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Abstract: In recent years, the rapid improvement in computing facilities combined with that achieved
in algorithms and the immense amount of available data led to a great interest in machine learning
(ML), which is a subset of artificial intelligence. Nowadays, the ML technique is used mostly in all
applications for various purposes, whereby ML will be possible to learn from data, predict, identify
patterns, and make decisions. In this regard, the ML was successfully used to predict the oxygen
uptake during physical activity without the need for complicated procedures used in the direct
measurement. Accordingly, in the present work, the state-of-art and recent advances related to the
oxygen uptake prediction using ML were presented. Various exercise and non-exercise predictive
models also were discussed.
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1. Introduction

During everyday life activities and exercises, oxygen is consumed; and consumption
increases by increasing the intensity of these activities and exercises, hereafter called oxygen
uptake (

.
VO2) [1]. When the

.
VO2 reaches a maximum point (max.

.
VO2), the body will have

to spend other energy resources which work under limited amount of oxygen, such as
anaerobic glycolysis to transform glucose to lactate. Even the rates, by which the ATP
(adenosine triphosphate) is synthesized using the anaerobic system, are higher than those
achieved by the aerobic path, the capacity of the anaerobic system is much less, leading
to a rapid fatigue. Here, there will be a great interest on the determination of max.

.
VO2 in

order to avoid the rapid fatigue and other risky problems [2].
Usually, direct max.

.
VO2 measurements can be conducted during a physical activity

using various techniques, like metabolic gas analyzers, and those can be portable devices
or standard laboratory systems. The physical activity to measure the max.

.
VO2 can be

GXT (graded exercise test) [3]. Up to this end, it is to say that using the direct methods
to measure the

.
VO2 is usually hindered by various factors, like the complexity of such

procedures and the high cost. Developing less complicated and cheap methods, through
which accurate values

.
VO2 can be determined, are needed. Indeed, many works were

reported on the use of data mining and machine learning (ML) techniques to develop
.

VO2 predictive models [4]. Through these models, the
.

VO2 can be predicted (indirect
way) with less cost, efforts, and complexity, that might be presented in the direct

.
VO2

measurements. The ML models are usually built based on features influencing the
.

VO2
using ML algorithms.

In the present work, state-of-art and future trends of the prediction of the
.

VO2 aided
by ML will be discussed in detail using results reported in other studies between 2005–2020.
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The work is arranged to introduce (I) the main concept of the oxygen uptake, (II) oxygen
uptake measurements and kinetics, and finally (III) to present the application of the oxygen
uptake measurements in sport science. In terms of

.
VO2 prediction, (I) the application of

ML in sport science, and (II) the ML-based models are discussed in detail.

2. Oxygen Uptake (
.

VO2)

While moving or doing any activity during our everyday life, energy will be needed,
and this is provided through the oxygen supplied to the mitochondria presented in muscles
(aerobic energy system (AES) [1]. Due to the very limited non-oxidative energy stores
in muscles and to transit from rest to activity, there must be an arranged response by
pulmonary, cardiovascular, and muscular systems. This response enhances the flux of
oxygen from the atmosphere to the muscle mitochondria, where the energy molecules
(ATP) are aerobically produced. Accordingly, an athlete’s capability to perform exercises
and physical activities will be related to how quickly this athlete can turn on such a process
(AES). Here, the utilization of mitochondrial oxygen in muscles is more significant to
control the total process of

.
VO2 (shown in Figure 1) as compared to the oxygen upstream

in lungs. Up to this end, the oxygen uptake concept is dealing with the amount of oxygen
consumed during various activities, and this can be compared using the maximal oxygen
uptake (max.

.
VO2). In addition, the response of

.
VO2 to exercises and activities is known as

the oxygen uptake kinetics. In the following sections, accordingly, the methods used in the
.

VO2 kinetics, maximal oxygen uptake, submaximal, (which is equal to or less than 85% of
maximal), and its applications in sport science will be introduced.
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2.1. Oxygen Uptake Measurements and Kinetics

Usually,
.

