more complex system of skip connections. Residual blocks are
now also present in the encoder part of the network in RMU-Net, propagating information
from deeper parts of the encoder up to the topmost layers. The features from the encoder
part are given to the decoder part directly without using any connection. Moreover, deep
supervision is also present here; however, it is placed along with the first skip connection.
The benefit of this approach with RMU-Net is that the blocks along the first concatenation
produce full-resolution segmentation maps, consisting of upsampled feature data from the
deeper layers of the encoder.

The goal of segmentation is to simplify or change the representation of an image into
something meaningful and easier to analyze. The proposed network works in two phases;
first, the network is trained to target three classes of the tumor (Enhanced Tumor, Whole
Tumor, Tumor Core). The input of the network is an MRI image, and its corresponding
label masks all three classes. All the image pixels are assigned to one of the three classes.
The output of the network is three predicted masks for each category. The evaluation of the
results is conducted by comparing the actual mask and the predicted mask of each type
using a dice coefficient score.

2.1. Dataset Definition
2.1.1. BraTS 2020

The BraTS 2020 dataset [22–25] is used in this research to evaluate the performance of
the proposed network. There are 369 training, 125 validation, and 169 test multi-modal
brain MR studies.T1-weighted (T1), post-contrast T1-weighted (T1ce), T2-weighted (T2),
and fluid-attenuated inversion recovery (Flair) sequences are included in each study, as
shown in Figure 4. The size of all the MR images is 240 × 240 × 155. In addition, experts
annotated the enhancing tumor (ET), peritumoral edema (ED), as well as the necrotic
and non-enhancing tumor core (NET) for each study. For online evaluation and final
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segmentation competition, the annotations for training studies are made public, whereas
the annotations for validation and test trials are kept withheld.

Figure 4. MRI images and their ground truth for various modalities. Green, red, and yellow highlight the ED, NET, and ET
areas, respectively.

2.1.2. BraTS 2019

The BraTS 2019 dataset [22–24] consists of 259 HGG and 76 LGG MRI scans. The
ground truth of all the images has been created manually using the same annotation proto-
col. Annotations were approved by experienced neuroradiologists [25], which contains
enhancing tumor (ET label 4), the peritumoral edema (ED label 2), and the necrotic or
non-enhancing tumor core (NCR/NET label 1). Figure 5 shows the sample images from
the BraTS 2019 dataset.

Figure 5. MRI images and their ground truth for various modalities. Green, red, and yellow highlight the ED, NET, and ET
areas, respectively.
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2.1.3. BraTS 2018

The BraTS 2018 challenge training dataset [22–24] consists of 210 HGG and 75 LGG
scans. The validation dataset includes 66 different MRI scans. All MRI of the BraTS
2018 dataset has a volume dimension of 240 × 240 × 155. The MRI volumes have been
segmented manually by one to four raters, and experienced neuroradiologists approved
their annotations. Each tumor was segmented into edema, necrosis, and non-enhancing
tumor and active/enhancing tumor. The sample images from the BraTS 2018 dataset are
shown in Figure 6.

Figure 6. MRI images and their ground truth for various modalities. Green, red, and blue highlight
the ED, NET, and ET areas, respectively.

2.2. Evaluation Metrics

An essential part of evaluating the neural network’s success is comparing segmented
images to determine segmentation accuracy. The dice similarity coefficient (DSC) [26] is the
most common and popular evaluation measure for comparing the segmented image and
its ground truth. It compares two sets, Q1 and Q2, by normalizing their intersection sizes
over the average of their sizes. The formula for DSC is given in the following equation:

DSC = 2
|Q1∩Q2|
|Q1|+ |Q2| . (1)

Jaccard similarity coefficient (Jaccard) [26] is also an evaluation measure of the segmen-
tation methods. For example, the following equation is given by Jacquard to calculate the
match of two Q1 and Q2 sets by normalizing the size of their intersection over their union:

Jaccard =
|Q1∩Q2|
|Q1∪Q2| . (2)
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Sensitivity and specificity are statistical decision theory metrics and are determined
using the following equations, respectively.

