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Abstract: In this paper, we propose deep multi-image steganography with private keys. Recently,
several deep CNN-based algorithms have been proposed to hide multiple secret images in a single
cover image. However, conventional methods are prone to the leakage of secret information because
they do not provide access to an individual secret image and often decrypt the entire hidden
information all at once. To tackle the problem, we introduce the concept of private keys for secret
images. Our method conceals multiple secret images in a single cover image and generates a visually
similar container image containing encrypted secret information inside. In addition, private keys
corresponding to each secret image are generated simultaneously. Each private key provides access
to only a single secret image while keeping the other hidden images and private keys unrevealed.
In specific, our model consists of deep hiding and revealing networks. The hiding network takes
a cover image and secret images as inputs and extracts high-level features of the cover image and
generates private keys. After that, the extracted features and private keys are concatenated and used
to generate a container image. On the other hand, the revealing network extracts high-level features
of the container image and decrypts a secret image using the extracted feature and a corresponding
private key. Experimental results demonstrate that the proposed algorithm effectively hides and
reveals multiple secret images while achieving high security.

Keywords: steganography; steganalysis; private keys

1. Introduction

Steganography is an algorithm to conceal information within an object while keeping
the object containing the hidden information indistinguishable from the original one.
The main purpose of steganography is to grant access to the hidden information only
to the authorized clients while keeping its content and its presence unrevealed to the
others. Various kinds of carriers such as physical objects, texts, sounds, and network
packets have been utilized to safely conceal and deliver confidential data. Among them, a
digital image is one of the widely used carriers in recent digital steganographic algorithms
(i.e., image steganography).

Conventional image steganography methods usually aim at hiding secret messages
within a cover image. To this end, various studies including spatial domain-based meth-
ods [1,2] and frequency domain-based methods [3–7] have been actively conducted, and
remarkable results have been achieved. Although there has been tremendous progress
in image steganography, there is still a limitation in hiding a large amount of data. Re-
cently, several studies have tried to hide full-size secret images inside a cover image using
deep CNN [8–10]. These methods are completely different from the conventional image
steganography approaches. The deep learning-based steganography method usually con-
sists of a hiding network and a revealing network. The hiding network takes a cover
image and a secret image as inputs then creates a container image by hiding the secret
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image into the cover image. The revealing network extracts a hidden secret image from the
container image.

With deep learning-based works, it was demonstrated that full-size images can be
concealed in a single cover image with minimal quality loss. However, most studies
are designed to hide one secret image in the cover image. Hiding [10] extended the
image steganography model to hide multiple image simultaneously as shown in Figure 1a.
Unfortunately, it contains only a single reveal network, which may cause a critical security
problem. In specific, the revealing network does not consider the extraction of a subset
of secret images, and it just extracts the entire hidden images together at the decoding
stage. Therefore, it is not possible to assign specific access permission for a subset of hidden
images depending on the security level. One of the simple workarounds is preparing
multiple reveal networks for each secret image as shown in Figure 1b, however, it leads
to increased memory usage and can expose the number of hidden images that must be
kept unrevealed.

Figure 1. Comparison of image steganography models. (a) The conventional model does not
provide individual access to each secret image. (b) The model has multiple revealing networks to
extract hidden images, separately. (c) Our model supports individual access to secret images with
private keys.

In [11], secret messages are hidden in a cover image by a private key, and those secret
messages can be only accessed by using the correct private key. In this study, inspired
by [11], we introduce the concept of the private key to multi-image steganography. As
shown in Figure 1c, our steganography model consists of a hiding network and a reveal
network. In the hiding step, the hiding network conceals multiple secret images into a
cover image and produces private keys for each secret image. Each secret key is passed
along with the container image to an account with access rights. In the revealing step, the
target secret image can be obtained by feeding the container image and a private key to the
revealing network. As a result, the proposed steganography model can achieve a high level
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of security and efficiency while successfully hiding multiple secret images in a single cover
image. Experimental results demonstrate that our method is very effective and versatile
compared to previous image steganography models. To the best of our knowledge, this
paper is the first attempt to utilize the concept of the private key in the field of image
steganography that conveys multiple images, not messages.

Our main contributions can be summarized as follows: (i) We introduce a concept of
the private key for the multi-image steganography problem. (ii) Unlike previous image
steganography methods, our model can provide access right to the secert image for only
authorized people. (iii) In addition, our model makes it possible to extract only quaried
secret image without revealing other hidden images.

