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Abstract: Ontology plays a critical role in knowledge engineering and knowledge graphs (KGs).
However, building ontology is still a nontrivial task. Ontology learning aims at generating domain
ontologies from various kinds of resources by natural language processing and machine learning
techniques. One major challenge of ontology learning is reducing labeling work for new domains.
This paper proposes an ontology learning method based on transfer learning, namely TF-Mnt, which
aims at learning knowledge from new domains that have limited labeled data. This paper selects Web
data as the learning source and defines various features, which utilizes abundant textual information
and heterogeneous semi-structured information. Then, a new transfer learning model TF-Mnt
is proposed, and the parameters’ estimation is also addressed. Although there exist distribution
differences of features between two domains, TF-Mnt can measure the relevance by calculating the
correlation coefficient. Moreover, TF-Mnt can efficiently transfer knowledge from the source domain
to the target domain and avoid negative transfer. Experiments in real-world datasets show that
TF-Mnt achieves promising learning performance for new domains despite the small number of labels
in it, by learning knowledge from a proper existing domain which can be automatically selected.

Keywords: ontology learning; transfer learning; ontology

1. Introduction

Ontology is a kind of formal normalization description for shared conceptual model [1].
It plays a very important role in semantic web [2] and knowledge graphs (KGs) [3]. How-
ever, constructing ontologies, especially for knowledge in Web pages, is still challenging,
since information in Web pages is not only massive but also heterogeneous. Nevertheless,
manual construction of ontologies is time-consuming as well extremely laborious and
costly process. Ontology learning aims at reducing the time and effort in the ontology
development process by machine learning techniques [4–6].

Web pages are written in HTML which is a kind of semi-structured data that has
a large portion of free text. Learning ontologies from the free text and semi-structured
data has been widely studied in past decades [7]. Most ontology learning methods are
domain-independent, because they predefine some general lexico-syntactic patterns which
can be applied to text in all domains, such as Hearst patterns [8]. However, this could lead
to a poor learning performance because semi-structured information in the Web page is
ignored. To utilize the semi-structured information, traditional machine learning, which is
based on features such as conditional random fields (CRFs) and naïve Bayes, is also widely
used in ontology learning. However, these methods are based on an assumption that
training data and future data are in the same feature set and hold the same distributions.
Unfortunately, this assumption is impossible to hold in a real dataset, especially for data
from different domains. Namely, existing methods only can achieve good performance for
a specific domain. Meanwhile, humans need to do a lot of time-consuming labeling work.
In conclusion, the problems in existing ontology learning methods can be summarized
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as: (1) text-based methods are domain-independent but with a low performance and
(2) traditional learning-based methods achieve a reasonable result, but they are domain-
dependent. To handle these two problems at the same time, this paper proposes a domain-
independent ontology learning method based on transfer learning.

To overcome the labeling limitations in traditional machine learning, transfer learning
aims at learning knowledge from out-of-domains [9]. In a transfer learning framework,
domains are divided into the target domain and the source domain. There is only a little or
even no labeled data in the target domains, meanwhile, there is large-scale of labeled data
in source domains. The transfer process is using labeled data from the source domain to
improve the learning of the target domain. However, the source domain must be selected
carefully to avoid the negative transfer. Namely, the labeled data in the source domain
could have no contribution or the negative contribution to the improvement in the learning
model for the target domain. The reasons why transfer learning can solve these issues
are: (1) transfer learning is feature-based, so it can utilize the various information in
Web pages; (2) transfer learning can learn knowledge from out-of-domains. In order to
introduce transfer learning into ontology learning, there still exists some challenges. First,
the transferring information should be identified. Second, we need to avoid the negative
transfer. Finally, applying transfer learning to ontology learning is a nontrivial process.

To this end, this paper proposes the transfer learning model TF-Mnt for ontology learn-
ing. It consists of three phases. First, a vision-based segmentation (VIPS) algorithm [10] is
used to get basic units in the Web page, which consist of some text sections and images.
A vision tree which reflects the visual relation between these units will be built by VIPS.
Second, concepts and instances in the corresponding ontology are recognized by a transfer
learning classifier. In TF-Mnt, for Web pages in a target domain A, it can automatically
select a proper source domain to improve the learning of domain A based on the domain
similarity measured by the correlation coefficient. Third, is-a and subclass-of relations
between concepts and instances are captured by searching some typical substructures in
the vision tree. With concepts, instances, and relations, ontology for a Web page can be
constructed. Finally, experiments in real-world datasets show that with an auxiliary source
domain, our domain-independent ontology learning method achieves a reasonable effect.

Our contributions can be summarized as follows: (1) We propose a transfer learning
model called TF-Mnt. TF-Mnt model can obtain a good ontology learning performance for
a new domain with only a small set of labeled data by learning knowledge from a proper
previous domain, which can be selected automatically. (2) We apply transfer learning to
solve the problems in ontology learning by defining various semi-structured features and
textual features in the Web page.

The paper is organized as follows: In Section 2, we review the related work. In
Section 3, we give a problem description of what is a domain-independent ontology learn-
ing method and give an overview of our method. In Section 4, we present our transfer
learning model and show how to apply it to learn an ontology in Section 5. In Section 6,
we conduct experiments to validate our method. Finally, we conclude the paper and make
some further discussions in Section 7.

2. Related Work

In this section, we will introduce related work, which includes two parts: ontology
learning and transfer learning.

2.1. Ontology Learning

Many approaches for learning an ontology automatically from Web have been pro-
posed. Some methods are based on lexico-syntactic patterns. Paul et al. proposed a
pattern-based method which defined patterns such as NP such as NP, . . . , and NP to cap-
ture subclass-of relations and defined patterns such as NP is part of NP to capture part-of
relations [11]. Wu et al. proposed an ontology learning method combining Hearst [8] and a
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probabilistic model. Hearst was used to capture terms and is-a relations and a probabilistic
model was used to learn subclass-of relations and to do ambiguousness elimination [12].

Also, statistical techniques [4], symbolic techniques [13], definition-based meth-
ods [14], and mining-based methods [15] have been used in ontology learning. AliMe
KG is a domain knowledge graph in the field of E-commerce that captures user problems,
points of interest (POI), item information, and relations. AliMe KG is constructed by
semi-automated processes for mining structured knowledge from free text. The mining
process first takes as input data source such as chatlog, item detail pages and item articles,
then mines nodes and predicts links, and finally output structured knowledge [15]. Al-
ibaba constructs a large-scale e-commerce cognitive concept net AliCoCo [16]. In order
to align the taxonomy of each data source, rule-based matching algorithms together with
human efforts are adopted. Moreover, mining new concepts from large-scale text corpus
generated in the domain of e-commerce is formulated as sequence labeling task, where
the input is a sequence of words and the output is a sequence of predefined labels. To
construct a task-guided taxonomy from a domain-specific corpus and allow users to input
a “seed” taxonomy, serving as the task guidance. Shen et al. propose an expansion-based
taxonomy construction framework HiExpan, which automatically generates key term list
from the corpus and iteratively grows the seed taxonomy [17]. HiExpan views all children
under each taxonomy node forming a coherent set and builds the taxonomy by recursively
expanding all these sets. Furthermore, HiExpan incorporates a weakly-supervised relation
extraction module to extract the initial children of a newly expanded node and adjusts the
taxonomy tree by optimizing its global structure. Huang et al. propose a method CoRel for
seed-guided topical taxonomy construction, which takes a corpus and a seed taxonomy
described by concept names as input and constructs a more complete taxonomy based
on user’s interest, wherein each node is represented by a cluster of coherent terms [18].
CoRel has two modules: relation transferring and concept learning. A relation transferring
module learns and transfers the user’s interested relation along multiple paths to expand
the seed taxonomy structure in width and depth. A concept learning module enriches the
semantics of each concept node by jointly embedding the taxonomy and text.