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

We used the Jaccard score, dice coefficient score, sensitivity, and specificity to evaluate
the performance of the proposed network.

2.3. Model Training

Following normalization, cropping, and resampling the images, the next step was
training the model to extract the multiclass tumor segments automatically. Samples were
processed one by one rather than in batches due to the data’s dimensionality. The training
dataset is divided into an 80–20 train–test split. All three network models are trained with
the training period spanning 200 epochs and using a learning rate of 0.0001. The networks
are trained by Adam [27], which is an adaptive first-order gradient-based optimization
algorithm. The size of the minibatch is 16 image crops. We also use early stopping, which
means the training process will be terminated if there is no improvement after ten epochs
on the validation data. We decrease the learning rate by multiplying a factor of 0.4 when
the validation loss has no improvement for five epochs. Unless otherwise specified, we
use cross-entropy as the default loss function. The MobileNetV2 takes three h and 23 min,
MU-Net takes two h 57 min, and the proposed model takes two hours and 47 min to
complete the training process. The test speed of MobileNetV2, MU-Net, and the proposed
network are 3.5, 3.2, 2.8 s per subject, respectively.

3. Results

In this section, the performance of the proposed models is discussed. Several ex-
periments were conducted to identify the improvements in the final model. A detailed
description of experiments is presented in this section, including a summary of investiga-
tions conducted in the research. Following the best model configuration being selected, the
results on BraTS 2020, BraTS 2019, and BraTS 2018 datasets were obtained.

3.1. Pre-Processing

The first step in any data-driven study is to pre-process the raw images. First, the
images of all three datasets are resized to 224 × 224 for feeding as input to MobileNetv2.
In every dataset, each subject contains four images with annotated masks. All the images
are given to the networks by considering each image separately as ET, TC, and TC classes.

First, the MobileNetV2 model discussed in the previous section is trained on the
BraTS datasets. The results of the model are presented in Tables 1 and 2. The performance
of MobileNetV2 is less in terms of dice coefficient score. However, the computational
cost of MobileNetV2 is much smaller, with 4.6 million trainable parameters and 53 MB of
model size.

Table 1. Dice coefficient score and Jaccard score for the MobileNetV2 model on Enhanced Tumor (ET), Whole Tumor (WT),
and Tumor Core (TC) classes of the BraTS 2020, 2019, and 2018 datasets.

Configuration Dataset
Dice Coefficient Score Jaccard Score

ET WT TC ET WT TC

MobileNetV2

BraTS 2020 0.6139 0.6981 0.6625 0.5917 0.6308 0.6495

BraTS 2019 0.6598 0.7549 0.6037 0.6249 0.6849 0.6229

BraTS 2018 0.6395 0.7265 0.6419 0.6398 0.6949 0.6071
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Table 2. Sensitivity and specificity for MobileNetV2 on Enhanced Tumor (ET), WholeTumor (WT), and Tumor Core (TC)
classes of the BraTS 2020, 2019, and 2018 datasets.

Configuration Dataset
Sensitivity Specificity

ET WT TC ET WT TC

MobileNetV2

BraTS 2020 0.7226 0.7934 0.7445 0.7356 0.7605 0.7965

BraTS 2019 0.7854 0.8616 0.6997 0.7918 0.8276 0.7693

BraTS 2018 0.7613 0.8234 0.7358 0.8145 0.8319 0.7126

To increase the dice score, a hybrid deep learning model MU-Net is used in which
MobileNetV2 is used as an encoder part for feature extraction. MobileNetV2 is a lightweight
neural network that reduces trainable parameters. The decoder part of the U-Net is used
for tumor segmentation. The results of this model are shown in Tables 3 and 4. The results
of MU-Net are improved with fewer computational parameters.

Table 3. Dice coefficient score and Jaccard score for MU-Net on Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core
(TC) classes of the BraTS 2020, 2019, and 2018 datasets.

Configuration Dataset
Dice Coefficient Score Jaccard Score

ET WT TC ET WT TC

MU-Net

BraTS 2020 0.6517 0.8421 0.7285 0.7942 0.8875 0.7537

BraTS 2019 0.6921 0.8264 0.7329 0.7469 0.9127 0.7429

BraTS 2018 0.7029 0.8967 0.7692 0.7738 0.9049 0.7795

Table 4. Sensitivity and specificity for MU-Net on Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) classes
of the BraTS 2020, 2019, and 2018 datasets.

