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Abstract: This paper studies the design scalability of a Γ-shaped piezoelectric energy harvester
(ΓEH) using the generalized classical Ritz method (GCRM) and differential evolution algorithm. The
generalized classical Ritz method (GCRM) is the advanced version of the classical Ritz method (CRM)
that can handle a multibody system by assembling its equations of motion interconnected by the
constraint equations. In this study, the GCRM is extended for analysis of the piezoelectric energy
harvesters with material and/or orientation discontinuity between members. The electromechanical
equations of motion are derived for the PE harvester using GCRM, and the accuracy of the numerical
simulation is experimentally validated by comparing frequency response functions for voltage and
power output. Then the GCRM is used in the power maximization design study that considers four
different total masses—15 g, 30 g, 45 g, 60 g—to understand design scalability. The optimized ΓEH
has the maximum normalized power density of 23.1 × 103 kg·s·m−3 which is the highest among the
reviewed PE harvesters. We discuss how the design parameters need to be determined at different
harvester scales.

Keywords: piezoelectric energy harvester; generalized classical Ritz method; shape optimization;
differential evolution; normalized power density; design scalability

1. Introduction

The high demand for self-powered electronic devices, such as sensors and small
electronics, has increased and energy harvesting is expected to gain more attraction. Piezo-
electricity is one of the energy conversion principles used in energy harvesting systems,
and it has shown advantages such as a high voltage output and ease of fabrication both
in macro- and microscales [1–3]. These advantages have led to the use of piezoelectricity
in various energy harvesting applications, and their design studies—structural modifi-
cations and electric circuit designs—have been actively conducted during the last two
decades [4,5]. Previous piezoelectric energy (PE) harvesting studies considered various
dynamic energy sources, such as HVAC (heating, ventilation, and air conditioning) systems
(outdoor condensing unit, duct, compressor, pipe, fan belt cage) [6–8], human motions
(vibration [9,10] and shoe compression [11–13]), pavements (or tiles) [14–17], vibrating
bridges [18], wind-induced motions [19–21], raindrops [22,23], tires [24], and even inside
human bodies [25–28]. The aforementioned works developed numerical models for PE
harvesters and performed design studies to reduce the development cost while satisfying
the power requirement.

There are three typical methods to develop numerical models for PE harvesters: the
finite element method (FEM) [29,30], analytical methods [1,31–33], and the classical Ritz
method (CRM) [1,34–39]. Each method has its advantages and disadvantages. The FEM
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is advantageous in modeling complicated features such as multiple materials, complex
geometric profiles, and various boundary conditions. However, the FEM inherently needs
a large number of degrees of freedom (DOFs) and is computationally inefficient [39–42].
The analytical method shows high computational efficiency, but it is limited to a system
having simple structural configurations and a limited number of boundary conditions.
The CRM is a preferred method for a model with a moderate geometry complexity and
multimaterial configuration, e.g., a two-segment self-charging piezoelectric cantilever [34].
Besides, the CRM does not need many DOFs and has excellent computational efficiency
compared to the FEM. Meirovitch and Kwak [39] showed that the convergence speed of
the CRM is faster than that of the FEM in the modal analysis for a nonuniform rod in
axial vibration. Morales [38] demonstrated how the CRM can be used for N-story framed
structures and showed a faster convergence speed of the CRM than FEM. However, there
are two disadvantages of the CRM: (1) admissible trial functions satisfying all the geometric
boundary conditions of the system must be used to approximate the deformation field, and
(2) for systems consisting of multiple bodies as in [38], the so-called kinematical procedure,
which represents kinematical quantities (i.e., displacement, velocity, and acceleration) of
a certain body based on the adjoining body, has to be included in a derivation process of
equations of motion to satisfy the compatibility condition. Given that the aforementioned
disadvantages prevent the CRM being used to model general systems having multiple
structures and many PE harvesters that consist of multiple structures (e.g., L-shape [32,33],
M-shape [43,44], zigzag [45–47], E-shape [48], multiple cantilevers [49], and Γ-shape in this
study) have better performance than a cantilever PE harvester in terms of power output or
broadband characteristic, the CRM needs to be upgraded.

Jeong and Yoo [41,42] developed a modified version of the CRM, so-called generalized
CRM (GCRM), that always uses the same set of trial functions regardless of the system.
Their studies focused on modeling and analyzing structures with geometrical nonlinearity.
This study extends the use of GCRM for electromechanical linear PE harvesters with general
geometry, by including the piezoelectric constitutive relations. For simplicity, the proposed
modified GCRM for PE harvesters is referred to as GCRM-P hereafter. The efficiency of the
proposed GCRM-P method enables its smooth adaptation to a shape optimization process
for PE harvesters to enhance design compactness and durability while meeting power
requirements. This paper performs a design optimization study for a specific harvester
configuration named Γ-shaped PE harvester (ΓEH) that assembles two uniform beams at a
right angle (90◦) (Figure 1a). This configuration has uniform strain distribution along its
vertical structure, whereas a cantilevered PE harvester (CEH) (Figure 1b) has nonuniform
strain distribution. The ΓEH is analyzed using the GCRM-P model and experimentally
validated by comparing the voltage frequency response. In the design optimization study,
four different mass constraints (15 g, 30 g, 45 g, 60 g) are considered, to understand
design scalability. Furthermore, the energy harvesting performance of its optimal design is
evaluated based on the normalized power density (NPD) [4,50].