VO2 is directly measured by determining the amount of oxygen in both the
inspired and expired air during an activity. This is carried out based on the gold standard,
where direct measurement of gas exchange during a graded activity is conducted using
laboratory-based indirect calorimetry [5]. The selection of graded activity for this test is
usually dependent on the type of sport in which the

.
VO2 measurement is needed. For

example, in soccer, the test of the treadmill with speed-controlled protocol is used rather
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than the incline based one. Based on this procedure used in the direct method, the value of
.

VO2 can be calculated at a certain time (t) using the following equation [1]:

.
VO2 =

.
VI × FIO2 −

.
VE × FEO2 =

.
VO2I −

.
VO2E (1)

where,
.

VI and
.

VE are the volume per time (L/min) of the inspired and expired air, respec-
tively. FIO2 and FEO2 are the fraction of oxygen in the inspired and expired air, respectively.
In the earlier stages of any activity such as running, swimming, or cycling, the

.
VO2 in-

creases sharply due to the great demand for oxygen in the lungs at these stages (pulmonary
.

VO2), where the value of
.

VO2 might jump from ~0.25–1.0 L/min in the unloaded condition
to more than ~2.0–6.0 L/min within seconds or minutes of the loading. This depends on
the type of activity, i.e., normal, heavy, or severe (Figure 2a). Following this, a steady-state
stage might be reached, leading to a bit stable value of

.
VO2 and through this the max.

.
VO2

can be determined. Accordingly, the curve of the
.

VO2 with time can be divided into three
stages, by which the physical status of an individual can be examined. Those stages are (I)
gas exchange threshold (GET), (II) critical power (CP), and (III) steady-state (SS), as shown
in Figure 2b. For example, aged individuals or those with pulmonary disease may take
longer to reach the SS stage, leading to premature fatigue. For moderate activity where the
SS stage is reachable, an equation to represent the

.
VO2 changes with the time of (

.
VO2 (t))

can be given as follows:

.
VO2 (t) =

.
VO2ss

(
1 − e−kt

)
=

.
VO2ss

(
1 − e−

t
τ

)
(2)

where,
.

VO2ss is the oxygen uptake at the steady-state stage, k is the rate constant, and τ is
the time constant.
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In addition to this direct method used to determine the
.

VO2, less accurate indirect
methods can also be used for the same purpose. For example, the max.

.
VO2 is determined

using an equation built based on a multistage 20 m shuttle run test [6], run 20 m back and
forth across a marked track keeping time. In this test, individuals run two-way 20 m with
an initial speed of 8.5 Km/h, then the speed is increased every minute by 0.5 Km/h until
the individual is no longer able to follow the speed increment (as shown in Figure 3). Here,
the number of this stage is used as an index of max.

.
VO2. After measuring the max.

.
VO2 for

each condition, the equation was made as follows:

max.
.

VO2 = 31.025 + 3.238X1 − 3.248X2 + 0.1536X1X2 (3)
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where X1 and X2 are the speed and age of an individual, respectively. Another simple
method for determining the

.
VO2 indirectly is by using Wasserman/Hansen (WH) model [7].

In this model, the max.
.

VO2 is calculated based on the age, weight (W) and height (H) of
the subject. In spite of their simplicity, the results of these methods were found to be less
accurate as compared to those measured using the direct method.
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2.2. Oxygen Uptake in Sport Science Applications

In general, the
.

VO2 measurements can effectively contribute to the evaluation of
athlete capabilities and performance in various kinds of sport. For example, during the
90 min of the soccer match, the athlete performance is mainly dependent on the aerobic
metabolism, which is evaluated using the

.
VO2 measurements. The

.
VO2 evaluation was

used to study the skill-based maximal intensity interval training in female futsal players
and this training mode’s effect on aerobic and anaerobic performance [8].

3. How Machine Learning Avails of Sports Science?

In recent years, the rapid improvement in computing facilities combined with al-
gorithms and the significant amount of available data led to a great interest in machine
learning (ML). In this technique, a model to relate between a property (performance) and
various parameters (features) that influence this property can be built through feeding
these data (property and features) to the machine and training it to learn the correlation
among these data [9]. By this model, not only unexplored properties can be predicted, but
also how various features influence the property and whether such features are enough to
describe the property can be determined. ML has shown a high potential in various fields,
including medicine, biology, chemistry, and physics [10,11], with a long history in those
fields. For example, some ML works were conducted for interpreting cardiopulmonary
exercise tests [12]. In some other areas, this technique has come forward very recently, and
among those, ML-supported sport science issues are gaining much interest.