Configuration Dataset
Sensitivity Specificity

ET WT TC ET WT TC

MU-Net

BraTS 2020 0.8217 0.8721 0.7385 0.8142 0.8475 0.8317

BraTS 2019 0.8869 0.8236 0.7658 0.8952 0.8527 0.8179

BraTS 2018 0.8729 0.7928 0.7892 0.9096 0.8785 0.7906

3.2. Data Augmentation

To generate extra input samples for model training, data augmentation techniques are
employed to create synthetic examples of real-world data. As stated by [28], the objective
of using data augmentation for datasets with limited data is to produce a more robust
dataset for the model during training. This is generally helpful for training models tasked
with solving scarce data, such as biomedical image segmentation. The original U-Net [8]
proposal also made use of data augmentation techniques in this regard. The different types
of augmentation used in this study are discussed below.

3.2.1. Scaling and Rotation

Deep neural networks models can learn important deep features using a scaled version
of the training set. This operation G can be performed in different directions, and Gx and
Gy represents the scaling factors for the X and Y directions. Due to the different tumorsizes,
scaling can generate viable augmented images for training. Scaling is combined with
cropping to maintain the dimensions of the input image.Cropping can limit only to those
parts of the image that are necessary.

3.2.2. Flip and Rotation

Random flipping produces a mirror reflection of the original image along axes. Natural
images may usually be flipped along the horizontal axis, but not the vertical axis because up
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and down components of an image are not always “interchangeable”. A similar property
applies to MRI brain images: a brain contains two hemispheres in the axial plane, and
the brain can be considered anatomically symmetrical in most circumstances. The left
hemisphere is swapped with the right hemisphere when you flip along the horizontal axis
and vice versa. In this case, rotating an image by an angle around the central pixel can be
helpful. After that, appropriate interpolation was used to fit the original image size. The
rotation operation Z is frequently used in which zero paddings is applied to missing pixels.

An ablation study was conducted to assess whether data augmentation was beneficial
to the final model predictions, comparing two separate training runs. The results are pre-
sented in Tables 5 and 6. From the scores obtained, one can observe how data augmentation
was beneficial across all the evaluation criteria and greatly improved the model’s brain
tumor segmentation capabilities.

Table 5. Dice coefficient score and Jaccard score for MU-Net with and without data augmentation on Enhanced Tumor (ET),
Whole Tumor (WT), and Tumor Core (TC) classes of the BraTS 2020, 2019, and 2018 datasets. Best scores in bold.

Configuration Dataset
Dice Coefficient Jaccard Score

ET WT TC ET WT TC

MU-Net (without augmentation)

BraTS 2020

0.6517 0.8421 0.7285 0.7942 0.8875 0.7537

MU-Net (with augmentation) 0.7015 0.9275 0.7837 0.8529 0.9139 0.8275

Average Improvement 6.35% 5.29%

MU-Net (without augmentation)

BraTS 2019

0.6921 0.8264 0.7329 0.7469 0.9127 0.7429

MU-Net (with augmentation) 0.7629 0.8692 0.7964 0.7829 0.9269 0.7926

Average Improvement 5.91% 3.33%

MU-Net (without augmentation)

BraTS 2018

0.7029 0.8967 0.7692 0.7738 0.9049 0.7795

MU-Net (with augmentation) 0.7525 0.9232 0.7896 0.7891 0.9081 0.7935

Average Improvement 3.21% 1.08%

Table 6. Sensitivity and specificity for MU-Net with and without data augmentation on Enhanced Tumor (ET), Whole
Tumor (WT), and Tumor Core (TC) classes of the BraTS 2020, 2019, and 2018 datasets. Best scores in bold.