All these methods mentioned above are domain-independent but they only focused
on free text sections in the Web page. They can get a high precision but a low recall. To
utilize semi-structured data in the Web page, Du et al. proposed a six-phase domain-
independent method to learn an ontology from HTML based on DOM tree, words’ term
frequency—inverse document frequency (TF-IDF) in the Web pages and HTML links [19].
However, designers of the Web pages will highlight some important keywords in some
special visual ways, such as increasing the size and the weight of words. Considering these
visual features, words with low TF-IDF may also be very important.

Machine learning techniques are also widely used in Web understanding which is an
important part of learning an ontology from Web. Wang et al. used VIPS [10] algorithm
to segment a Web page to some sections and then removed the navigation section of the
Web page before labeling the rest [20]. Zhu et al. proposed a method to understand a Web
page [21,22]. They used a vision tree to represent a Web page and then labeled it by a CRFs
model. These attempts could not create an ontology via learning based on these labels.
Yao et al. proposed a method to learn an ontology from researcher profiles [23]. They first
defined the schema for the researcher profile by extending the FOAF ontology [24], and then
used a CRFs model to learn instances of the concepts in a predefined schema. Craven et al.
proposed a method to construct knowledge bases from Web [25]. Their method required
two inputs: one was an ontology which defined the concepts and relations; another was a
set of training data consisting of labeled regions of hypertext that represented instances of
these concepts. Learning algorithm was naïve Bayes. Both Yao and Craven learned just
the entities of the predefined schema, while new concepts and relations in the Web page
could not be learned. About new relation learning, Han and Elmasri proposed a method
which captured conceptual structure on a Web page by learning generic patterns [26]. Mo
et al. proposed a method which focused on learning domain ontology based on VIPS
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and CRFs [27]. CRFs model was used to capture concepts and instances in the Web page.
Learning of relations was based on the structure of the vision tree which is generated by
VIPS. However, all methods mentioned above used traditional machine learning model,
so they were hard to generalize. Gao et al. first introduced a new ontology optimization
schema by means of representer theorem and kernel function, and the method was a kind of
linear programming [28]. Then they presented a partial multi–dividing ontology algorithm
with the aim of obtaining an efficient approach to optimize the partial multi–dividing
ontology learning model [29].

2.2. Transfer Learning

Transfer learning aims at improving learning effect from other domains to avoid
expensive data-labeling work. Current transfer learning approaches can be divided into
three categories [9]: (1) inductive transfer learning, (2) transductive transfer learning, and
(3) unsupervised transfer learning. We will focus on introducing inductive transfer learning
because our method is an instance of it. In inductive transfer learning, labeled data is
available in the target domain, but only in small sizes. Depending on labeled data in the
source domain, inductive transfer learning can be divided into (1) self-taught learning,
which can allow no labeled data in the source domain, and (2) multi-task learning, which
requires that data in the source domain is labeled. Our work is multi-task learning, and its
goal is to utilize labeled data in the source domain to improve the target domain’s learning.

Transfer learning is a hot topic and many researchers have dedicated themselves
to studying it in recent years. Zhuang et al. reviewed more than forty representative
transfer learning approaches, especially homogeneous transfer learning approaches, from
the perspectives of data and model [30]. Transfer learning has been highly useful in
low-resource domains such as drag discovery [31], protein modeling [32], predicting
reactions on carbohydrates [33], pneumonia detection in chest X-ray images [34], and
natural language processing (NLP) [35]. Ruder et al. presented an overview of modern
transfer learning methods in natural language processing, including how models are
pretrained, what information the representations they learn capture, and how learning
models can be integrated and adapted in downstream NLP tasks [35]. Daume et al.
proposed a domain adaptation method called Mega Model based on probabilistic graph
model [36]. In their method, knowledge in a domain is divided into in-domain and out-of-
domain. Transfer process is to learn out-of-domain knowledge from the source domain and
in-domain knowledge from the target domain. Raina et al. proposed a transfer learning
model based on informative priors, which are measured by covariance matrix, a kind of
similarity measurement between the source domain and the target domain [37]. Dai et al.
proposed a boosting-based transfer learning model called TrAdBoost [38]. TrAdBoost tries
to find instances that conflict with the same-distribution training data and then decreases
its training weight to reduce its effect. Ling et al. proposed a spectral domain-transfer
learning model which constructs a similarity matrix by spectral clustering method [39].
Knowledge could be correctly transferred via the similarity matrix and a constraint matrix.
Besides, many other traditional machine learning models are extended to support the
transfer learning framework, such as naïve Bayes [40], logistic regression [41], SVM [42].
For the application of the transfer learning, Hu et al. applied transfer learning to do
cross-domain activity recognition [43]. He used an information retrieval method to get the
similarity between activities and then used weighted SVM to recognize activities based on
the similarity and pseudo training data generated from source domain. The key issue of
transfer learning is the similarity measurement between the source domain and the target
domain. If we select two domains with low similarity, it will lead to negative transfer.

In recent years, we notice that transfer learning methods can be used for many learning
scenarios such as ontology learning, and the inadequate labeled data available for the target
domain with various strategies can minimize human expertise during model development
and training. Tan et al. surveyed current research on transfer learning using deep neural
networks and its applications [44]. They defined deep transfer learning, category and
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reviewed the recent research works based on the techniques used in deep transfer learning.
Vedula et al. proposed a LSTM-based framework BOLT-K to learn an ontology for a target
subject or domain [45]. BOLT-K first employs semantic and graphical features to recognize
the entity or concept pairs likely to be related to each other and filters out spurious concept
combinations. It is then jointly trained on knowledge from the target and source domains to
learn relationships among the target concepts. The target concepts and their corresponding
relationships are subsequently used to construct an ontology.