In this regard, ML algorithms have been applied for predicting the performance of
an athlete under suggested conditions without real experiments [11]. In addition, various
factors that might influence the performance in a specific sport or activity can be predicted
using the ML technique. For example, in a very recently reported work, the relationship
between both age and body weight on the performance of powerlifters have been investi-
gated using an ML algorithm (kernel extreme learning machine (KELM)) [12]. In this study,
the data of 1700 male powerlifters, including age, body weight, and performance, was
collected from a sports website (Kaggle website). The data were containing information
related to various international powerlifting competitions (1972–2017). The performance
of powerlifters was presented in terms of the best squat. According to the study results,
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the best squat can be predicted with less than 15% error (R2 = 0.86) based on the age and
the bodyweight of the powerlifter. The high performance in this sport was achievable in
age range between 20–40 years, which became more significant by increasing body weight
(Figure 4).

Up to this end, considering the importance of
.

VO2 measurements in sport science,
difficulties related to the direct method of

.
VO2 determination, and the less accuracy of

indirect methods, one can think about the investment of the high potentiality of ML tech-
nique for predicting

.
VO2 without the need for complicated procedures and less certainty of

direct and indirect methods, respectively. In this regard, and since 2009, many works have
been introduced to address the ML guided prediction of

.
VO2. For this purpose, various

kinds of ML algorithms have been used, and those are mostly multiple linear regression
(MLR) [13], multilayer perceptron (MLP) [14], and support vector machine (SVM) [15],
showing an error range between 5 and 37% (R2 = 0.63–0.95). This wide range of results
is mainly explained based on the different conditions used in these works, such as the
number of cases in the study, the number of features employed to train the model, the
type of algorithm, and data characteristics. Accordingly, in the following sections, the
various works reported on this issue are to be presented, and thus, the factors influencing
the reliability of results will be drawn.
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4. Oxygen Uptake Prediction Based on Machine Learning Algorithms

Recently, the
.

VO2 prediction-based on ML technique has received a lot of attention due
to its reliability and accurate values obtained using such a technique. Furthermore, most
of the works reported on this topic were based on the data that was collected from either
exercise or non-exercise tests. In the former, several features, exercise tests, such as treadmill
running, treadmill jogging, treadmill walking, perceptually regulated three minute walk
distance (3MWD), shuttle running, and swimming, were conducted. In the latter, rather
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than performing any exercise, questions related to the expected physical activity are given
to every subject contributed to the study. The collected answers, accordingly, are used as
inputs together with

.
VO2 measured by the direct way to build the model. Hereafter the

two procedures used to construct the dataset used for building the prediction model will
be discussed separately, and the procedures and reported results from discussed works are
presented in Table A1 of Appendix A.

4.1. Exercise-Based Models

Several works were conducted to establish accurate models that can be employed to
predict the

.
VO2 using dataset prepared by exercise tests. In those works, both max.

.
VO2

and submax.
.

VO2 were targeted. Under some conditions, getting the peak of oxygen uptake
is quite difficult, especially for older adults, and here the use of submax.

.
VO2 instead of

max.
.

VO2 becomes less expensive, where no special medical care would be needed. In
addition, some works were focused on the direct measurements and prediction of the
oxygen uptake during the activity using wearable sensors. Hereafter the various methods,
related experiments, and reached results will be introduced and compared.

One of the earlier works reported on the prediction of
.

VO2 using ML was done by
Swank et al. [16]. In this work, the submax.

.
VO2 values were predicted based on data

collected from 37 subjects (19 F + 18 M) upon treadmill walking tests. The features used
in this work were body weight (BW), body weight index (BWI), age, maximum heart rate
(max. HR), and respiratory exchange ratio (RER). The model built in this work showed
a good predictability with R2 of 0.89, as shown in Figure 5. In another work reported by
Su et al. [17], the oxygen uptake was dynamically predicted under free-living conditions
using portable wireless sensors. For this purpose, six males (untrained) with average age,
body weight, and height of 28 ± 5.5 years, 70 ± 11 Kg, and 176 ± 5 cm, respectively, were
subjected to a treadmill walking test. The male subjects were asked to walk at various
speeds (2, 3, 4, 5, 6, and 7 km/h) for 5 min in each. The dataset used for training and
later for testing the built model consisted of