Configuration Dataset
Sensitivity Specificity

ET WT TC ET WT TC

MU-Net (without augmentation)

BraTS 2020

0.8217 0.8721 0.7385 0.8142 0.8475 0.8317

MU-Net (with augmentation) 0.9015 0.9275 0.7837 0.8329 0.8721 0.8875

Average Improvement 4.68% 3.30%

MU-Net (without augmentation)

BraTS 2019

0.8869 0.8236 0.7658 0.8952 0.8527 0.8179

MU-Net (with augmentation) 0.9266 0.8952 0.8092 0.9265 0.9526 0.8959

Average Improvement 5.16% 6.98%

MU-Net (without augmentation)

BraTS 2018

0.8729 0.7928 0.7892 0.9096 0.8785 0.7906

MU-Net (with augmentation) 0.9526 0.8564 0.8562 0.9585 0.9826 0.8295

Average Improvement 7.01% 6.40%

3.3. Encoder Features with Residual Blocks

The second model is a more compact version of the proposed MU-Net model. This
model follows the standard U-Net model closely with a minor change: residual blocks are
added to the architecture of MobileNetV2, the encoder part of U-Net is replaced with the
modified MobileNetV2 architecture. The experiments of this model were conducted using
augmentation, and one was trained without augmentation. We compared the results of the
model, as shown in Tables 7 and 8. The results of the augmentation model were promising
as compared to the model without augmentation.
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Table 7. Dice coefficient and Jaccard score for the second model of RMU-Net with and without data augmentation on
Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) classes of the BraTS 2020, 2019, and 2018 datasets. Best
scores in bold.

Configuration Dataset
Dice Coefficient Jaccard Score

ET WT TC ET WT TC

RMU-Net (without augmentation)

BraTS 2020

0.8395 0.8173 0.7931 0.8124 0.8715 0.8074

RMU-Net (with augmentation) 0.8626 0.9135 0.8813 0.8679 0.9243 0.8817

Average Improvement 6.92% 6.09%

RMU-Net (without augmentation)

BraTS 2019

0.8895 0.7946 0.9036 0.8945 0.7348 0.8587

RMU-Net (with augmentation) 0.9176 0.8319 0.9123 0.9058 0.7926 0.8927

Average Improvement 2.47% 3.44%

RMU-Net (without augmentation)

BraTS 2018

0.8768 0.7759 0.8626 0.8665 0.8973 0.8596

RMU-Net (with augmentation) 0.9080 0.7936 0.8675 0.8956 0.9049 0.8869

Average Improvement 1.79% 2.14%

Table 8. Sensitivity and specificity for the second model of RMU-Net with and without data augmentation on Enhanced Tumor
(ET), Whole Tumor (WT), and Tumor Core (TC) classes of the BraTS 2020, 2019, and 2018 datasets. Best scores in bold.

Configuration Dataset
Sensitivity Specificity

ET WT TC ET WT TC

RMU-Net (without augmentation)

BraTS 2020

0.8415 0.8954 0.8857 0.8189 0.8429 0.9274

RMU-Net (with augmentation) 0.9918 0.9825 0.9245 0.9286 0.8921 0.9371

Average Improvement 9.20% 5.62%

RMU-Net (without augmentation)

BraTS 2019

0.8915 0.9239 0.9073 0.8878 0.8682 0.9513

RMU-Net (with augmentation) 0.9896 0.9931 0.9519 0.9751 0.9267 0.9683

Average Improvement 7.07% 5.43%

RMU-Net (without augmentation)

BraTS 2018

0.8380 0.8625 0.8758 0.8541 0.9010 0.8269

RMU-Net (with augmentation) 0.8940 0.9295 0.9036 0.9424 0.9129 0.8918

Average Improvement 10% 5.51%

3.4. Using Dropout Regularization

Dropout regularization is commonly used in CNNs to reduce the possibility of the
model overfitting the training data. However, the latter process causes the model to only
learn the salient features from the training data rather than generalize for new, unseen
samples. In this experiment, we used the original online repository’s dropout value of 0.3,
with the results shown in Tables 9 and 10. The results for this dropout value show that
there was no substantial improvement in terms of the model prediction. For this reason,
we decided not to use dropout regularization going forward. In our case, experiment
prioritization is the main reason for only having a singular dropout test using a value of
0.3. Thus, additional testing with other dropout values is encouraged, as it may lead others
to obtain more positive results.
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Table 9. Dice coefficient and Jaccard score for RMU-Net with and without dropout regularization on Enhanced Tumor (ET),
Whole Tumor (WT), and Tumor Core (TC) classes of the BraTS 2020, 2019, and 2018 datasets. Best scores in bold.