3. Problem Statement

A domain-independent ontology learning method contains two parts: (1) what is a
domain-independent learning model; (2) what is ontology learning. For (1), hypothetically,
we have unlabeled data in n (n > 0) domains DM = (DM 0, . . . , DMn) and a classifier
model P(y|x), which is learned from labeled data in a DM. Given ∀xj

i ∈ DMi in DM, where

i ∈ [0, n], we can get a proper label y∗= maxyP(y|xj
i

)
by the model. Given a learning task

from a new domain DMn+1, a domain-independent model can achieve a good learning
effect despite only having access to a small set of labeled data (it is reasonable to label a
small set of data for a new domain) in DMn+1. Besides, DMn+1 can have its own special
feature space which can be different but not totally from the previous n domains. If a
model can achieve a good result in this new domain, then it is domain-independent. For
(2), ontology learning is to apply an automatic or semi-automatic method to construct
ontologies from structured data, semi-structured data or free text, including extracting the
corresponding domain’s terms and the relations between those terms and finally encoding
them with an ontology language for easy retrieval [4].

From these two aspects mentioned above, text-based methods can solve ontology learn-
ing problems domain-independently. However, Web pages are a kind of semi-structured
data consisting of not only free text, but also various semi-structured information such as
DOM structures, page links and page visions. Here, a page vision is an image that a person
seeing a Web page. Text-based methods can only learn ontology from a micro level. From a
macro level, semi-structured data must be considered. Machine learning techniques can
combine the micro and the macro because it is feature-based. However, traditional machine
learning methods are domain-dependent. Therefore, it will learn an ontology learning in
the domain-dependent way. To tackle this problem, we will apply transfer learning, which
is based on features and also domain-independent, to ontology learning.

The framework of our domain-independent ontology learning method is illustrated
in Figure 1. It mainly consists of three stages, namely, data preparation stage, terms
recognition stage, and relation learning stage. (1) During data preparation, VIPS [10]
algorithm is used to segment a Web page based on vision. A vision tree which represents
the Web page will be built by VIPS. In the vision tree, features from both the micro level and
the macro level will be extracted. Features from micro level are about the semantic meaning
of text and from macro level are about semi-structured information in the vision tree and
DOM tree. Moreover, the domain-independent and domain-dependent features are also
extract. (2) In terms recognition, we first obtain the knowledge from the source domain
and the target domain, and then calculate the correlation coefficient between domain-
independent knowledge. Furthermore, a transfer learning model called TF-Mnt will be
built and it will assign a label which is in {concept, instance, none} to each text in the vision
tree. See Section 4.2 for detailed information about TF-Mnt model. We will describe what
this model is and how it works. Moreover, we also address how to optimize the TF-Mnt
model and choose optimized parameters. See Section 4.3 for detailed information about
model optimization. See Section 5.1 for detailed information about terms recognition by
TF-Mnt model. (3) In the learning of relations, our method will analyze the labeled vision
tree to capture is-a and subclass-of relations before constructing the ontology. The basic idea
is to search some substructures which reflect is-a relations and subclass-of relations from the
labeled vision tree. After terms and relations are all recognized via our method, we will
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encode them by resource description framework (RDF) for further use. See Section 5.1 for
detailed information about the learning of relations.

Figure 1. Overview of Our Approach.

4. Model

In this section, we will describe the details of our transfer learning model. We extend
the maximum entropy (Mnt) model to make it support the transfer learning framework.
The new model is called TF-Mnt, which can learn knowledge not only from in-domain,
but also from out-of-domain. In Section 4.1 we will introduce transfer learning framework
and the goal of it. In Section 4.2 we address our TF-Mnt model. Section 4.3 is parameter
estimation of TF-Mnt.

4.1. Transfer Learning

In traditional machine learning, training data and testing data have the same input
feature space and the same data distribution, therefore, knowledge of a domain A is learned
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from its training data and can only be used to predict future data in domain A. If we apply
traditional machine learning methods to a new domain, we need to label a lot of training
data manually, that is a difficult and timing-consuming process. On the other hand, it is a
waste that such expensive labels can only be used to predict data in specific domains.

Inspired by human learning process, i.e., we can use previous knowledge when
studying new knowledge, that is the motivation of transfer learning. Transfer learning is
used to improve a learner from one domain by transferring information from a related
domain. Consider an example of a people who want to learn French. The person with
an extensive Spanish knowledge will be able to learn French in an efficient manner by
transferring previously language knowledge to the task of learning French. It means
that one person is able to take information from a previously learned task and use it in a
beneficial way to learn a related task. From the perspective of machine learning, if two
domains are related, transfer learning can be used to potentially improve the results of a
target learner. In addition, transfer learning occurs when there is a limited supply of target
training data. This could be due to the data being rare, the data being expensive to collect
and label, or the data being inaccessible [46].

The definition of transfer learning is given in following form [9]: Given a source
domain Ds and learning task Ts, a target domain Dt and learning task Tt, transfer learning
aims to help improve the learning of the target predictive function ft in Dt using the
knowledge in Ds and Ts, where Ds 6= Dt or Ts 6=Tt. Transfer learning is domain-independent
because it can learn knowledge from other domains. However, data in the source domain
and the target domain is drawn from different distributions; therefore, one of the important
issues is how to transfer knowledge despite different distributions. On the other hand, to
ensure a positive transfer effect, knowledge transfer cannot be arbitrary. If two domains
do not overlap and we compulsively transfer knowledge between them, it will lead to a
negative result. We need consider the above two issues in our model.

We first introduce some notations for our model. We use Ds= {(x i, yi) ∈ Xs×Y : 1 < i ≤
N} to represent data in the source domain and use Dt = {(xi, yi) ∈ Xt×Y : 1 < i ≤ M} to
represent data in the target domain, where Xs, Xt are the input spaces in source domain and
target domain respectively, and Y is a finite set, and N >> M. In our model, we call Xdi= Xs ∩Xt
domain-independent feature space, which is shared by the source domain and the target
domain; in addition, Xdi 6= ∅. In a specific domain D, the feature space of it is XD= Xdi ∪Xdd,
where Xdd is called domain-dependent feature space, which means features in Xdd are unique in
domain D.

4.2. TF-Mnt Model

Mnt, a kind of traditional machine learning model, is widely used in text classification.
The model is based on maximum entropy principle, which states that, subject to precisely
stated prior data, the probability distribution that best represents the current state of
knowledge is the one with largest entropy [47,48]. Mnt model is shown in Equation (1), and
Equation (2) is the normalizing factor. gi(x, y) is called feature function, which is usually
defined as binary function shown in Equation (3). From Equation (1), each gi(x, y) is linear
weighted by wi, so Mnt is a linear model:

Pw(y|x) =
exp(∑m

i=1 wigi(x, y))
Zw(x)

(1)

Zw(x) = ∑y exp
(
∑m

i=1 wigi(x, y)
)

(2)

g(x, y) =
{

1, x = x0, y = y0;
0, others.