.
VO2, triaxial accelerometers (TA) and heart

rate (HR) and TA and HR were used as features in the model and were directly measured
during the walking test using portable devices. The

.
VO2 values, in turn, were determined

during the test using a gas analyzer (MOXUS Metabolic Cart). The collected dataset
was used to build the model using the support vector regression (SVR) algorithm, and,
accordingly, a direct relationship between the features (TA and HR) and property (

.
VO2)

was established. Using such an equation, the oxygen uptake was predictable based on
TA and HR direct measurements using the portable sensors. In addition to the suitable
and adequate research facilities, selecting the features to be used in the model is very
important to get enough accuracy in the predictive model. In this regard, various features
were employed in the works reported on the

.
VO2 prediction using ML methods, such as

age, sex, weight, etc. These features, initially, are chosen based on the type of exercise
and the related measurements. Then they can be subjected to a feature-selection process
in which the non-effective features are eliminated from the final predictive model. For
example, in work reported by Chatterjee et al. [18], the

.
VO2 predictive model was built

based on the data collected from the direct measurements of max.
.

VO2 conducted after a
20 m multi-stage shuttle run test done by 40 female subjects. In this work, just the maximal
speed during the shuttle run (X) was considered as a feature. This test involves continuous
running between two lines 20 m apart in time to recorded beeps. The speed at the start is
quite slow. The subject continues running between the two lines, turning when signaled
by the recorded beeps. If the line is reached before the beep sounds, the subject must wait
until the beep sounds before continuing. The dataset consisting of the max.

.
VO2 (property)

and X (feature) was employed to learn the machine, where the multiple linear regression
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(MLR) algorithm was used. The results showed a linear relation between max.
.

VO2 and X
with an R2 equal to 0.94:

max.
.

VO2 = −15.207 + 4.806X (4)
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Considering the type of exercise used in this study, the obtained equation might be
useless in other exercise types, like swimming or cycling. In addition, additional features,
such as weight and age, should be considered in this equation. The 20 m shuttle run
test was also carried out by another group to build a predictive model for estimating
the max.

.
VO2 [19]. In this work, the test was done on 84 stationary male students from

various universities in India, and the features employed to build the model were age (A),
body weight (BW), body height (BH), and speed (X). The features and max.

.
VO2 values

measured directly were employed to train the model using the MLR algorithm. Three
different predictive models were built presenting the correlation between max.

.
VO2 and

the A and X, BW and X, and BH and X, as shown the following equations:

max.
.

VO2 = 3.93X − 0.027A − 5.17
max.

.
VO2 = 3.96X − 0.035BW − 4.097

max.
.

VO2 = 4.14X − 0.089BH + 6.704

(5)

Those models showed reasonable accuracy with R2 values equal to 0.87, 0.88, and 0.88,
respectively. Even those equations presented an easy way to estimate

.
VO2, more features

are still missing from the equations. In addition, a general equation, including all features,
would be needed. In this regard, Maher et al. [20] used a more comprehensive range of
subjects, where the two genders (244) with ages between 10–16 years were included in the
study. In addition, the test of progressive aerobic cardiovascular endurance run (PACER)
20 m multistage shuttle run was carried out. Accordingly, the features used were PACER
(the number of completed laps), gender (0 for female and 1 for male), age, and the body
mass index (BMI), which is the measure of body fat based on height and weight. In this
study, a cross-validation process was used to build the model by the MLR algorithm. A
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more general predictive equation was obtained to estimate the
.

VO2 based on sex, age, BWI,
and PACER, as follow:

max.
.

VO2 = 41.76799 + 0.49261PACER − 0.0029PACER2 − 0.6163PMI
+0.34787(gender × age)

(6)

Through the same algorithm (MLR) and using more features, a predictive
.