Configuration Dataset
Dice Coefficient Jaccard Score

ET WT TC ET WT TC

RMU-Net (without dropout)

BraTS 2020

0.8626 0.9135 0.8813 0.8679 0.9243 0.8817

RMU-Net (with dropout) 0.7815 0.8197 0.8365 0.8626 0.9012 0.8636

Average Improvement −7.33% −1.55%

RMU-Net (without dropout)

BraTS 2019

0.9176 0.8319 0.9123 0.9058 0.7926 0.8927

RMU-Net (with dropout) 0.7815 0.8197 0.8365 0.8626 0.9012 0.8636

Average Improvement −7.46% −1.21%

RMU-Net (without dropout)

BraTS 2018

0.9080 0.7936 0.8675 0.8956 0.9049 0.8869

RMU-Net (with dropout) 0.8819 0.7356 0.8019 0.8516 0.8628 0.8617

Average Improvement −4.98% −3.71%

Table 10. Sensitivity and specificity for RMU-Net with and without dropout regularization on Enhanced Tumor (ET), Whole
Tumor (WT), and Tumor Core (TC) classes of the BraTS 2020, 2019, and 2018 datasets. Best scores in bold.

Configuration Dataset
Sensitivity Specificity

ET WT TC ET WT TC

RMU-Net (without dropout)

BraTS 2020

0.9918 0.9825 0.9245 0.9286 0.8921 0.9371

RMU-Net (with dropout) 0.9035 0.9103 0.9137 0.8929 0.8762 0.9085

Average Improvement −5.71% −2.67%

RMU-Net (without dropout)

BraTS 2019

0.9896 0.9931 0.9519 0.9751 0.9267 0.9683

RMU-Net (with dropout) 0.9551 0.9325 0.9036 0.9659 0.8724 0.9093

Average Improvement −4.78% −4.08%

RMU-Net (without dropout)

BraTS 2018

0.8940 0.9295 0.9036 0.9424 0.9129 0.8918

RMU-Net (with dropout) 0.8554 0.8661 0.8593 0.9062 0.8864 0.8803

Average Improvement −4.87% −2.47%

4. Discussion
4.1. Comparison of RMU-Net with other Deep Learning Segmentation Models

On an industrial machine, the proposed model is tested, and the cost of computation
is compared with the current system. RMU-Net is a deep, lightweight neural network
designed with convolution depth-wise. In U-Net, the depth-wise convolution used is much
faster than standard convolution. On the central processor unit (CPU) platform, separation
convolution is generally quicker than traditional convolution. On both GPU and CPU
platforms, the proposed RMU-Net performs well in segmentation time. However, the
number of parameters impacts the number of computer resources used and the time it takes
to train. RMU-Net time is also assessed on various hardware platforms, including two GPU
platforms (GTX 1080Ti and GTX 745), a CPU platform (Intel i7), and an embedded platform.
The suggested RMU-Net performs well in segmentation time on the GPU platform with
two h 47 min. However, the CPU takes 47 h, while the embedded system takes 32 h to
complete the process. A lighter weight model with a limited number of parameters and
model size is the proposed technique. The results obtained from different segmentation
models are shown in Table 11, which includes a brief explanation, trainable parameters,
and the models’ size.
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Table 11. Comparison of RMU-Net with state-of-the-art segmentation models regarding model size and the number
of parameters.

