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Abstract: Applications in the Internet of Things (IoT) context continuously generate large amounts
of data. The data must be processed and monitored to allow rapid decision making. However,
the wireless connection that links such devices to remote servers can lead to data loss. Thus, new
forms of a connection must be explored to ensure the system’s availability and reliability as a whole.
Unmanned aerial vehicles (UAVs) are becoming increasingly empowered in terms of processing
power and autonomy. UAVs can be used as a bridge between IoT devices and remote servers, such as
edge or cloud computing. UAVs can collect data from mobile devices and process them, if possible.
If there is no processing power in the UAV, the data are sent and processed on servers at the edge
or in the cloud. Data offloading throughout UAVs is a reality today, but one with many challenges,
mainly due to unavailability constraints. This work proposes stochastic Petri net (SPN) models and
reliability block diagrams (RBDs) to evaluate a distributed architecture, with UAVs focusing on the
system’s availability and reliability. Among the various existing methodologies, stochastic Petri nets
(SPN) provide models that represent complex systems with different characteristics. UAVs are used
to route data from IoT devices to the edge or the cloud through a base station. The base station
receives data from UAVs and retransmits them to the cloud. The data are processed in the cloud, and
the responses are returned to the IoT devices. A sensitivity analysis through Design of Experiments
(DoE) showed key points of improvement for the base model, which was enhanced. A numerical
analysis indicated the components with the most significant impact on availability. For example,
the cloud proved to be a very relevant component for the availability of the architecture. The final
results could prove the effectiveness of improving the base model. The present work can help system
architects develop distributed architectures with more optimized UAVs and low evaluation costs.

Keywords: offloading; UAV; cloud; edge; availability; reliability; stochastic Petri net

1. Introduction

The number of applications for mobile devices has been increasing rapidly. These
applications include video streaming, augmented reality applications, audio/video con-
ferences, collaborative editing, etc. [1]. These applications usually require a lot of com-
putational resources, but run on devices with limited resources. Alternatively, instead of
performing such a task on a mobile device, a request can be made for the execution to
take place on a remote computer; this is called offloading [2]. According to the Statista (a
German online portal for statistics), the number of mobile devices will be around 17.72 bil-
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lion in 2024 [3]. However, mobile devices are often located in areas with a poor internet
connection. New network architectures must be devised to mitigate this problem.

Recently, a new architectural possibility for extending resources using unmanned
aerial vehicles (UAVs) has emerged [4–8]. UAVs can collect data from mobile devices and
process them, if possible. If there is no processing power in the UAV, the data are sent
and processed on servers at the edge or in the cloud. UAVs have some advantages, such
as easy implementation and low acquisition cost [8]. Implementing universal coverage
for the collection, dissemination, and retransmission of wireless data opens up a range of
application possibilities for various problems. UAVs can act on this problem as mobile
infrastructures functioning as a bridge between mobile devices and terrestrial processing
structures. Mobile devices can include sensors and actuators from the Internet of Things
(IoT) context. IoT applications are often of an emergency nature, requiring high availability
and low latency. Despite the advantages of using UAVs for offloading, these systems
can face failures at several points, thus compromising different contexts’ monitoring.
Thus, it becomes necessary to evaluate these systems’ availability with UAVs, even before
implementing a real infrastructure.

Among the various existing methodologies, stochastic Petri nets (SPN) provide mod-
els that represent complex systems with different characteristics. SPNs can represent
parallelism, concurrency, and simultaneity, and can be used to evaluate various types
of systems [9–11]. In the context of UAVs, some related works have already used Petri
nets. Lundell et al. [12] adopted Fuzzy Petri nets to evaluate UAV decision making.
Gonçalves et al. [13] assessed vehicle safety monitoring issues, using Petri nets. More
recently, Mehta et al. [14] proposed colored Petri nets to simulate communication between
multiple UAVs. However, they did not explore edge or cloud computing, and did not
investigate data offloading issues in the context of UAVs.