VO2 model
was also reached in work reported by Akay et al. [21]. In their work, the authors used a new
set of features and age, sex, and BMI, and those features are related to the body fat percent-
age (BF%) and heart rate (HR). In addition, other features related to the conducted treadmill
tests were considered, those are respiratory exchange ratio (RER), self-reported rating of
perceived exertion (RPE), and time to exhaustion (tex) during the test. Accordingly, a model
with higher predictability as compared to those reported in other works was reached in this
study, where the various types of features were included in the model to get the predictive
equation. In addition to the feature selection and training data accuracy, the employed
algorithm is of importance and was needed to be considered carefully. In this regard, Akay
et al. [21] applied the same conditions used in the MLR algorithm in other algorithms,
including multilayer perceptron (MLP), support vector machine (SVM), and generalized
regression neural network (GRNN). These algorithms successfully led to building various
models based on the data collected from 211 + 228 subjects (male + females) with an age
range between 20–79 years using a treadmill test. Using 10-fold cross-validations in all
algorithms, the MLP algorithm’s model was the most effective, where R and SEE values of
0.91 and 3.73 were recorded, respectively.

To reduce the predictive model’s complexity, fewer features needed to be included in
the predictive model’s training and testing. Here, the collected data should be subjected
to a processing step. In such a process, the outliers (less accurate data) and the less
important features (the features that do not affect the performance) are removed from the
training dataset. By the feature selection process, faster training of the ML algorithm can
be achieved, the predictive model becomes easier to interpret, and finally, this process
can reduce overfitting. The feature selection to find the most effective features is done
using various ways, including filter methods, wrapper methods, and embedded methods.
In the filter, methods include multiple procedures, such as Pearson’s correlation, linear
discriminant analysis, Chi-square, and Relief-F. The first use of the feature selection for the
prediction of

.
VO2 was reported by Akay el al., who used Relief-F as a feature selector, and

then the feature-reduced dataset was trained using the SVM algorithm [21]. The dataset
used in this work was collected under the condition described in the previous work. The
full dataset, including seven features (age, sex, BMI, max. HR, RER, RPE, and tex) and the
measured

.
VO2 was subjected to the feature selection process using the Relief-F method,

and as a result, two features were excluded from a further processing—RER and RPE.
The Relief-F-SVM based model showed reasonable accuracy with R and SEE values of
0.9 and 4.58 mL·Kg−1·min−1, respectively. This result was compared with that obtained
using the MLR algorithm and it was found that the Relief-F-MLR based model had less
predictability, where values of 0.88 and 4.77 mL·Kg−1·min−1 were determined for R and
SEE, respectively, in the Relief-F-MLR model. Up to this end, on can note that, the quality of
the final predictive exercise-based model can be dependent on a set of factors, this involves:
the characteristics of the sample (number of subjects and the gender), the number of
included features, feature selection procedures, and employed algorithm. In between these
efforts to develop such a predictive model for indirect determination of

.
VO2 and up to 2015,

several works were also done [4]. Different types of features, algorithms, and procedures
were used in these works, and the results showed a wide range of predictabilities.

Later on, and starting from 2016, with more development in the fields of wearable
sensors and machine learning algorithms,

.
VO2 predictive models have reached. Beltrame

et al. [22] used artificial neural network (ANN) analysis and wearable sensors to build a
model that can predict the kinetics of oxygen uptake. In this work, 5 + 5 healthy young
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subjects (male + female) were included in the study, and treadmill walking tests were
conducted. The direct measurements of the

.
VO2 and HR were carried out during the

test, and the counterparts’ values were recorded with time. Accordingly, the features
used in the work were sex, body mass, speed, grade, time of exercise (time on), time to
recover (time off), and HR. The effect of sample size on the predictability of the built
model was also considered. The results showed that such experiments lead to an accurate
model, where R values of 0.94 and 0.97 were recorded for the sample size of n = 12,250
and n = 86,522, respectively. In another work reported by Borror et al. [23], the ANN was
also used to analyze the data collected from 12 adult males during cycling tests. The
subjects (age: 21.1 ± 2.5 yrs; weight: 82.1 ± 11.7 kg; height: 179.3 ± 8.9 cm) were asked
to perform a 50 min bout of cycling on the cycle ergometer, and the power output,

.
VO2

and HR were directly measured. The features included in this work were power output,
cadence, body mass, HR, and time derivative of HR (dHR/dt), as shown in Figure 6. The
ANN-based predictive model was found for each subject, and those models showed a
promising performance to predict the

.
VO2 during cycling (Figure 6).
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.