References Dataset Used Architecture Information
Dice Coefficient Score

Whole Tumor
(WT)%

Enhanced
Tumor(ET)%

Tumor Core
(TC)%

[29] BraTS 2020 3D U-Net architecture with additional
layers 88.9 81.4 84.1

[30] BraTS 2020 Modality pairing architecture like 3D
U-Net architecture 89.1 81.6 84.2

[31] BraTS 2020 Single and cascaded HNF-Net 91.29 78.75 85.46

[32] BraTS 2020 nnU-Net architecture with augmentation
and modification 88.95 82.03 85.06

[33] BraTS 2020 Multi-encoder architecture with
Categorical dice score 70.24 73.86 88.26

[34] BraTS 2020 Three deep layer aggregation neural
network using previous outputs as input 88.58 79 82.97

[35] BraTS 2020 Modified U-Net architecture with
densely connected blocks 89.12 79.12 84.74

[36] BraTS 2020 Ensemble model with multiple U-Net
networks 91 81 85

[37] BraTS 2020 Lesion encoder framework with DCNN
network 86.87 78.98 80.66

[38] BraTS 2020
Efficient network as an encoder with the

three-dimensional network for
segmentation

80.68 69.59 75.20

[39] BraTS 2019 Multi-step cascaded model with
hierarchical topology 88.60 77.10 81.30

[40] BraTS 2019
3D U-Net based deep learning model
using brain-wise normalization and

patching strategies
85.20 77.80 79.80

[41] BraTS 2019 CNN on high-contrast images with GAN
(Generative Adversarial Network) 91.65 79.26 90.76

[42] BraTS 2019 3D deep learning model for segmentation
and random forest for survival prediction 84 71 74

[43] BraTS 2019
Encoder–decoder-based 3D semantic
segmentation-based architecture with

loss function
89.40 80 83.40

[44] BraTS 2018
Two 3D U-Nets were used. One for

finding tumor location and second for
detecting subtle tumor

84.40 62.10 72.80

[45] BraTS 2018 Modified U-Net architecture based on 2D
deep neural network 86.80 78.30 80.50

[46] BraTS 2018 Modified 3D U-Net architecture 90.80 78.40 84.40

[47] BraTS 2018 Cascaded 2.5D CNN network 90.50 78.60 83.8

[48] BraTS 2018 Ensemble of ten deep learning models
with auto-regularization 88.39 76.64 81.54

Proposed
Model

BraTS 2020
MobileNetV2 with residual blocks as

encoder and upsampling part of U-Net
as decoder

91.35 83.26 88.13

BraTS 2019 91.76 83.19 91.23

BraTS 2018 90.80 79.36 86.75
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In the article [29], Lucas Fidon introduced a 3D U-Net model to segment brain tumors.
The author used the same model as before, but he experimented with non-standard loss
functions such as the Wasserstein loss function. Ranger, a non-standard optimizer, was
adopted for optimization. Ranger is a more generalized version of Adam that works well
with small batches and noisy labels. To find the best results, three deep learning models
were trained using different optimizers. The BraTS 2020 dataset was used to test the model.
The model had dice scores of 88.9%, 84.1%, 81.4% for the whole tumor, tumor core, and
enhanced tumor, respectively, and Hausdorff distances of 6.4, 19.4, and 15.8 for the entire
tumor, tumor core, and enhanced tumor. Another automatic brain tumor segmentation
approach was proposed by Yixin Wang et al. [30] with modality-pairing learning methods.
To extract complex information from several modalities, different layer connections were
used. An average ensemble of all the models was used to obtain results, along with post-
processing methods. The model performed well on the BraTS 2020 dataset, with dice
scores of 89.1%, 84.2%, and 81.6% for the entire tumor, tumor core, and enhanced tumor,
respectively. Haozhe jia et al. [31] used H2NF-Net for the segmentation of brain tumor
from multi-modal MRI images. To separate the distinct parts of the tumor, the author
employed a single, cascaded network and concatenated the pre-predictions to reach the
final segmentation result. BraTS 2020 training and validation datasets were used to train
and evaluate the model. The model attained dice scores of 78.75%, 91.29%, and 85.46% for
the enhanced tumor, whole tumor, and tumor core, respectively, and Hausdorff distances
of 26.57, 4.18, and 4.97 by integrating the single and cascaded networks.