2. Related Works

In this section, we review conventional steganography methods based on both spatial
domain and frequency domain, and recent deep learning-based methods.

As a pioneering work, Mielikainen [1] proposed an LSB (Least Significant Bit)-based
method that adjusts the value of the least significant bit in the spatial domain of cover image
to hide secret messages. Wu and Tsai [2] designed a PVD (Pixel Value Differencing)-based
method that inserts secret data according to the difference in pixel values. However, these
methods are vulnerable to well-designed steganalysis techniques [12–14]. Therefore, there
have been various efforts including HUGO (Highly Undetectable steGO) [3], UNIWARD
(UNIversal WAvelet Relative Distortion) [4], and WOW (Wavelet Obtained Weights) [5] to
utilize the LSB of high-frequency components that are difficult to detect. Moreover, Chen
and Lin [6] proposed a method that manipulates coefficients of the DWT (Discrete Wavelet
Transform) and Kaur et al. [7] suggested a steganographic approach that embeds data in
the mid-frequency band of the DCT blocks.

With recent progress of deep learning, there have been significant research achieve-
ments on various computer vision fields. Although it is not much compared to other fields,
recent attempts to utilize deep learning technologies for steganography problems have
increased. Baluja [8] introduced a deep steganography model that produces a container
image by hiding a full-size image into a cover image. The hidden image can be extracted
from the container image with a reveal network. Duan et al. [9] also proposed a new image
steganography scheme based on a U-Net structure. Furthermore, Baluja [10] has shown
that a deep CNN-based steganography model can hide multiple images into a single cover
image as shown in Figure 1a. However, this method extracts all the hidden images at once.
In other words, it cannot be utilized in a situation that we want to extract only one hidden
query image and conceal the rest hidden images. To overcome above limiation, we propose
a concept of private keys in the multi-image steganograpy task. With our method, it is
possible to access only one hidden image without touching and revealing the other images.

3. Methods

In this section, we detail our steganography model consisting of a hiding network
and a reveal network. We then describe the training processes of the proposed model. The
overall pipeline of the proposed steganography model is illustrated in Figure 2.

3.1. Hiding Network

The hiding network takes a cover image C ∈ R256×256×3 and N secret images S =
{Sn}N

n=1 ∈ R256×256×3 as inputs, then produces a container image C′ ∈ R256×256×3 and
private keys K = {Kn}N

n=1 for each secret image Sn as follows:

{C′,K} = f
(

C,S ; φ f

)
, (1)

where φ f denotes the trainable parameters of the hiding network f (·). The container
image C′ is visually indistinguishable to the input cover image C and holds the hidden
information of the secret images S . While not being sensitive to the architectural designs,
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we adopt the U-Net structure [15] for the hiding network. We note that a single U-Net based
hiding network is shared across the input images (i.e., cover image and multiple secret
images). The encoder consists of a series of strided seven 4 × 4 convolution layers [16],
LeakyReLU [17], and batch normalization [18] while the decoder is composed of a series of
seven 4 × 4 deconvolution layers [19], ReLU [20], and batch normalization. Also, there are
ReLU and Sigmoid layers respectively instead of LeakyReLU and ReLU layers at the last of
the encoder and decoder. The visual features of each image are extracted by forwarding
the cover image C and secret images S respectively. Then all extracted visual features from
the encoder are concatenated along the channel dimension and passed into the decoder
to produce a container image C′. Note that visual features of the secret image Sn from
the encoder are used as its private key Kn. Architecture details of the hiding network are
presented in Table 1.

Figure 2. Overall pipeline of our steganography model. In the hiding network, the encoder takes a
cover image and secret images as inputs and produces visual features for each image. Then decoder
takes the concatenated visual features and produces a container image. The visual features of secret
images are used as private keys. The revealing network takes a container image and a query private
key as inputs then extracts a hidden secret image corresponding to the query private key.
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Table 1. Hiding Network Architecture.