VO2 predictive model as measured by R2 (a) and
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Very recently, a different type of experimentation was reported by Shandhi et al. [24].
In this work, the authors used the cardio-electromechanical and environmental sensing
measurements to predict the

.
VO2. Singles of seismocardiogram (SCG), electrocardiogram

(ECG), and atmospheric pressure (AP) were recorded using a low-cost wearable device
during indoor treadmill exercise (controlled conditions) and outdoor walking exercise
(uncontrolled conditions). The

.
VO2 was measured directly using the COSMED K5 wearable

metabolic system. The recorded singles were analyzed to extract the features to be used
in the predictive model. Figure 7 shows the summery of this work and the obtained
regression model. The results showed that the built based on the cardio-electromechanical
and environmental sensing measurements done, the low-cost wearable sensors can be
used effectively to estimate

.
VO2 for various applications. In another work reported by

Beltrame et al. [25], wearable sensors, including hip accelerometer, ECG, and respiration
band, were used. The singles recorded using these sensors were used to extract various
features employed in training and testing the model. As shown in Figure 8, 17 healthy,
active male adults were contributed to this study, where a treadmill walking test was
done. The extracted features, including heart rate (HR), minute ventilation (VE), breathing
frequency (BF), total hip acceleration (HAcc), and walking cadence (CAD) and the directly
measured

.
VO2 were trained using the random forest algorithm (RF). The results from two

different sample sizes (n = 12,480 and n = 20,868) showed reasonable predictability using
the bigger sample with R = 0.87.
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4.2. Non-Exercise-Based and Hybrid Models

The non-exercise-based features were also employed to build the
.

VO2 predictive
models. This was conducted in order to avoid the completed procedures related to the data
collection and processing used in the exercise-based predictive models. Accordingly, these
can provide an efficient and practical way to estimate the

.
VO2 with no need to carry out the

costly experimentation or tiring exercise tests. In this regard, questionnaires were used to
collect the data and arrange the dataset for training and test the predictive model. Several
types of questionnaires were used for this purpose, such as physical activity readiness
(PAR) [26] and perceived functional ability (PFA) [27]. Based on the PFA questionnaire,
for example, the contributed subjects are usually asked to report their ability to sustain
physical activity, such as walking, jogging, or running.

At the very beginning, the non-exercise prediction method was used in work reported
by Bradshaw et al. [28]. In this work, the MLR algorithm was employed to train the
data collected from 100 male and female adults (18–65 years) using the PFA and PAR
questionnaires (features) and the GXT method (

.
VO2). The features used to build these

models were sex, age, BMI, and questionnaires (PFA and PAR). An MLR based model was
obtained in this work as follow:

max.
.

VO2 = 48.0730 + (6.1779 × gender)− (0.2463 × age)− (0.6186 × BMI)+
(0.7115 × PFA) + (0.6709 × PAR)

(7)

This model resulted in reasonable predictability with R and SEE values equal to 0.91
and 3.63 mL·kg−1·min−1. In another work [29], SVM and multilayer feedforward neural
networks (MFFNN) were employed to train the data collected using the PFA and PAR
questionnaires (features) and the GXT method (

.
VO2). The results reported in this work

showed that the SVM model gave a higher R-value (0.93) as compared to the MFFNN model,
whereas the latter showed a lower SEE value (3.23 mL·kg−1·min−1). Later on, several
works were presented to build non-exercise-based ML models using various algorithms
like MLR [30]. In addition to the PFA and PAR, other questionnaires were also used, like
leisure-time physical activity (LPA) [31] and work-related physical activity (WPA) [32].
Most of these works showed an acceptable range of predictabilities. Recently, Henriques
et al. [33] employed the fitness registry and the importance of exercise (FRIEND), which is
a national database, to build the predictive model using the generalized regression neural
network (GRNN) technique. Using this base, the data including; age, height, weight, HR,
systolic blood pressure (SBP), and diastolic blood pressure (DBP), were obtained for 65,000
subjects aged between 20 and 79. The max.

.
VO2 values predicted by the GRNN-based

model were found to be more accurate as compared to those determined by the WH model
(Wasserman/Hansen model) in which gender, age, weight and height are only considered.
In addition to the previous features, the HR, SBP and DBP were included GRNN-based
model, leading to the higher accuracy.