A modified nnU-Net was proposed by [32] for the segmentation of brain tumors
with data augmentation, post-processing, and region-based training. The model showed
improved results with several minor modifications and achieved first place in the BraTS
2020 dataset challenge. The dice scores of the model were 88.95%, 85.06%, and 82.03% for
the whole tumor, tumor core, and enhanced tumor, respectively. Wenbo Zhang et al. [33]
used a multi-encoder framework for brain tumor segmentation. In addition, the author
created a new loss function called categorical loss and assigned various weights to different
segmented regions. The model was evaluated using the BraTS 2020 dataset. The method
achieved promising results with dice scores of 70.24%, 88.26%, and 73.86% for the entire
tumor, tumor core, and enhanced tumor. A deep neural network architecture for brain
tumor segmentation [34] is proposed to cascade three deep learning models. The output
feature map of the previous stage was used in the next step as input. The dataset used for
this study was the publicly available BraTS 2020 dataset. The model achieved dice scores
of 88.58%, 82.97%, and 79% for the whole tumor, core tumor, and enhanced tumor. Another
modified architecture of U-Net was proposed by Parvez Ahmad et al. [35] for automatic
brain tumor segmentation. The author extracts multi-contextual features by using dense
connections between encoder and decoder. In addition, local and global information was
also extracted with residual inception blocks. The author validated the model on the BraTS
2020 dataset. The dice scores for the whole tumor, tumor core, and enhanced tumor were
89.12%, 84.74%, and 79.12%, respectively.

Henry et al. [36] trained multiple U-Net network-like models with stochastic weights
and deep vision on a Multi-modal BraTS 2020 training dataset to make the process auto-
mated and standardized. Two different models were trained separately, and feature maps
from both models were concatenated. The BraTS 2020 test dataset was used for testing
the model that achieved dice scores of 81%, 91%, and 95% for the enhanced tumor, whole
tumor, and tumor core. Carlo Russo [37] used spherical space transformed input data to
extract better features than standard feature extraction methods. The spherical coordinate
transformation was used as pre-processing to improve the accuracy for brain tumor seg-
mentation on the BraTS 2020 dataset. The model achieved dice scores for the whole tumor,
tumor core, and enhanced tumor of 86.87%, 80.66%, and 78.98%. In article [38], the author
trained a two-dimensional network for the three-dimensional segmentation of a brain
tumor. EfficientNet was used as the encoder part that achieved promising results compared
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to previous work with dice scores of 69.59%, 80.86%, and 75.20% for the enhanced tumor,
whole tumor, and tumor core.

A multi-step deep neural network [39] was proposed, which takes the hierarchical
structure of the brain tumor and segments the substructures. Deep supervision along
with data augmentation techniques was used to overcome the gradient vanishing and
overfitting. The model has evaluated the BraTS 2019 dataset with dice scores of 88.6%,
81.3%, 77.1% for the whole tumor, tumor core, and enhanced tumor. Wang et al. [40]
proposed a 3D U-net based deep earning model using brain-wise normalization and a
patching method for brain tumor segmentation. The model was tested on the BraTS 2019
challenge dataset. Dice scores of the enhanced tumor, tumor core and whole tumor are
77.8%, 79.8%, and 85.5%. In [41], a CNN model was trained on high-contrast images to
improve the segmentation results of the sub-regions. A Generative Adversarial Network is
used for synthesizing high-contrast images. The experiments were conducted on the BraTS
2019 dataset, showing that the high-contrast images have more segmentation accuracy. The
dice scores of the synthetic images are 76.65%, 89.65%, and 79.01% for the ET, WT, and
TC, respectively.

An automated three-dimensional [42] deep model for the segmentation of gliomas
in 3D pre-operative MRI scans was proposed—the model segments the tumor and its
subregions. One deep learning model learns the local features of the input data, and
another model extracts the global features from the whole image. The output from both
the models is ensembled to develop a more accurate learning process. The model is trained
on the BraTS 2019 dataset, which gives promising segmentation results. A comparison
of 3D semantic segmentation [43], convolutional neural network, and encoder–decoder
architecture is used to improve the performance of the segmentation results. The method
is evaluated on the BraTS 2019 dataset, which achieved dice scores for the ET, WT, and TC
classes of 82.6%, 88.2%, and 83.7%, respectively. The segmentation results of the testing
dataset were 0.82, 0.72, and 0.70 for the whole tumor, tumor core, and enhanced tumor.