This paper proposes stochastic Petri nets (SPN) models to assess the dependability of
an architecture composed of UAVs and edge and cloud devices, which work together to
perform data offloading. Dependability is a metric that encompasses other metrics [15]. A
system’s dependability can be understood as its ability to deliver a specified functionality
that can be justifiably trusted [16]. In this work, two metrics are adopted: availability and
system reliability. Therefore, the main contributions of this paper are as follows:

• Two SPN models (base and extended), which represent and evaluate an architecture
based on IoT sensors, UAVs and remote resources, aided by the cloud. The models are
highly configurable, as it is possible to calibrate ten timed transitions in the extended
model. The models enable system designers to evaluate the studied system according
to availability and reliability aspects.

• A sensitivity analysis, which identify the critical points of the architecture, as well as
ways to improve it.

• Case studies that provide a practical guide for analyzing the dependability of the pro-
posed architecture. The first case study investigates distinct scenarios for evaluating
availability, and the second one focuses on reliability.

The remainder of the paper is divided as follows. Section 2 shows related works.
Section 3 provides a detailed explanation of Petri nets and other issues. Section 4 presents
the evaluated architecture. Section 5 reveals the availability and reliability models for the
proposed architecture. Section 6 presents the results of a case study.

Finally, Section 7 outlines some conclusions and future directions of this work.

2. Related Works

In this section, some works that are related to this paper are presented. Table 1 shows
the related works under six aspects: context, metrics, model type, offloading application,
use of cloud/edge, and sensitivity analysis.
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Table 1. Related Works.

Work Context Metric Type of Model Offloading Application? Use of Cloud/Edge Sensitivity Analysis

[13] Security
Collisions and

Forced Landings
Petri Net No No No

[17] Route Planning
Distance between

UAVs
Colored Petri Net No No No

[18]
Malfunction

detection

Possibilities of error

identification and

Reliability

Hierarchical

Context-Aware

Aspect-Oriented

Petri Net

No No Yes

[19]
Collision avoidance

and location

Memory and

decision time

Hierarchical

Context-Aware

Aspect-Oriented

Petri Net

No No No

[20] Fault detection
Abnormality rate in

components
Fuzzy Petri Net No No No

[21] Security Security level Colored Petri Net No No No

[22]
Multi-task

offloading
Reliability

Markov Decision

Process
Yes Yes No

[23]

Offloading and

Consumption

Reduction

Performance

Markov Decision

Process with

Reinforcement

Learning

Yes Yes No

[24]
Multiprocess

Offloading
Performance

Markov Decision

Process with

Reinforcement

Learning

Yes Yes No

This work
Offloading using

UAVs

Availability and

Reliability

Stochastic Petri Net

and RBD
Yes Yes Yes

The first comparison criterion is context.For the context, there is a wide range of sub-
jects. Only our work explores UAVs for offloading. Refs. [13,21] presented the most similar
proposals and focused on ensuring that UAVs work with a certain level of security, being
more focused on hardware and software, respectively. Gonçalves et al. [13] performed an
analysis that assesses the safety of UAVs in order to facilitate the airworthiness certifica-
tion process of UAVs. In this way, the work helps manufacturers to more easily identify
critical points in a UAV during development. Zhou et al. [21] generated a model capable
of identifying components that do not comply with the established safety requirements,
in addition to an algorithm that is also capable of detecting inconsistent components that
do not comply with the safety standard. The study of Sharma et al. [18] can be considered
the closest to our context, with similarities between measuring reliability and seeking to
detect system flaws. However, the work has a greater focus on evaluating the embedded
system that controls devices, such as a UAV, than the UAVs themselves.

The second criterion is metrics. The metrics here are quite different from each other,
but others have a very different goal. This is the case of the metrics used by [19,23,24]. These
works have a general objective related to performance. For example, Sharma et al. [19]
brought forth several metrics that seek to measure the efficiency of a UAV, instead of
the more usual metrics of response time and utilization. Cheng et al. [23], on the other
hand, already conducted an analysis aimed at measuring computational delay in a data
offloading scenario, using UAVs and satellites. Finally, Faraci et al. [24] made a very
thorough performance analysis of a scenario similar to the one in this article. The work
uses both key performance metrics and efficiency metrics, which makes it different from
this article, which measures system availability and reliability. While the other works



Electronics 2021, 10, 1916 4 of 18

present metrics that can be associated with the system’s dependability concerning the
availability metric, our work stands alone in this sense.