(3)

To make Mnt model support the transfer learning framework, we extend it to a new
model as Equation (4) shows, namely TF-Mnt. In TF-Mnt, xt is the input feature vector of
the target domain, and y* is the label sent by TF-Mnt, where (xt, y*) ∈ (Xt,Y). xt_di is the
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domain-independent feature vector, where xt_di∈ Xdi and xt_di ⊆ xt. Zws_di(x) and Zwt(x)
are the normalizing factors. Like Mnt model, TF-Mnt model is also a linear model. In
TF-Mnt model, knowledge is divided into two parts: transfer knowledge weighted by a
and domain knowledge weighted by b:

y∗= argmaxy

a
exp

(
(w s_di

)T
·ρ+·f (x t_di , y)

)
Zws_di(x)

+b
exp

(
(w t
)T
·f (x t , y)

)
Zwt(x)

 (4)

where Zws_di(x) = ∑y exp((w s_di)T·æ+·f (x t_di , y)), Zwt(x) = ∑y exp((w t
)T
·f (x t , y)), and

f () is the vector of the feature function
Transfer knowledge consists of two parts: ws_di and ρ+. In our model, not all knowl-

edge in the source domain can be transferred. Only knowledge learned from domain-
independent features can be transferred and this part of knowledge is called domain-
independent knowledge reflected by ws_di. However, we cannot use it to the target domain
directly because of the distribution difference between Ds and Dt. Thus we use a diagonal
matrix ρ+ to measure the correlation coefficients. Each diagonal element in ρ+ is a cor-
relation coefficient ρ that is an important statistic value reflecting the relevance between
two distributions. If two distributions are positively linearly dependent, then ρ will be
positive; if they are negatively linearly dependent, then ρ will be negative; if they are lin-
early independent, ρ will be 0. Besides, the more dependent the two distributions are, the
larger |ρ| will be. Since the negative correlation coefficient means that two distributions
are negatively linearly dependent, in our model, we set all negative correlation coefficients
in the original correlation coefficient matrix to zero to avoid negative transfer. That is the
correlation coefficient matrix ρ+. We will discuss this property in Section 6.2.1. Besides, the
product of ws_di and ρ+ is called transfer coefficient. It plays an important role in source do-
main selection, which will be further discussed in Section 6.2.2. Note that the dependencies
of the source domain and target domains could not be linear. The correlation coefficient in
such case cannot be calculated by the above way. Although TF-Mnt model only considers
the linear dependency, it can be extended to non-linear dependency scenarios.

A target domain’s domain knowledge (denoted by wt) is learned from labeled data
in the target domain. Although there is only a small set of labeled data in it, knowledge
learned from these data will be helpful to the classification because these data reflect the
target domain directly.

Figure 2 illustrates the discriminant process of TF-Mnt model. To classify data in the
target domain, TF-Mnt needs to learn domain knowledge from target domain’s feature
Xt and source domain’s domain-independence feature Xs_di. More generally, this can be
also a framework to extend other linear discriminant models like logistic regression. More
intuitively, because there is only a small set of labeled data in the target domain, training
an original linear classification model can fit well the small dataset, but it will lead to an
under-fitting phenomenon in the whole target domain. Knowledge learned from a source
domain is like a correction factor to partly correct the wrong decisions made by the original
model. This idea is similar to adding a penalty term to control the over-fitting phenomenon
in traditional linear classification models [36], while in our framework, we use a correction
factor to overcome under-fitting phenomenon due to the small set of training data. This
correction factor not only can be learned from one source domain, but also can be learned
from multiple sources domain.
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Figure 2. Discriminant Process of TF-Mnt Model.

4.3. Parameter Estimation

To implement TF-Mnt, three parameters in Equation (4) need to be estimated. They
are source domain’s domain-independent knowledge ws_di, correlation coefficient vector
ρ+, and target domain’s domain knowledge wt.

ws_di Estimation. Our model is based on Mnt and improved iterative scaling (IIS)
algorithm is widely used in Mnt parameter estimation. For Ds, we first use IIS algorithm
to estimate w in formula (1). After getting parameters w in the source domain, we select
domain-independent knowledge ws_di, corresponding to domain-independent feature
functions f (Xdi,Y), from w and then normalize them by Equation (5). Here, Y denotes a
category such as concept or instance, and k is the total number of domain-independent
feature functions. Finally, ws_di consists of k parameters which are normalized:

Ŵi =
wi
|w| i = 1, 2, . . . , k (5)

ρ+ Estimation. ρ+ is a k× k diagonal matrix and each diagonal element is a correlation
coefficient ρ, which stands for the difference of a specific dimension between source
domain’s and target domain’s domain-independent knowledge. ρ is a very important
statistic value defined in Formula (6). Cov(X, Y), the covariance between X and Y, reflects
the relevance between them. D(X) is the variance of X, and both D(X) and D(Y) are the
normalizing factors. However, Equation (6) is the definition formula and cannot be used to
calculate ρ directly, so we use Equation (7) to calculate it:

ρX,Y =
Cov(X, Y)√
D(X)D(Y)

(6)

ρX,Y =
∑n

i=1 XiYi − ∑n
i=1 Xi ∑n

i=1 Yi
n√

∑n
i=1 Xi

2 − (∑n
i=1 Xi)

2

n

√
∑n

i=1 Yi
2 − (∑n

i=1 Yi)
2

n

(7)

Because ρ+ is used to measure knowledge difference between two domains, corre-
sponding to our model, X and Y in Equation (6) are knowledge learned from Ds and Dt.
Calculating ρ+ needs a set of samples, we thus use a bagging-based method by selecting m
source domain’s and target domain’s labeled data randomly n times to construct n sets of
training data. However, samples cannot be not fully random, because we must make sure
the same latent factor in each set, otherwise ρ+ is meaningless. Here we choose P(Y) as the
latent factor, that is, we must make sure P(Y) in the source domain sample is equal to the
target domain sample inner set. As for the inter set, P(Y) must be different. Because Mnt
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is a kind of discriminant model, unlike generative models (shown in Equation (8)) that
depend on P(y), sampling by P(y) will not influence the model effect:

y∗= argmaxy P(y|x)= argmaxy
P(x, y)
P(x)

= argmax yP(x|y)P(y) (8)

For each yi ∈ Y, we generate P(y i) from a uniform distribution, and P(Y) must satisfy

∑
|Y|
i=1 P(y i) = 1. Because the number of labeled data in the target domain is small, m will

not be very large. Therefore, although we must build Mnt model many times, due to
the small amount of training data, it will not be time-consuming. After 2n times (there
are n sets of training data both in the source domain and the target domain) parameter
estimation, we can get n groups of domain knowledge for both the source domain and the
target domain. Then we select domain-independent knowledge and use Equation (5) to
normalize them for both domains. Two sets of data will be constructed by above steps. One
is n sets of normalized source domains’ domain-independent knowledge and the other is
n sets of target domains. Finally, as for ρ+, each diagonal element ρ can be calculated by
Equation (7).