Recently, models based on both exercise and non-exercise data were built to predict
the

.
VO2, hereafter those are indicated as hybrid models. For example, in work carried out

by Nielson et al. [34], features obtained from submaximal cycle ergometry test (exercise),
maximal treadmill graded test (exercise), and PFA questioner (non-exercise) were used to
build the predictive

.
VO2 model. The

.
VO2 of 105 subjects (52 female and 53 male) included

in the work measured after completing the tests, wherein the 1st test, a steady-state heart
rate (HRss) equal to 70% of the age-predicted maximum heart rate (220-age) should be
achieved. In contrast, in the second test, the subjects should exercise volitional fatigue,
and the work rate (WR) is accordingly estimated. Based on the carried out tests and
questionnaire, gender, body mass (BM), PFA, WR, and HRss were the features that were
used in the model. The collected data (features and

.
VO2) were employed to train and
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test the model using the MLR algorithm. The model equation obtained in this work is
shown below:

max.
.

VO2 = 54.513 + 9.752 (gender)− 0.297 (BM) + 0.739 (PFA)
+0.77 (WR)− 0.72 (HRss)

(8)

The results showed that the hybrid predictive model had enough accuracy, which,
somehow, was better than those obtained by either exercise-based or non-exercise-based
models, where R and SEE values of 0.90 and 3.56 mL·kg−1·min−1 were recorded for
this model, respectively. Recently, exercise (submaximal and maximal) and non-exercise
features were employed to build a predictive

.
VO2 model using SVM, MLP, and TB al-

gorithms [15]. In this work, prior to the model training and testing, the features were
processed using Relief-F selector to reveal the distinct predictors of

.
VO2. The exercise-

based features were obtained using a treadmill test. The submaximal heart rate higher
than 70% of the age-predicted maximum heart rate (220-age) (SM-HR), submaximal exer-
cise stage (SM-stage), submaximal ending speed (SM-ES), maximal heart rate (MX-HR),
maximal perceived exertion (MX-PRE), and maximal respiratory exchange (MX-RER) were
collected from the test. These features (submaximal and maximal) together with the physi-
ological variables (weight, age, etc.) and the results of the questionnaires went through
the feature selection process followed by training and testing using the various algorithms
used in work (SVM, MLR, and TB). The selection process showed the PFA, PAR, SM-ES,
SM-stage, SM-HR, gender, age, weight, and height are the promising features (high Relief-F
score) to be employed in the predictive model. The train and testing process revealed that
the SVM-based model showed high predictability, where the values of R and RMSE (root
mean square error) were found to be 0.93 and 3.14, respectively. Based on these results, the
.

VO2 SVM model can be estimated using the physiological, questionnaire, and submaximal
features, and accordingly, the maximal tests and related features will be unrequired.

5. The Latest Update on the Oxygen Uptake Predictions Guided by ML

Very recently, several works were conducted to investigate the application of machine
learning techniques in the field of oxygen uptake predication [35–38]. In those works, new
techniques and procedures were employed to enhance the predictability of built models.
Jensen et al. [36] used a maximal rowing ergometer protocol to generate descriptors, which
are used to train the max.

.
VO2 model. In this regard, data of maximal power output (MPO)

in an individualized 7× 2 min incremental (INCR) test and average power in a 2k (W2k)
rowing ergometer test were obtained from 34 male club rowers (18–30 year), and then,
the max.

.
VO2 values were measured for the rowers. The obtained data was used to train

the model using a linear regressor, and very simple predictive models were final obtained
as follows:

max.
.

VO2 = 11.49 × MPO + 810 (9)

max.
.

VO2 = 10.96 × W2k + 1168 (10)

The relative errors recorded for these models were 3.1% and 3.6%, respectively.
In another work done by Deka et al. [37], the max.

.
VO2 predication was conducted

on heart failure patients (119 subjects) using a 6 min walk test (6MWT), where max.
.

VO2
determined through a cardiopulmonary exercise (CPX) recorded for the patients together
with their distance scores from the 6 MWT (6MWD).

The 6 MWT was also used in the max.
.