The third criterion is the type of model chosen to evaluate the system. Most papers
chose Petri nets [25] and/or with hierarchical models [26] to evaluate their systems. The
variation of types observed for the used Petri nets is considerable, ranging from colored
Petri nets to Hierarchical Context-Aware Aspect-Oriented Petri nets. However, our work is
the only one to use stochastic Petri nets. Some papers also chose to use the Markov decision
process to model the system. Chen et al. [22], for example, used the Markov decision
process to meet the needs of the practical application scenario and provide a flexible and
effective discharge mode.

The fourth and fifth criteria are related, which are the offloading application and use
of cloud/edge; as their values are equal, it is worth joining the analysis. The works [22–24]
were the only ones that approached the proposal presented here. Chen et al. [22] presented
a strategy of data retransmission and edge computing in which UAVs simultaneously
perform data processing and offloading. Ref. [23] proposed a flexible method of joint
computing that provides full cloud/edge computing services to remote IoT users. Finally,
Ref. [24] aimed to extend the capabilities of a 5G network to ensure ultra-low latency in
processing data streams generated by connected devices. The last criterion is the sensitivity
analysis. Our work is the only one that used a sensitivity analysis to check the importance
of the components.

3. Background

This section presents the main essential concepts to understand the proposals.

3.1. Reliability Block Diagram

The reliability block diagram (RBD) is a graphical analysis technique that expresses
the system as connected components, according to its logical relationship of reliability [27].
In an RBD, the system components and their relations are represented by connections and
blocks. The blocks represent the smallest entities in the system, which cannot be further
divided: system components or groups of components [28].

In summary, we have a block model, where the connections between them represent
a specific system’s behavior. The connections can express two types of behaviors for the
components: serial and parallel connections. Components connected in series means that
they all must be working for the system to work. When connected in parallel, at least one
of the components must be working for the system to be available [29–31].

Figure 1 shows an example of an RBD model composed of Components 1 to 5. At
the beginning of the model, we have Begin; it represents the beginning of the system,
usually followed by the lowest parts of the evaluated system. At the end of the model,
we have End; it represents the end of the system, which is usually closer to the highest
parts of the evaluated system, which can be several things, such as an operating system,
software, virtual machine, etc. In the model, we have, in principle, series connections and
a parallel connection. In this RBD example, the system is operational if components 1, 4,
and 5 are working, and components 2 or 3 are active. An RBD model’s reliability analysis
depends on the mean time to recover (MTTR) and mean time to failure (MTTR) of each
component in the system.
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Component 1

Component 2

Component 3

Component 4 Component 5

Begin End

Figure 1. Example of a RBD model. The model consists of components in parallel and
series configurations.

3.2. Stochastic Petri Net

SPNs [32–38] can be identified as a type of directed graph divided into two parts,
filled by three types of objects. These objects are places, transitions, and directed arcs that
connect places for transitions and transitions to places. Figure 2a illustrates two types
of transitions (timed and immediate). The timed transition follows a stochastic behavior,
following a probability distribution function. The immediate transition fires when it is
activated, without waiting for any period. The white circle symbolizes places. Arcs are
used to connect places to transitions. Inhibitory arcs block or allow the passage of tokens
from one place to another. Moreover, the token is assigned to a specific place.

Timed Immediate Place Inhibitory Arc Arc Token

Other ObjectsTransi�ons

(a) Components of an SPN model.

A_U

A_D

A_MTTR A_MTTF B_MTTFB_MTTR

B_U

B_D

Component A Component B

T0

(b) Dependency example between components.

Figure 2. Basic elements in SPN models and captured behaviors of dependency.

In SPN models, to assess availability, the concept of active or inactive components
is active. Figure 2b presents a small availability model with two components (A and B).
Both have mean failure (MTTF) and repair (MTTR) times. Component A, for example, is
active when it has a token in place A_U and is inactive when it has a token in place A_D.
In this example, for component B to be active, A must also be active. The inhibiting arc
ensures that if component A changes from the upstate to the downstate, the T0 transition is
triggered, and component B is then also in the downstate.

3.3. Sensitivity Analysis with DoE

The sensitivity analysis is a measure of the effect of the given input data about
the output data, aiming to outline the weak links of the computer systems and, from
then on, seek to adopt a set of techniques that aim to improve these systems in different
scenarios [39]. In a way, the sensitivity analysis can provide the necessary security and
forward the results within the system administrators’ perspective. In this work, we apply a
sensitivity analysis with DoE.