Algorithm 1 is used to calculate the correlation coefficient between the source domain
and the target domain. Ds and Dt are labeled data in the source domain and the target
domain respectively. We construct n samples to calculate ρ from line 2 to line 7. Line 3
is the distribution generator which generates P(Y) in iteration i. Line 4 is to sample m
training data based on P(Y) from both the source domain and the target domain. Line 5 is
Mnt trainer. After training, we obtain both domain-independent and domain-dependent
parameters, which are not normalized. In line 6, parameters are normalized and domain-
independent parameters are selected. Then we construct one group of sample ( wt_di

nor , ws_di
nor )

in line 7. Finally, in line 8, we calculate correlation coefficient ρ by Equation (7). After
getting ρ, we will set those negative value in ρ to 0 to avoid negative transfer (line 9) to
construct final ρ+.

Algorithm 1 Calculate Correlation Coefficient between Ds and Dt.

Input: Ds, Dt, m, n
Output: ρ+

1 samples =[ ( , ) ]
2 for i=0 to n:
3 P_Y = distributionGen()
4 trainingSet = randomSelect(Ds, Dt, m, P_Y)
5 wt, ws = MntTrainer(trainingSet)
6 wt_di

nor , ws_di
nor = selectGeneralW(normalize(wt, ws))

7 samples.insert(wt_di
nor , ws_di

nor )
8 ρ = correlationCoefficient(samples)
9 ρ+ = setNegativeToZero(ρ)

10 return ρ+

In order to decrease the time of model training, for each previous domain, we will save
all the parameters and corresponding data samples as p = {[P 1(Y), w1], . . . , [P m(Y), wm]}.
Then for a new domain A, when calculating ρ+ with a previous domain B, we will sample
labeled data in A by each Pi(Y) in pB. wtEstimation. After getting ws_diand ρ+, they are
constants in Equation (4). We then use the IIS algorithm to estimate wt. The core of IIS
algorithm is trying to find a vector δ to make log likelihood in next iteration L

(
wt+δ

)
increased until converging. For one iteration, log likelihood will increase:(

Lwt+δ
)
−L
(
wt) =

∑x,y P̃(x, y)Pwt+δ(y|x)−∑x,y P̃(x, y)Pwt(y|x) =
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∑x,y P̃(x, y)log

a
exp

(
(w s_di

)T
·ρ·f (x t_di ,y)

)
Zws_di (x)

+b
exp

(
(w t +δ)

T ·f (x t ,y)
)

Zwt+δ(x)

−
∑x,y P̃(x, y)log

a
exp

(
(w s_di

)T
·ρ·f (x t_di ,y)

)
Zws_di (x)

+b
exp

(
(w t)

T ·f (x t ,y)
)

Zwt (x)

 (9)

First, we apply log(a + b) ≥ log
(

2
√

ab
)

where a > 0, b > 0 to Equation (9):

L
(

wd+δ
)
−L
(

wd
)
≥

∑x,y P̃(x, y)log

2

√√√√√
a

exp
(
(w s_di

)T
·ρ·f (x t_di , y)

)
Zws_di(x)

∗b
exp

(
(w t +δ)

T·f (x t , y)
)

Zwt+δ(x)

−∑x,y P̃(x, y)Pwt(y|x) (10)

Then we apply −logx ≥ 1− x where x > 0 and Jensen Inequation to scale Equation
(10) like the inference of Mnt IIS algorithm. Finally we can get that optimizing our model
is the same as optimizing the original Mnt model. Therefore, wt is easy to estimate by
training target domain’s labeled data via Mnt IIS algorithm.

5. Domain-Independent Ontology Learning

To construct the ontology, firstly, we apply the VIPS algorithm [10] to segment a Web
page. The VIPS algorithm is based on the page layout features, and it first extracts all the
suitable blocks from the HTML DOM tree, then tries to find the separators between these
extracted blocks. Here, separators denote the horizontal or vertical lines in a Web page
that visually cross with no blocks. Finally, based on these separators, the vision tree for
the Web page is constructed. In the vision tree, information, which are the text (here we
ignore images because an ontology does not contain images) in the Web page, is stored
separately in leaf nodes while inner nodes in the vision tree reflect structure information
among their children. Children of an inner node may have some similarities in the visions
or semantics. Secondly, the ontology for the Web page will be constructed after the process
of terms recognition and the learning of relations.

5.1. Terms Recognition by TF-Mnt

We will build a classifier to label each text, storing on each leaf node in the vision tree,
to y ∈ {C, I, N}. Text labeled by C represent the concepts in the ontology, and I stand
for instances and N means text that have no contribution to construct the ontology. This
classifier is required to be domain-independent to ensure the ontology learning method
is domain-independent. Therefore, we choose a transfer learning model TF-Mnt that we
describe in Section 4 to construct this classifier.

In TF-Mnt, features are divided into domain-independent features and domain-
dependent features. TF-Mnt model can only transfer knowledge learned from domain-
independent features, so here we list all defined ones:

• Features from text, nine features total: the number of words, the font size, the font
weight, the ratio of capital words, the location of colon, the ratio of domain concept
keywords, the ratio of country keywords, the ratio of month keywords, and the ratio
of all keywords.

• Features from DOM, four features total: contain URL, the location in the Web page, in
<li> and in <h>.

• Features from vision tree, seven features total: the depth of the text node, the type
of sibling, the type of the next node, the type of the last node, next node in <li>, last
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node end with colon, label of the last node. (1) Node type is inner node or leaf. (2) We
use depth first search (DFS) algorithm to construct a sequence and the last or the next
node means the relative location in this sequence.

5.2. Learning of Relations by Patterns

Our method focuses on learning the hierarchical ontology, in which there are only
hierarchical relations (subclass-of relations) between two concepts. Besides, for concepts in
the ontology, if they have instances in the Web page, our method is also able to capture
them (is-a relations). In terms recognition step, transfer learning is used to capture concepts
and instances domain-independently. To ensure that the whole ontology learning method
is domain-independent, learning of relations need to be domain-independent too.

To achieve this goal, we define three basic structural patterns to capture is-a relations
and three to capture subclass-of relations. Our method will first search the vision tree to
find the substructures that satisfy patterns reflecting is-a relations, and then clean all nodes
labeled by I before capturing subclass-of relations. For instance, we list the is-a relation
pattern in Figure 3a, in which the left part is a fragment of a Web page and the right part is
the corresponding structure in the vision tree. The labels C and I come from the recognition
phase terms. If a concept C and instances I = {I1, . . . , In} have the relative location as Figure
3a shows, we say “each Ii∈ I is-a C”. According to the process of VIPS algorithm, both
C and I come from the same vision block A, and because of the different visual features
between C and I, they are further separated to C and B.
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After first search, some nodes labeled by I can find their concepts, while some cannot,
we then clean all of them, so the only semantic nodes in the vision tree are concepts. Our
method will search this tree and capture subclass-of relations by finding some substructures
which satisfy the subclass-of patterns we predefine. Figure 3b illustrates an example of a
pattern reflecting subclass-of relation. The process of learning of relations is similar to the
method in [27].