Step Feature-Map (W × H× D) Output

4 × 4 Conv+BN+LeakyReLU
4 × 4 Conv+BN+LeakyReLU
4 × 4 Conv+BN+LeakyReLU
4 × 4 Conv+BN+LeakyReLU
4 × 4 Conv+BN+LeakyReLU
4 × 4 Conv+BN+LeakyReLU

4 × 4 Conv+ReLU

128 × 128 × 64
64 × 64 × 256
32 × 32 × 512
16 × 16 × 512

8 × 8 × 512
4 × 4 × 512
2 × 2 ×512

2 × 2 × 512

4 × 4 TransConv+BN+LeakyReLU
4 × 4 TransConv+BN+LeakyReLU
4 × 4 TransConv+BN+LeakyReLU
4 × 4 TransConv+BN+LeakyReLU
4 × 4 TransConv+BN+LeakyReLU
4 × 4 TransConv+BN+LeakyReLU

TransConv+ReLU

4 × 4 × 512
8 × 8 × 512

16 × 16× 512
32 × 32 × 256
64 × 64 × 128
128 × 128 × 64
256 × 256 × 3

256 × 256 × 3

3.2. Revealing Network

In the revealing stage, the revealing network extracts a secret image corresponding to
a query private key from the container image as follows:

S′n = g
(
C′, Kn; φg

)
, (2)

where φg is the trainable parameters of the reveal network g(·). To be specific, the revealing
network consists of six 3 × 3 convolutional blocks without downsampling. Therefore, the
spatial dimension is maintained while passing through the revealing network. As shown
in Figure 2, the query private key is resized to the same spatial size using nearest interpo-
lation as the output of the third convolution layer, then concatenated with intermediate
activations of the container image obtained from the revealing network. Finally, a hidden
secret image S′n ∈ R256×256×3 corresponding to the query private key Kn is reconstructed.
Architecture details of the revealing network are presented in Table 2.

Table 2. Revealing Network Architecture.

Step Feature-Map (W × H × D) Output

3 × 3 Conv+BN+ReLU
3 × 3 Conv+BN+ReLU
3 × 3 Conv+BN+ReLU
3 × 3 Conv+BN+ReLU
3 × 3Conv+BN+ReLU
3 × 3 Conv+Sigmoid

256 × 256 × 64
256 × 256 × 128
256 × 256 × 256
256 × 256 × 128
256 × 256 × 64
256 × 256 × 3

256 × 256 × 3

3.3. Training

Both hiding and reveal networks are trained in an end-to-end manner. The loss
function of our steganography model is defined as follows:

L = E

[∥∥C′ − C
∥∥+ β

N

∑
n=1

∥∥S′n − Sn
∥∥], (3)

where β is a weighting coefficient for balancing two terms in (3). We set β = 0.75 in our
all experiments.
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4. Experimental Results

For training, we have randomly collected 20,000 training images from MS-COCO train
dataset, 5000 validation images from MS-COCO validation dataset, and 5000 test images
from the MS-COCO test dataset [21]. All the images are resized to 256× 256 using bicubic
interpolation. Our method is implemented using PyTorch on Ubuntu 18.04 with a Titan
RTX GPU. The proposed model is trained for 100 epochs with an Adam optimizer [22]
with the learning rate 1× 10−3. The learning rate is multiplied by 0.2 when the loss has
stopped decreasing.

4.1. Model Analysis

We first have investigated which feature layer is useful for the private key generation.
For this purpose, we compare the performance with private keys selected from the output
features of the penultimate (Kp ∈ R4×4×512) and the last (Kl ∈ R2×2×512) layers of the
encoder. We have trained two networks with each private key to hide 1–5 images. Each
network is evaluated by comparing PSNR [23] and SSIM [24] of the container and retrieved
images with corresponding original images by using correct and random keys. As shown
in Table 3, Kp and Kl show similar performance with N = 1 regardless of the key size. With
the increasing number of hidden images, however, Kp still shows reliable performance
while Kl suffers from severe performance degradation. This behavior is expected because
the same amount of information should be reconstructed with the less amount of private
key information for Kl compared with Kp. Also, as reported in the third column of Table 3,
we obtain poor quantitative results when random keys are used. It shows that only the
authorized private key can access the hidden image.

Table 3. Quantitative results for both Kp and Kl according to N. There are also results of revealed
secret images with random keys.