The Design of Experiments (DoE) corresponds to a collection of statistical techniques
that deepen the knowledge about the product or process under study [40]. It can also be
defined by a series of tests in which the researcher changes the set of variables or input
factors to observe and identify the reasons for changes in the output response.

The parameters to be changed are defined using an experiment plan. The goal is to
generate the most significant amount of information with the fewest possible experiments.
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The behavior of the system based on parameter changes can be observed using sets of out-
puts. In the literature, there are three categories of graphs usually adopted for experiments
with DoE:

• The Pareto chart is represented by bars in descending order. The higher the bar,
the greater the impact. Each bar represents the influence of each factor on the
dependent variable.

• Main effects graphs are used to examine the differences between the level means for
one or more factors, graphing the mean response for each factor level connected by a
line. It can be applied when using a comparison between the relative strength of the
effects of various factors. The signal and magnitude of the main effect can express the
mean response value. The magnitude expresses the strength of the effect. The higher
the slope of the line, the greater the magnitude of the main effect. It is necessary to
consider that the horizontal line means that it has no main effect, that is, each level
affects the response in the same way.

• Interaction graphs are responsible for identifying interactions between factors. An in-
teraction occurs when the influence of a given factor on the result is altered (amplified
or reduced) by the difference in another factor’s level. Assuming that the lines on the
graph are parallel, there is no interaction between the factors. If they are not parallel,
there is an interaction between the factors.

4. Evaluated Architecture Overview

Figure 3 shows the base architecture modeled in this work. The architecture consists
of a distributed system composed of IoT devices that generate requests to remote servers.
There is a chain of UAVs that communicate with a base station that receives such data. The
collected data are processed by a cloud or edge server, depending on the demand. Thus,
communication takes place in three stages:

UAV Mobile Devices 

Torre 5G Offload 
Cloud 

1

2

3

Figure 3. Base architecture composed of IoT devices, UAVs, base station and cloud computing.

1. IoT devices are the customers of the application requesting services and sending data.
UAVs are controlled via a wireless network (5G, for example). UAVs fly over the
communication area, receiving data from mobile devices.
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2. The base station receives data from UAVs and retransmits them to the cloud.
3. The data are processed in the cloud, and the responses are sent back to the IoT devices.

A possible limitation is that the service may become unavailable depending on the
data demand. Just one UAV failing can significantly decrease the availability of the system,
regarding a critical application. Another possible limitation of the base architecture is that
if the cloud goes down, the entire system will stop working. Figure 4 presents a second
proposal of the redundant architecture where a server at the edge of the network is added.
The goal is to improve availability because, depending on the type of request, processing
can be performed at the edge. Both servers are always connected. However, as there are
two servers, the load is divided. If the cloud goes down, the edge server takes over the
processing and vice versa. The battery and recharge time of the UAV is not taken into
account. In Figure 4, the cloud server (3.a) and the edge server (3.b) are a server mounted
on a single physical machine.

UAV Mobile Devices Edge Server 

Torre 5G Offload Cloud 

1

2

3.a

3.b

Figure 4. Extended architecture, with the addition of an edge server.

5. SPN Models

This section presents the proposed models generated for representing the architecture
behavior shown in the previous section.

5.1. Base Model

This section presents the SPN base model. The components in the model correspond
to the same components shown in the previous section. Figure 5 shows the model with
the following functions: (i) UAVs are responsible for collecting data for offloading; (ii) the
network is responsible for receiving requests from UAVs and forwarding them to the cloud;
and (iii) the cloud is responsible for processing the data. Each component has its respective
MTTF and MTTR. The network is modeled, taking into account the dependency between
the components. When a component fails, the immediate transition (T0) makes the next
component, which depends directly or indirectly on it, also fail.
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Network

Cloud Drone
Figure 5. SPN base model.

The ND mark in place UAV_U corresponds to the number of available UAVs. The
UAVs are working when the ND tokens are in the UAV_U place. The evaluator can define
(with this ND tag) how many UAVs must be active for the system to be working. A UAV
component is not working when it has a token in the UAV_D place. The change between
the active and inactive states is caused by the transitions UAV_MTTF and UAV_MTTR.