6. Evaluation

This section is the experiment section about transfer learning and ontology learning.
Section 6.1 introduces dataset. In Section 6.2, we conduct five experiments in total. Four
of them are about the TF-Mnt model, they are how the sign of the correlation coefficient
affects the model, how the transfer coefficient affects the model, how the transfer weigh
affects the model and how well our model works compared with other models. The last
one is about learning of relations.

6.1. Dataset and Settings

We select four domains and each of them contains 50 websites. They are from wiki
pages of the Fortune Global 500 companies (shortened as CM), computer science re-
searchers’ profiles pages (shortened as P), famous computer science conferences’ pages
(shortened as CF) and famous computer science journals’ pages (shortened as J). Each
domain has a total of 200 pages, and we manually labeled more than 16,000 data. Table 1



Electronics 2021, 10, 1911 13 of 23

shows the detailed information of our dataset. The reason why we select these four do-
mains is that they are typical. For journal and conference pages, they have high similarity
and they have a simple design and a lot of information. Because they are very formal, their
developers will abide by a strict standard. For wiki pages, they have abundant information.
Constructing ontologies from such pages is difficult because there are too many terms and
relations in each page. For profile pages, there is a lack of standard compared with those
three mentioned above as they are designed for personal use.

Table 1. The statistics of the dataset.

Domain C N I Total

CF 578 417 1261 2256
J 437 186 1796 2419
P 562 329 3503 4394

CM 1557 512 5636 7705
Total 3134 1444 12,196 16,774

We implemented our TF-Mnt model based on Python. The VIPS algorithm is retrieved
from the original paper [10], while the transfer learning algorithm and the relation learning
algorithm based on the maximum entropy model are developed independently. We also
use the Numpy library to improve the efficiency of linear algebra computation, and employ
the BeatifulSoup library to parse XML files, utilize the NLTK library for NLP tasks such
as Lemmatization, and use RdfLib library for ontology generation. Finally, our model is
trained on a computer with Intel(R) Xeon(R) Silver 4110 CPU 2.10 GHz and 128 G memory.

6.2. Results and Discussion

We use precision, recall, F-score and error rate as the criteria to measure the perfor-
mance of our domain-independent ontology learning model. To measure the transfer
learning effect, we use TE= ENo−TF−ETF

ENo−TF
. If TE < 0, then the transfer knowledge’s con-

tribution is negative and vice versa. The higher TE is, the more contributions transfer
knowledge donates and vice versa. Because we use transfer learning framework, it requires
that there is only a small set of labeled data in the target domain. Therefore, we split 20%
of the labeled data as training set and 80% of the labeled data as testing set in a specific
target domain.

6.2.1. Effects of the Correlation Coefficient

According to Section 4.3, when calculating correlation coefficients between domains,
TF-Mnt has an implicit factor: the proportion of labels. Namely, the difference in the
proportion of labels in the training set reflects the different distribution of knowledge that
can be provided to the model. For the TF-Mnt model, the weights of the feature functions
reflect the knowledge learned by the model.

We first conducted experiments on the distribution of label proportions and the
weights of feature functions. The experimental results on four domains are shown in
Figure 4, in which f() is a feature function of word length, y is the category, C stands for
concepts, and I denotes instances. Therefore, Figure 4 contains eight visualization of the
distributions. The horizontal coordinate is the weight of the feature function (WOF) and the
vertical coordinate is the proportion of labels in the training set (POT) corresponding to the
feature function. The results show that there is a distribution between the label proportions
and the weights of the feature functions, which is not scattered and unbounded. There are
a few outliers, but most of them are small probability events. Further analysis shows that
the weights that classified as concept are basically distributed on the positive semi-axis, i.e.,
it means that the text with concept labels have the similar feature of the word length. In
addition, we can observe that in the company domain, the feature function weights are
evenly distributed in the positive and negative halves, while the feature function weights
in the other domains are basically in the positive half. This is because some of the lengths
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of company names are long while concept names in other domains are short, so some of
the feature weights in the company domain are in the negative half-axis.

Then we analyzed the relationship between weight distributions and correlation
coefficients by experiments. As Tables 2 and 3 show, the correlation coefficients between
domains with similar distribution of feature function weights are relatively large and
positive, i.e., they have positive correlation; the correlation coefficients between domains
with some differences in the distribution of feature function weights are relatively small
and negative, i.e., they have negative correlation. Thus, it can be seen that it is feasible to
use correlation coefficients to measure the similarity of feature function weights between
domains. This provides a basis for using the correlation coefficient to filter the feature
function weights in the source domain and select the feature function weights with higher
similarity to those in the target domain for knowledge transferring.

Specifically, first, from Table 2, we can see that the correlation coefficient values
between domains with large differences in distribution (profiles, journals, conferences, and
companies) are negative, while between domains with small differences in distribution, the
correlation coefficient is positive. The correlation coefficient between journal domain and
conference domain is positive and larger, while the correlation coefficient with company
domain is positive but smaller. The correlation coefficient between the conference field
and the company field becomes negative. Second, from Table 3, the correlation coefficients
between the profiles, conferences and company domains are negative. It is not difficult
to find that the distribution of journal domain and profile domain is relatively close. The
distributions of company domain and conference domain are closer. Once again, it is
verified that the correlation coefficient is positive between domains if the distributions of
feature function weights and training set label ratios are relatively close. If the distributions
are somewhat different, the correlation coefficient is negative.

Table 2. The correlation coefficient matrix of the feature function f(x = (1 <# OfWords <= 10) && y = C).

Domain CS-Journals CS-Conferences Wiki-Companies CS-Profiles

CS-Journals - 0.2550 0.0252 −0.0174
CS-Conferences 0.2550 - −0.0860 −0.1042
Wiki-Companies 0.0252 −0.0860 - −0.0252

CS-Profiles −0.0174 −0.1042 −0.0252 -

Table 3. The correlation coefficient matrix of the feature function f(x = (1 <# OfWords <= 10) && y = I).

Domain CS-Journals CS-Conferences Wiki-Companies CS-Profiles

CS-Journals - 0.2875 −0.0579 −0.0315
CS-Conferences 0.2875 - −0.0753 −0.0781
Wiki-Companies −0.0579 −0.0753 - 0.1319

CS-Profiles −0.0315 −0.0781 0.1319 -

Figure 4. Cont.
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Figure 4. The distribution of label proportions and feature function weights.