A two-step approach [44] for brain tumor segmentation was proposed using two
different 3D U-net models. First, the tumor is located using 3D U-net, and the second
model segments the detected tumor into sub regions. The segmentation results of the
ET, WT, and TC classes are 62.1, 84.4, and 72.8, respectively. An automated 2D [45] brain
tumor segmentation method is proposed. The network architecture used in this work
was a modified U-net architecture for improving the segmentation results. To address
the class imbalance problem, weighted cross-entropy and the generalized dice score were
used as loss functions. The proposed segmentation system has been tested on the BraTS
2018 dataset, which achieved dice scores of 78.3%, 86.8%, and 80.5%, respectively. Another
modified 3D U-net architecture [46] was introduced with the augmentation technique
to handle MRI input data. The quality of the tumor segmentation was enhanced with
context obtained from models of same network. A cascade of CNN networks [47] for
the segmentation of brain tumors using MRI images was introduced that is a trade-off
between computational cost and model complexity. Experiments with the BraTS dataset
showed that the model achieved dice scores for WT, ET, and TC of 90.5%, 78.6%, and
83.8%, respectively.

A similar model was proposed by AMADEUS et al. [49], which introduced an ap-
proach that can be used in low resource devices such as mobile devices. Two different
models were introduced in which both models used three convolutional layers to decrease
the computational cost. Batch normalization, residual layers, and depthwise separable
convolution layers were used to preserve the features and reduce the number of operations.
These models were tested on ImageNet, CIFAR 10, CIFAR 100, and some other datasets.
The input size of the datasets was 32 × 32 with total trainable parameters of 907,449.
Whereas, in the proposed model, we applied the modified architecture of MobileNetV2
with additional residual blocks as an encoder, which was integrated with the U-Net de-
coder for the segmentation task. The input size is 224 × 224 with a total of 4.6 million
trainable parameters.
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The model proposed in this study used an encoder–decoder architecture for brain
tumor segmentation. The encoder part used modified MobileNetV2 for extracting features
from MRI images. These feature maps were given as input to the decoder part of U-Net [8]
for the segmentation task. The model is evaluated using the BraTS 2020 dataset. The
model contains 4.6M parameters along with a model size of 53MB. Experiments show
that the model achieved the dice coefficient scores for WT, TC, and ET as 91.35%, 88.13%,
and 83.26% on BraTS 2020, 91.76%, 91.23%, and 83.19% on BraTS 2019, 90.80%, 86.75%,
and 79.36% on BraTS 2018 datasets, respectively. Thus, RMU-Net is an improved method
for brain tumor segmentation with fewer computational parameters while maintaining
high accuracy.

4.2. Inference Time of Android Application

All the deep learning models trained in this work are tested in Android application.
The specifications of the mobile device used are an Android 11, MIUI 12, CPU Octa-core,
GPU Adreno 618 with 8GB RAM. The inference times of all the models are compared using
prediction time. The results of the proposed models are shown in Figure 7. The time taken
by the models for a single prediction is represented with the blue bar. The result shows that
the proposed network model gives fast performance in theAndroid application platform
as compared to other models.

Figure 7. Inference time of different models for Android application.

5. Conclusions

In diagnostic procedures, brain tumor segmentation is an essential process. Medical
diagnosis is easy with specific segmentation, but the chances of survival of the subject are
also greatly improved. In this research, an efficient deep learning RMU-Net model for brain
tumor segmentation is proposed, which is inspired by MobileNetV2 and U-net. RMU-Net
is evaluated on the BraTS 2020, BraTS 2019, and BraTS 2018 datasets. Compared with other
deep learning models, RMU-Net has fewer parameters and achieved the dice coefficient
scores for WT, TC, and ET as 91.35%, 88.13%, and 83.26% on BraTS 2020, 91.76%, 91.23%,
and 83.19% on BraTS 2019, 90.80%, 86.75%, and 79.36% on BraTS 2018 datasets, respectively.
However, RMU-Net’s training requires a large amount of brain tumor manually annotated
data; therefore, developing a weak supervised and unsupervised brain tumor segmentation
method will be the direction of future research.
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