The network is up and running when it has tokens in the NETWORK_U place. The
network component is not working when it has a token in one of the following places:
BS_D or NETWORK_D. The base station is working if it has a token in the place BS_U; it is
inactive when it has a token in the place BS_D. The change between the active and inactive
state is caused by the following transitions: BS_MTTF and NETWORK_MTTF for the mean
time to failure; and BS_MTTR and NETWORK_MTTR for the mean time to repair.

The cloud is working when it has tokens in the CLOUD_U place. We consider that the
cloud component is not working when it has a token in the CLOUD_D place. The change
between the active and inactive status is caused by the transitions CLOUD_MTTF and
CLOUD_MTTR for the mean time failure and repair, respectively. Especially for the cloud,
an RBD model is designed to obtain the failure and recovery times. The RBD model and its
data for simulation are based on the model presented by [41].

Figure 6 shows the RBD model used to obtain data from the cloud component. We
consider a private cloud type. The components adopted are the same platform components
as Eucalyptus or OpenStack. The main components that form a cloud are the frontend and
nodes. In order to obtain the failure and recovery values of these components, they are
subdivided. The node is formed by the following components: hardware (HW), operating
system (OS), hypervisor, instance manager (IM), and virtual machine (VM). The frontend
is formed by the following components: hardware (HW), operating system (OS), platform
manager (PM), cluster manager (CM), block-based storage (BBS), and file-based storage
(FBS).
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BEGIN END

HW OS Hypervisor IM VM

BEGIN END

HW OS CM BBSPM

BEGIN

Frontend

END

Node

Frontend
FBS

Node

Cloud

Figure 6. RBD model for the cloud.

The metrics used with the base model are availability and downtime. The availability
equation represents a sum of probabilities of the number of tokens for each state. Thus, P
stands for probability, and # stands for the number of tokens in a given place. The downtime
(D) can be obtained by D = (1− A)× 8760, where A represents the system’s availability
and 8760, the number of hours in the year. For the availability metric, the system is fully
functional when all the UAVs that the system supports, cloud and network, are active at the
same time. The availability of the model can be measured in two ways. Equation A = P{(#
UAV_U = ND)AND(#CLOUD_U > 0)AND(#NETWORK_U > 0)} calculates the sys-
tem availability of the base model when 100% of the UAVs are required to work. Equation
A = P{(# UAV_U >= MND)AND(#CLOUD_U > 0)AND(#NETWORK_U > 0)} cal-
culates the system availability of the base model when a minimum number of UAVs (MND)
is required to be working. It is worth mentioning that in order to have a more realistic
simulation, the guard condition #BS_U > 0 is used in the transition NETWORK_MTTR so
that the network component can only be recovered when the base station is working.

5.2. Sensitivity Analysis with DoE

The first step in conducting a sensitivity analysis with DoE is to define which factors
and levels are to be considered. In this work, the base model transitions are adopted as
factors, varying each factor in two levels. Table 2 shows the factors and respective levels.
Table 3 shows the combinations of DoE scenarios generated from the design table.

Table 2. Factors and respective levels.

Parameter Level 1 Level 2

BS_MTTF 250,000 750,000
BS_MTTR 1 3

NET_MTTF 41,610 124,830
NET_MTTR 6 18
UAV_MTTF 17,711.7 53,135
UAV_MTTR 0.5 1.5

CLOUD_MTTF 62.94 189
CLOUD_MTTR 0.45 1.37
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Table 3. Design of Experiments (all values are in hours).