We then conduct the experiment to verify how the correlation coefficient affects
transfer effect. Figure 5 shows the results of three models with using original ρ (contains
both + and −), only positive ρ+ and only negative ρ−. X-axis illustrates domain selection
represented by A-B form which means the source domain is A and the target domain is B.
Y-axis shows the transfer effect. From Figure 5, in most situations, using ρ+, the model will
show a positive transfer. Once negative correlation coefficients are added into the model
(using original ρ), it will decrease the transfer effect. The model with ρ− has the worst result,
showing a negative transfer phenomenon all the time. Therefore, we can conclude that
positive correlation coefficient has positive contribution in classification and vice versa. We
can explain this phenomenon with the reasoning that because correlation coefficient reflects
linear dependence between two distributions, and if it is negative, the two distributions are
negatively related, which means domain-independent knowledge of a specific dimension
is important in one domain but less important in the other. Therefore, negative correlation
coefficient is a factor leading to negative transfer. In following experiments, if we do not
emphasize, we will set all the negative correlation coefficients to 0.
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Figure 5. The error rate of correlation coefficient selection.

However, there exist three exceptions which are CF-P, J-P and J-CM. Even when using
ρ+, their transfer effects are all negative and these situations are all negative transfers. J
and CF are negative sources of P; J is a negative source of CM. Besides negative correlation
coefficients, we must find other factors that lead to negative transfer.

The purpose of transfer learning is to use a large number of known samples from the
source domain and combine them with a small number of known samples within the target
domain to enhance the classification within the target domain. In traditional machine
learning, the division of the training set and the test set is generally done according to 2:1,
i.e., 66% of the training set 33% of the test set. However, since labels are very valuable,
in transfer learning, the training set of the target domain is very small, and the domain
knowledge it provides is very limited, which is when the importance of transfer knowledge
can be reflected; while if the training set of the target domain is large, it can provide a
large amount of domain knowledge, and the transfer knowledge is weakened to some
extent. This experiment investigates the effect of the proportion of training sets in the target
domain on the transfer effect in this case.

Figure 6 illustrates the relationship between the curves of training set partitioning
and error rate under positive transfer phenomenon. Figure 7 illustrates the relationship
between the curves of training set partitioning and error rate under negative transfer
situations. The horizontal axis represents the proportion of training set partitioning in the
target domain (POT in target), and the vertical axis has different meanings for different
curves. For the curves of non-transfer and transfer, it represents the error rate of both; for
the curve of transfer effect, it represents the magnitude of the transfer effect. The green
curve represents the error rate of non-transfer learning model, the blue curve represents the
error rate of transfer learning model, and the red curve represents the transfer effect. Once
the domain is selected appropriately and positive transfer occurs, the transfer learning
effect is better when the training set division is smaller than the transfer threshold; when
the training set division is larger than the transfer threshold, the difference between the
transfer learning and non-transfer learning models is not large. If negative transfer occurs,
the effect of non-migratory learning is always better than migratory learning.
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Figure 6. The relationship between the training set division and transfer effect in positive transfer.

Figure 7. The relationship between the training set division and transfer effect in negative transfer.

Figure 6 shows the relationship between the training set division and the transfer
effect in the positive transfer phenomenon. From Figure 6a, it can be seen that when
the training set is divided at a ratio less than 0.12, the transfer learning model has better
results, while when the training set division is greater than 0.12, the error rate of both
the transfer learning model and the non-transfer learning model does not change much
with the gradual increase of the training set division, and sometimes the positive transfer
phenomenon is generated, and sometimes the negative transfer phenomenon is generated.
This is because the model has reached a limit for learning domain knowledge, and after
reaching this limit, it is impossible to learn new knowledge by increasing the training
samples. We call this point the transfer threshold of the model, i.e., the transfer threshold is
the point where the transfer effect curve intersects with the horizontal axis for the first time.

Figure 7 shows the relationship between training set partitioning and transfer effect in
the negative transfer phenomenon. It can be seen from Figure 7 that if the negative transfer
phenomenon is generated, the error rate of transfer learning is greater than the error rate of
non-transfer learning from beginning to end, and the transfer effect of the model is less
than 0.

6.2.2. Effects of the Transfer Coefficient

In TF-Mnt, as we define in Section 4.2, (w s_di
)T
·ρ+ is called the transfer coefficient. It is

the product of source domain’s domain-independent parameters and correlation coefficient
vector. In this experiment, we will discuss how this value affects transfer learning. Table 4
illustrates the result of the experiment, where the first column is domain selection like
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the form in Section 6.2.1, the second column is the value of transfer coefficient and the
third column is the transfer effect. Because there are some negative wi in ws_di, the transfer
coefficient may be negative. In Table 4, for a specific target domain, we sort the source
domains by the value of transfer coefficient by an ascending order. In Section 6.2.1, CF-P, J-P
and J-CM appear negative transfer. From the Table 4, we can explain the reason by that the
transfer coefficients of them are too low. We cannot find that transfer coefficient and transfer
effect have a monotone increasing relation and cannot find a critical value to distinguish
negative sources from positive ones for a specific target domain either. However, what we
can find is that if we select source domains with the largest transfer coefficient, the transfer
effect will be good. Therefore, for a target domain, our strategy is to choose the source
domain with the largest transfer coefficient to improve target domain’s learning.

Table 4. The effect of the transfer coefficient.

Domain Selection Transfer Coefficient Transfer Effect

J-CM −0.0680 −0.0347
CF-CM −0.0468 0.0056
P-CM −0.0413 0.0992

J-P −0.1017 −0.1179
CF-P −0.0760 −0.0892
CM-P −0.0399 0.2258
P-CF −0.1167 0.1419
J-CF −0.0958 0.0733

CM-CF −0.0645 0.1906
CF-J −0.0808 0.1766
P-J −0.0700 0.0802

CM-J −0.0645 0.1447

6.2.3. Effects of the Transfer Weight

In TF-Mnt, transfer knowledge and domain knowledge are weighted by a and b. This
experiment will analyze how these weights affect transfer performance. Here we fix b = 1.
Because a and b are linear weights, we can scale them to let b = 1 except the situation
that b = 0. For b = 0, it means only use transfer knowledge to construct model and it is
equivalence to b = 1 and a→ ∞ . For a = 0, this situation means only use domain knowledge
to construct model. Figure 8 shows the result of the experiment, x-axis shows the value of a
and y-axis shows the error rate of the corresponding model. It is clear from the figure that
these curves have different tendency in positive transfer Figure 8a–d and negative transfer
Figure 8e–f.

Figure 8. The effection of the transfer weight.



Electronics 2021, 10, 1911 19 of 23

Figure 8a–d show four positive transfer situations. In positive transfer, the error rate
shows a decreased tendency at first (smaller than the error rate at a = 0, so it is positive
transfer) and then increasing as a becomes larger. Finally, it will approach to an asymptote
which represents the error rate of only using transfer knowledge. In most situations,
effect of only using domain knowledge is better than only using transfer knowledge
because domain knowledge reflects the target domain directly although it learns from a
few labels. However, Figure 8b is an exception, in which effect of the model with only
transfer knowledge is better than the effect of the model with only domain knowledge.
And from Figure 8a–d, we can find when the model reaches the best performance, a
is in (0,+∞), which means only with domain knowledge or transfer knowledge is not
better than combining them together by some weights. Therefore, transfer knowledge and
domain knowledge are all fully used by TF-Mnt model.