N
C vs. C′

(PSNR/SSIM)
S vs. S′

(PSNR/SSIM)
S vs. S′ with Random Key

(PSNR/SSIM)

Kp Kl Kp Kl Kp Kl

1 34.54/0.9780 33.67/0.9707 36.55/0.9371 34.70/0.9269 13.79/0.5399 16.48/0.5012
2 33.05/0.9292 30.45/0.9103 28.31/0.8651 26.01/0.8749 9.03/0.2923 12.09/0.4264
3 30.58/0.9121 28.45/0.8748 27.70/0.8098 24.61/0.7317 10.74/0.2213 11.41/0.3838
5 28.25/0.8549 27.02/0.8434 23.25/0.6267 20.10/0.5159 11.10/0.1984 10.66/0.2641

Figure 3 shows encryption and decryption results of the proposed algorithm with
N = 3. In most cases, we successfully generate container images with minimum distortion
compared to cover images regardless of the private key size. For the extraction of secret
images, each private key accurately reconstructs the corresponding original hidden image.
In particular, Kp successfully extracts all of the secret images with high quality compared to
those extracted with Kl due to the high capacity of private keys (i.e., 4× capacity). Note that
decrypted images with Kl often suffer from slightly blurry and noisy images. In addition,
visual artifacts originated from the other secret images are often observed too. Furthermore,
we verify the robustness of our algorithm by feeding random private keys to the revealing
network together with the container image. Regardless of the capacity of private keys,
secret images are not correctly extracted with random private keys as shown in Figure 3.
In detail, the extracted images severely suffer from mixed textures and noises and it makes
the hidden information indistinguishable. Therefore, these results prove that the proposed
algorithm can provide permission for a certain hidden image to an authorized person.
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Figure 3. Qualitative Results of our steganography model when N = 3. Two types of key size were
tested. The three examples above are the original cover and secret images. The three examples
middle are the results of using Kp, and the three examples below are the results of using Kl .

4.2. Robustness to Steganalysis

As conducted in [8], we investigate the robustness of our method against StegEx-
pose [25], which is a popular LSB-based steganalysis method. If the existing staganalysis
technique does not distinguish the container image and the cover image well, it can be
regarded that the proposed method hides the secret images well. For experiments, we
utilize 200 pairs of cover and container images to obtain receiver operating characteristic
(ROC) curves with varying threshold values. As shown in Figure 4a, ROC curves with
both Kp and Kl are close to the case of a random guess (i.e., a straight diagonal line). It
means that the proposed method hides secret images well because performance of the
steganalysis is similar to random guessing. Also, area under the curve (AUC) values for
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both Kp and Kl are very low along with N, as illustrated in Figure 4b. These experimental
results show that the proposed method is quite robust to the common steganalysis method
regardless of the size of the private key.
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Figure 4. (a) ROC curves according to the size of the key. (b) Area under the curve (AUC) values
according to N (Red: Kp, Blue: Kl).

4.3. Effects of Noise

To verify the susceptibility of our algorithm to private key contamination, we per-
form experiments to check how well the revealing network extracts hidden images when
noise is added to the private key. To this end, we extracted secret images using private
keys with noises. In particular, we added Gaussian or salt-and-pepper (S&P) noises to
private keys with various noise levels, and extracted secret images with contaminated keys.
Quantitatively, performances decrease as the noise level increases as shown in Figure 5. In
particular, in the case of Gaussian noise, we can check that Kp is more susceptible to high
noise levels compared to Kl . Meanwhile, there is not much visual distortion at low noise
levels as shown in Figure 6c,f. In other words, the private key can withstand a low level of
noise, but it is difficult to extract the original secret image when the noise is severe.
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contaminated by various noises. (Red: Kp, Blue: Kl).
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Figure 6. Results of inserting private key (Kp) with noise when N = 3. (a) Original secret images.
(b) Results from noise-free private keys. (c–e) Results from private keys with Gaussian noise (σ = 0.1,
1, 3). (f–h) Results from private keys with S&P noises (density = 5%, 10%, 50%).

5. Conclusions

In this paper, we extended the concept of the private key to the multi-image steganog-
raphy, which hides multiple secret images within a single cover image. Our steganography
model takes stack of secret images and a cover image as inputs then produces a container
image and private keys for each secret image. In order to extract a secret image from
the container image, the corresponding private key is required. The proposed model
provides a hidden image only when a proper private key is provided, and does not disclose
information about other hidden images. Through extensive experiments, we verified the
effectiveness of our method under various conditions (i.e., random key and noisy key).
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