Scenario BS_MTTF BS_MTTR NET_MTTF NET_MTTR UAV_MTTF UAV_MTTR CLOUD_MMTF CLOUD_MTTR

#1 250,000 1 124,830 6 17,711.7 1.5 62.94 0.45
#2 750,000 1 41,610 6 17,711.7 1.5 189.00 1.37
#3 750,000 3 41,610 18 17,711.7 0.5 189.00 1.37
#4 750,000 1 41,610 6 53,135.0 1.5 189.00 0.45
#5 250,000 1 41,610 6 53,135.0 0.5 62.94 0.45
#6 250,000 3 124,830 18 53,135.0 0.5 62.94 1.37
#7 250,000 1 124,830 18 53,135.0 1.5 189.00 0.45
#8 250,000 1 41,610 18 17,711.7 0.5 189.00 0.45
#9 250,000 1 124,830 6 53,135.0 1.5 62.94 1.37
#10 750,000 3 41,610 6 17,711.7 0.5 62.94 0.45
#11 750,000 3 124,830 18 17,711.7 1.5 189.00 0.45
#12 250,000 1 124,830 18 17,711.7 1.5 189.00 1.37
#13 750,000 1 41,610 18 17,711.7 1.5 62.94 0.45
#14 250,000 3 124,830 18 17,711.7 0.5 62.94 0.45
#15 750,000 3 124,830 6 53,135.0 1.5 62.94 0.45
#16 250,000 3 124,830 6 53,135.0 0.5 189.00 0.45
#17 750,000 3 124,830 18 53,135.0 1.5 189.00 1.37
#18 250,000 3 124,830 6 17,711.7 0.5 189.00 1.37
#19 250,000 3 41,610 6 53,135.0 1.5 189.00 1.37
#20 750,000 3 41,610 6 53,135.0 0.5 62.94 1.37
#21 250,000 1 41,610 6 17,711.7 0.5 62.94 1.37
#22 750,000 1 124,830 6 17,711.7 0.5 189.00 0.45
#23 750,000 3 41,610 18 53,135.0 0.5 189.00 0.45
#24 750,000 1 124,830 6 53,135.0 0.5 189.00 1.37
#25 750,000 1 124,830 18 53,135.0 0.5 62.94 0.45
#26 250,000 1 41,610 18 53,135.0 0.5 189.00 1.37
#27 750,000 3 124,830 6 17,711.7 1.5 62.94 1.37
#28 750,000 1 124,830 18 17,711.7 0.5 62.94 1.37
#29 750,000 1 41,610 18 53,135.0 1.5 62.94 1.37
#30 250,000 3 41,610 18 17,711.7 1.5 62.94 1.37
#31 250,000 3 41,610 6 17,711.7 1.5 189.00 0.45
#32 250,000 3 41,610 18 53,135.0 1.5 62.94 0.45

Figure 7 shows the Pareto graph with the level of significance for each of the factors
in the model. The term H is the most significant for the availability variable. This fact
corroborates the hypothesis that the cloud is the main element for the base architecture’s
availability. It is observed that the term G is raised to almost the same level as the term H.
In summary, both the recovery and the cloud’s failure are essential factors for maintaining
the system.

Term

B

A

F

E

D

C

G

H

1086420

A BS_MTTF
B BS_MTTR
C NET_MTTF
D NET_MTTR
E DRONE_MTTF
F DRONE_MTTR
G CLOUD_MTTF
H CLOUD_MTTR

Factor Nam e

Standardized Effect

Figure 7. Pareto analysis shows the components as factors and the importance of each factor
on availability.
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Figure 8 shows the level of interaction between the factors CLOUD_MTTR and
CLOUD_MTTF. Such factors were the most significant in the study of the impacts on
the Pareto chart. The non-parallel lines indicate that there is an interaction between the
factors. The result of changing one factor influences the result of changing the second
factor. With a lower CLOUD_MTTF, the variation in CLOUD_MTTR has a more significant
influence on availability.

1.370.45

1.000

0.995

0.990

0.985

0.980

CLOUD_MTTR

A
v
a
il
a
b
il
it
y

62.94
189.00

CLOUD_MTTF

Figure 8. Interaction between MTTF and MTTR in the cloud and their impact on availability.

Figure 9 shows a Contour graph of the interaction between MTTF and MTTR from
the cloud. The Contour graph shows the same information as the interaction graph,
but differently, through heat zones. The higher the MTTF and the lower the MTTR,
the greater the overall availability of the system. Assuming that the recovery time is over
1.2, the system never reaches more than 99.2% availability.
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Figure 9. The color zones show the interaction of the cloud with availability. The darker the color,
the better the availability.

5.3. Extended Model

Figure 10 presents an extended SPN model for the UAV architecture, with two pro-
cessing possibilities (edge and cloud), a network, and a UAV component. To satisfy these
conditions, two new transitions are added, EDGE_MTTF and EDGE_MTTR, which repre-
sent the failure and recovery time of edge. The places EDGE_U and EDGE_D represent the
active and inactive states of edge, respectively.
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Cloud EdgeDrone

Network

Figure 10. Extended SPN model (when an edge server is added in the system to improve the
dependability metrics).