Figure 8e,f show two negative transfer situations. In negative transfer, the error rate
increases all the time before approaching to an asymptote which also represents the error
rate of the model with only transfer knowledge. Because they are negative transfer, error
rates are larger than only transferring with domain knowledge all the time. While no
matter in situations of positive transfer or negative transfer, curves will finally approach to
an asymptote.

6.2.4. Model Comparison

Figure 9 is the result of model comparison. We choose four famous traditional machine
learning models, which are decision tree (C4.5), naïve Bayes, support vector machine (SVM)
and Mnt. In this experiment, for a specific target domain, the TF-Mnt model will select the
source domain with the largest transfer coefficient. Five models were used to compare the
precision, recall, F-score and error rate for the four domains. The horizontal coordinates
represent each of the four domains. From Figure 9, it can be concluded that the proposed
model TF-Mnt has the highest F-score and the lowest error rate in the four domains.

Figure 9. Comparison of performances between models.

According to the precision in Figure 9, it can be observed that in the profile domain, the
highest precision is obtained using the SVM model, while in the remaining three domains,
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the highest precision is obtained using the transfer learning model proposed in this paper.
In all domains, the lowest precision is obtained using the decision tree model.

According to the recall in Figure 9, it can be observed that in the journal domain,
the highest recall is obtained using the naïve Bayesian model, the next highest recall is
obtained by the Mnt model, and the transfer learning model and the SVM model are tied
for third place. In the remaining three domains, it is the transfer learning model that has
the highest recalls.

According to the F-score in Figure 9, our TF-Mnt model gets the highest F-Score in
all the four domains while decision tree gets the lowest F-Score. In domain P and C, SVM
model also achieves a good result, and it is almost close to TF-Mnt and the naïve Bayes
model represents well in CM and J. The original Mnt model also has a good performance,
and although it is not the best, it is very stable.

According to the error rate in Figure 9, our model also has the best performance,
getting the lowest error rate in all the situations, while decision tree also performs the
worst. Naïve Bayes, SVM and Mnt are very close with some fluctuations.

In conclusion, TF-Mnt models do learn some knowledge from auxiliary data to im-
prove learning and represent it well in these four domains according to the result of F-score
and error rate but it will cost some extra time to learn the auxiliary knowledge. Decision
tree is not suitable to do this classification as it gets the lowest F-score and the highest error
rate in all the situations. As for naïve Bayes, SVM and Mnt, they can also achieve good
results, but TF-Mnt is better than them.

6.2.5. Ontology Learning

This experiment focuses on learning of relations. However, unlike terms recognition,
relation is transitive. Namely, suppose in an ontology, concept A is a subclass of B and
B is a subclass of C. It is insufficient, if our method only finds A is a subclass of C. Due
to this property, we cannot use binary value to judge the effect of relation learning. To
validate our result more precisely, we introduce two distinct values α and β, where α is
the value for subclass-of relation and β for is-a relation. More specifically, if in an ontology
there is a relation path C1 → C2 → . . .→ Ck → Ik (here C1 → C2 means C2 is a subclass
of C1), the score between (Ci, Cj), where 0 < i < j ≤ k, is αj−i−1 and the score between (Ci,
Ik) is βk−i−1. An ontology can be represented by triple (C, C/I, subclass-of /is-a), while in
ontology validation, we must construct tuple (C, C/I, subclass-of /is-a, S), with an extra
element S which reflects the score of the relation. We set α = β = 0.8 in this experiment.

Table 5 shows the precision, recall, and F-score of ontology learning, which contains
the results of is-a relation learning (the second column), subclass-of relation learning (the
third column) and ontology learning which is the average of terms recognition and learning
of relations (the fourth column). From Table 5, results of is-a relation learning are relatively
good because most instances appear in lists in HTML, and they are easy to capture. Our
methods reach 0.902 F-score in average. However, subclass-of relation learning is not so
good, with only reaching 0.722 F-score in average. Unlike is-a relations, most subclass-of
relations have less structured information. Combining terms recognition and learning of
relations, our domain-independent ontology learning method can learn ontology for a Web
page in a new domain with only a small set of labeled data (5 percentage of dataset in that
domain) with 0.859 F-score in average.

Figure 10 illustrates a real-world example of an ontology about academic conferences,
which is learned automatically by TF-Mnt model. The source domain is computer science
researchers, and the target domain is computer science conferences. In Figure 10, the left
part is the concept hierarchy, and the right part is the relations between concepts, which
contains hierarchy and other relations. We can see that our model can extract ontology
knowledge efficiently and correctly.



Electronics 2021, 10, 1911 21 of 23

Table 5. Performance of ontology learning.

Domain
is-a Relation subclass-of Relation Ontology Learning

P R F P R F P R F

CF 0.894 0.911 0.902 0.754 0.760 0.757 0.873 0.866 0.869
J 0.835 0.918 0.874 0.743 0.768 0.755 0.850 0.875 0.862
P 0.918 0.907 0.912 0.890 0.689 0.745 0.895 0.843 0.868

CM 0.943 0.899 0.920 0.785 0.531 0.633 0.896 0.791 0.837
Avg. 0.897 0.909 0.902 0.773 0.687 0.722 0.879 0.844 0.859

Figure 10. An example of a conference ontology learned by TF-Mnt.

7. Conclusions and Future Work

This paper proposes a domain-independent ontology learning method based on the
Web page vision segmentation and the transfer learning. Our goal is to solve poor learning
effect problem and difficult to generalize problem in traditional ontology learning methods.
We propose a new transfer learning model called TF-Mnt which divides features in different
domains into domain-independent features and domain-dependent features. For a specific
domain, model can transfer knowledge from other domains based on domain-independent
features. The core of transfer knowledge is the correlation coefficient which is a measure
of similarity between two domains and a criterion of the source domain selection. To
apply TF-Mnt in ontology learning, we define semi-structured information in the Web page
as domain-independent features and domain semantic meaning as domain-dependent
features. With TF-Mnt model and features, a classifier can be built and then capture
concepts and instances from Web pages. About learning of relations, the basic idea is to
search some substructures which reflect is-a and subclass-of relations from the vision tree.
With terms and relations, ontologies can be built and stored.

However, there are also some directions that we will study in the future. First, in
ontology learning, because that we use VIPS algorithm to get units for classification and
VIPS algorithm segments a Web page only based on the Web page vision but not by
semantic, some of these units classified to concepts or instances consist of sentences. We
will use some semantic methods and pattern-based methods to deal with these units
by extracting core words in these sentences. For a domain, our approach is not able to
generate a domain ontology, it just constructs ontologies of each Web page. For further use,
these ontologies must be merged together and some inconsistencies and conflicts must be
eliminated and resolved. Second, our transfer learning model is a general framework, so
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we can use other linear models to do the extension such as logistic regression and so on.
We also can use other values to measure the similarity between source domain and target
domain. Also, TF-Mnt can be further extended to support multi sources transfer learning.
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