VO2 predication experiments on young healthy
adults (university students aged 21 ± 1 years), as conducted by Liu et al. [38], and to
improve the quality of the predictive model, cardiovascular indices derived by impedance
cardiography (ICG) during the test (6MWT) were included in the learning process. Two
6MWTs and one CPX at the end of the 6MWTs were conducted, and during these tests,
HR, SV, and cardiac output (CO) were measured by the ICG. To show the importance of
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the cardiovascular indices, the predictive model was built with or without the indices as
descriptors. A liner regressor was used in the learning process, and two different predictive
models were built by the learning process as follows:

max.
.

VO2 = 0.076 × 6MWD − 19.248 (11)

max.
.

VO2 = 100.297 + 0.019 × 6MWD − 0.598 × HR6MWT
−1.236 × SV6MWT + 8.67 × CO6MWT

(12)

The results showed that the model, in which the cardiovascular indices were employed
as descriptors, showed a better performance (R2 = 0.86) as compared to that without
the indices (R2 = 0.54). It is clearly seen that in the works introduced in this section,
liner regressions were mainly employed, and accordingly, simple predictive models were
built. More advanced and complex algorithms were also employed also to reach high
performance predictive models. In this regard, and recently, Zignoli et al. [35] employed
a recurrent neural network (RNN) to build a

.
VO2 model using cardiovascular features.

Using the RNN, a smaller number of cases can be needed to build an accurate model
without complicated procedures to prepare the training and testing datasets.

6. Future Trends

Further research on the ML guided prediction of
.

VO2 is still needed to build a more
accurate model with high predictability compared to those already reached up to now.
To achieve this target, one can think in two different directions. In the first direction,
the data quality and size should be considered when preparing the training and testing
dataset. In this regard, more features influencing the

.
VO2 kinetic should be measured

or determined accurately and then should be included in the dataset. For example, the
sport type of the subject contributed in the study can be included as a feature to build
the model, and accordingly, how does the body construction of athletes influence their
.

VO2 kinetic. On the other hand, the second direction should be focused on using more
advanced learning techniques.

7. Conclusions

In the present work, the various concepts related to the oxygen uptake (
.

VO2) and
the application of machine learning to predict the

.
VO2 during physical activities were

reviewed. Using the ML algorithms, successful predictive models were mostly built to
determine the values of

.
VO2 with no need for the completed procedures associated with

the direct ways. Those models are usually built using data obtained from either exercise,
non-exercise, or hybrid procedures. According to the results obtained in various works
reported on the prediction of the

.
VO2 using the ML technique, one can find that reasonable

predictability can be reached considering several points. (I) Features employed in the model
construction process should cover a wide range, and thus, all parameters that influence
the targeted behavior or property can be considered. (II) Data pre-processing in order to
select promising features (predictors) is needed. (III) The selection of ML algorithms that
can give the best combination of higher R and smaller SEE, and in this regard, the results
of various ML algorithms such as SVM and linear regressions should be investigated and
compared with each other to get the optimal predictability.
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Appendix A

Table A1. The procedures and reported results from discussed works.

Ref. Type Algorithm
Metric

R2 R SE
(mL·Kg−1·min−1)

EMES
(mL·Kg−1·min−1)2

RMSE
(mL·Kg−1·min−1)

[16] Exercise Multiple linear
regression 0.89 4.56

[17] Exercise Support vector machine 4.2

[19] Exercise Multiple linear
regression 0.88

[20] Exercise Multiple linear
regression 6.43

[21] Exercise Multiple linear
regression 0.91 3.73

[21] Exercise Support vector machine 0.88 4.82

[21] Exercise Generalized regression
neural network 0.79 5.39

[22] Exercise Artificial neural network 0.94

[23] Exercise Artificial neural network 0.90

[24] Exercise Ensemble regression 0.64 4.3

[25] Exercise Random forest 0.87

[28] Non-exercise Multiple linear
regression 0.91 3.63

[29] Non-exercise Support vector machine 0.93 3.55

[29] Non-exercise Multilayer feedforward
neural networks 0.90 3.23

[34] Non-exercise Multiple linear
regression 0.90 3.56

[15] Hybrid Support vector machine 0.94 2.97

[15] Hybrid Multiple linear
regression 0.93 3.18

[15] Hybrid Tree boost 0.92 3.42
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