The system’s condition to be fully active is the same as described in the base pro-
posal, with the addition of the edge component. However, as edge represents redundancy
for the cloud, it is enough that one of them is active for the system to be available. The
availability of the model can be measured in two ways. Equation A = P{(# UAV_U =
ND)AND((#CLOUD_U > 0) OR(#EDGE_U > 0))AND(#NETWORK_U > 0)} calcu-
lates the system availability of the extended model when 100% of the UAVs are required for
the system to be working. Equation A = P{(# UAV_U >= MND)AND((#CLOUD_U >
0)OR(#EDGE_U > 0))AND(#NETWORK_U > 0)} calculates the system availability of
the extended model when a minimum number of UAVs (MND) are required for the system
to be working.

It is worth mentioning that the MTTF transitions are of the infinite server type, and
the MTTR transitions are of the single server type, both in the base and in the extended
model. In this model, the guard condition #BS_U > 0 is also adopted in the transition
NETWORK_MTTR so that the network component can only be recovered when the base
station is working.

5.4. Reliability Model

The reliability of a system is a factor that is becoming increasingly decisive for a
product to be well accepted by its consumers. Reliability is the conditional probability that
a system remains operational given a time interval [0, t], considering that it is operational
at t = 0. Three aspects must be taken into account when the reliability of a system or
component is analyzed. First, an unambiguous definition of possible system failures must
be made. Second, the time unit must be identified, which can be given in hours, days,
or cycles of system operation. For example, an operating cycle could be the activation
of the engine ignition for an automotive system. The system must be observed under
natural operating conditions, subject to real physical conditions. Observing the system
under manipulated conditions can generate biased reliability data [42]. Figure 11 shows
the reliability model adapted from the base availability model by removing the transitions
from MTTR.
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Network

Cloud Drone

Figure 11. Reliability model based on the base model without recovery.

As with the availability equations, there are two ways to measure reliability. The
equation R = 1− ((#BS_D > 0)OR(#NETWORK_D > 0)OR(#CLOUD_D > 0)OR(#
UAV_D > 0)) calculates the reliability of the system when 100% of the UAVs need to be
active. The equation R = 1− ((#BS_D > 0)OR(#NETWORK_D > 0)OR(#CLOUD_D >
0)OR(# UAV_D > NDD)) calculates the system’s reliability when a minimum number of
UAVs needs to be down (NDD). ND−MND can calculate NDD.

The results of this metric are presented over time in the next section from the tran-
sient analysis.

6. Case Study

This section presents a case study with the models previously presented. Initially,
the parameters used in the simulations are presented. The MTTF and MTTR values for
each component are extracted from [43–45]. Table 4 shows the input values of the model
components that are adopted for conducting the numerical analysis. Table 5 presents the
parameters, extracted from [41], adopted for the RBD analysis.

Table 4. Values used in numerical analysis.

Component MTTF (h) MTTR (h)

Base Station 500,000 2
Network 83,220 12

UAV 35,423.31 1.5
Cloud 125.89 0.91
Edge 4765.79 3.47
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Table 5. Values used in the RBD analysis.

Component MTTF (h) MTTR (h)

HW 8760 1.67
OS 2893 0.25
CM 788.4 1
PM 788.4 1
BBS 788.4 1
FBS 788.4 1

Hypervisor 2990 1
+IM 788.4 1
VM 2880 0.019

6.1. Results for Availability

This section presents the availability analysis for the two models already presented.
Six scenarios are defined, varying the number of available UAVs (8, 16, 24, 32, 40, and
48 UAVs). These scenarios are defined based on the sensitivity analysis of the models. The
UAV is a component that appears in the base model as the second most important and as
the most important in the extended model. The metric used in the analysis is that 100%
of the UAVs need to be active. These scenarios are generated to compare the two models’
availability and the impact that the number of UAVs generates in each of the architectures.

The results calculated by the stationary analysis with the Mercury [46] tool is presented
below. Figure 12 shows the availability calculated in the analysis. The availability variation
shows that availability drops as UAVs are added to the system. The extended model’s
availability tends to fall at better levels than in the base model. We believe that this fact
occurs due to the redundancy implemented in the extended model. Even if we add UAVs,
there will be a redundant component to supply the cloud’s eventual failures.
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Figure 12. Availability according to the number of UAVs.

Figure 13 shows the downtime in hours per year. The downtime for the extended
model tends to be much shorter than that for the base model. The base model ranges from
68 to 88 h/y. The extended model ranges from 5 to 25 h/y. The extended model’s downtime
is kept below the base model, even with six times more UAVs, when comparing the base
and extended model’s first and last scenarios. The individual values of the base model grow
noticeably more and in a linear manner. After the fifth scenario, the time passes 80 h/y,
while the extended model remains below thirty. The difference is significant, but both vary
approximately 20 h between start and end. It can be deduced that the difference between
each scenario is approximately 63 h of downtime reduction.
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Figure 13. Inactivity in relation to the number of UAVs.

These results are generally expected since the more components we have in a system,
the greater the chances of one of them failing; the more they fail, the more time it takes to
fix. As our metric considers the system’s functioning when all UAVs are working, a higher
failure rate negatively impacts availability. This behavior is repeated even in the extended
model. However, in the extended model, this occurs in a much less impactful way because
there is a redundancy mechanism in the server.

6.2. Reliability

Figure 14 shows the reliability of the system over time. For the reliability analysis,
three levels of parameters are proposed: CLOUD_MTTF of the base model, CLOUD_MTTF
increased by 50%, and CLOUD_MTTF decreased by −50%. The X-axis represents the time
sampling in hours. The Y-axis represents the probability of system failure.
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Figure 14. Results of system reliability when there is a change in the cloud’s MTTF over time.

The reliability levels are very different from each other. Analyzing the lines at all
levels, they follow a decreasing probabilities pattern as the operating time progresses. At
the beginning of each test run, each starts with a high probability. Over time they tend
to decrease exponentially. As the failure time decreases, there is a tendency for a steeper
curve of the line. Such behavior indicates that, with less time between failures, the system
tends to fail but decrease in reliability. With the increase between failures, the system
tends to fail less frequently during the runtime. Although it seems favorable, this behavior
further proves that the base model is not favorable for the recovery and maintenance of



Electronics 2021, 10, 1916 16 of 18

the elements. The second conclusion is that cloud failures are harmful, connoting that the
cloud is the model’s key element.

6.3. Discussions

The input parameters are adopted mostly from previous works on the studies of
generic-purpose UAVs. The computed values are very similar to those from industry (DJI,
Parrot, etc.), as we conducted surveys from the internet for general-purpose UAVs. Thus,
we believe that the considered UAVs are of general types in industry. Furthermore, one
may adopt the proposed models in this work and feed the configurations and parameters
of their own UAVs to investigate the dependability output metrics of interest.

It is very interesting to consider the operational conditions of a UAV fleet (e.g., horizon-
tal extent, altitude, and weather). However, the elaboration of the operational conditions is
beyond our main focus and out of the research scope in which we investigate the impact of
the number of UAVs and operational capacity of components/subsystems on the overall
data offloading service dependability (e.g., reliability, availability). We believe the elabora-
tion of different operational conditions is interesting and could provide fruitful research
avenue in future works.

7. Conclusions

This paper proposed two SPN models to represent and evaluate a cloud data of-
floading system’s dependability aided by UAVs. In this work, UAVs were adopted as
connection bridges to remote processing resources. The models were highly configurable.
The extended model, for example, permitted inserting ten parameters regarding timed
transitions. Some scenarios were evaluated by varying the number of UAVs in the system.
The availability variation showed that availability dropped as UAVs were added to the
system. The extended model’s availability tended to fall at better levels than in the base
model. We believe that this fact occurred due to the redundancy implemented in the
extended model. By adding redundancy to the model, it was possible to see a considerable
increase in availability (about three times) and a large downtime decrease (about seven
times). The model analysis was able to identify the most relevant factor in the architecture.
The cloud’s MTTR was the factor with greater impact on availability. The analysis also
showed the availability behaviour for different recovery and failure times. The reliability
model demonstrated the importance of investing in cloud equipment to increase the mean
time to failure. As future work, we intend to further extend the model by adding other com-
ponents, such as distinct internet connections and varied hardware configurations. Other
metrics can also be explored, such as security, the drop rate, and the mean response time.
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