The goals of this study are summarized as follows:

• Development of a GCRM-P model to predict linear electromechanical behaviors of PE
harvesters having multiple structural members,

• Experimental validation for the GCRM-P model in terms of energy harvesting
performance,

• Study of design scalability—design optimization of ΓEH under different mass scales,
and comparison of the power output performance with the other recent PE har-
vester studies.
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Figure 1. Configurations for (a) proposed Γ-shaped piezoelectric energy harvester (ΓEH) and
(b) cantilever-shaped piezoelectric energy harvester (CEH). Both systems consist of piezoelectric
layers, substrate layer, and tip mass. The CEH consists of a single beam whereas the ΓEH consists of
two beams which are perpendicular to each other.

2. Generalized CRM for Piezoelectric Harvester (GCRM-P)

This section derives electromechanical equations of motion for a piezoelectric har-
vester system using GCRM-P. The system is assumed to exhibit 2D linear stress−strain
behavior and the material properties are assumed to be constant. We also assume that the
beam is so slender that the rotary inertia effect of the cross-section is negligible. In the
piezoelectric beam, the perfect bonding condition is assumed between the piezoelectric
and substrate layers.

2.1. Description for a Unit Element

Figure 2 shows the configuration of a unit piezoelectric beam element (before and
after deformation) as well as its electrical connection to a load resistor. The beam element
is a composite having both piezoelectric layers (top and bottom layers) and substrate layer
(middle layer). In Figure 2a, the coordinate system (n̂1, n̂2) is fixed to the Newtonian
reference frame (N) with the origin point of O, one local coordinate system (ĝ1, ĝ2) is
fixed to the ground (G) with the origin point of OG. VX(t) and VY(t) describe the velocity
components of the ground along ĝ1 and ĝ2, respectively. The other local coordinate system

(ê(k)1 , ê(k)2 ) is fixed to the kth beam element (E(k)) with the origin point of O(k). A generic

point P(k)
0 between two nodal points N(n) and N(n+1) lies on the neutral axis of the beam,

and is distanced from O(k) by x(k) along ê(k)1 . The displacement vectors of P(k)
0 , N(n),

and N(n+1) are given as u(k)
0

(
x(k), t

)
ê(k)1 + w(k)

0

(
x(k), t

)
ê(k)2 , X(n)(t)ĝ1 + Y(n)(t)ĝ2, and

X(n+1)(t)ĝ1 + Y(n+1)(t)ĝ2. The initial angle between ĝ1 and ê(k)1 is denoted as φ(k), and

the rotations at P(k)
0 , N(n), and N(n+1) are given as θ(k)

(
x(x), t

)
, Θ(n)(t), and Θ(n+1)(t).
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The nodal masses at N(n) and N(n+1) are denoted as M(n), M(n+1) and their moments of
inertia along n̂3 (=n̂1 × n̂2) is given as I(n), I(n+1), respectively. The load resistance R(k) in
Figure 2b can be connected in either serial or parallel depending on the choice of the poling
direction of the piezoelectric material and the wiring between the layers.
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Figure 2. (a) Configuration of the unit piezoelectric beam element before and after deformation.
(b) Two possible choices of electrical connection: series and parallel connections of the piezoelectric
layers. The arrows show the poling directions of the piezoelectric layers.

2.2. Electromechanical Energy Formulations

According to [1], the potential energy term U(k) where the piezoelectric constitutive
relation is

U(k) =
1
2

∫ L(k)

0


Y(k)

S

(
A(k)

S

(
u(k)

0
′
(

x(k), t
))2

+ I(k)S

(
w(k)

0
′′
(

x(k), t
))2

)
+2cE,(k)

11

(
A(k)

P

(
u(k)

0
′
(

x(k), t
))2

+ I(k)P

(
w(k)

0
′′
(

x(k), t
))2

)
−2J(k)P,eqv(k)(t)w(k)

0
′′
(

x(k), t
)

dx(k) (1)
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where L(k) is the length of the beam and v(t) is the voltage across the load resistance.
The superscripts (′) and (′′ ) denote that the variable is differentiated with respect to the
spatial variable x(k) once and twice, respectively. Y(k)

S and cE,(k)
11 are the elastic moduli of

the substrate and piezoelectric layers. The superscript E in cE,(k)
11 denotes that the constant

is evaluated at the constant electric field. A(k)
S and A(k)

P are the areas of the cross-sections of
the substrate and piezoelectric layers, given as

A(k)
S = b(k)h(k)S (2)

A(k)
P = b(k)h(k)P (3)

where b(k) is the width of the beam, and h(k)S and h(k)P are the thicknesses of the substrate

and piezoelectric layers. I(k)S and I(k)P are the second moments of area for the substrate and
piezoelectric cross-sections as

I(k)S = b(k)
∫ h(k)S /2

−h(k)S /2

(
y(k)

)2
dy(k) (4)

I(k)P = b(k)
∫ h(k)S /2+h(k)P

h(k)S /2

(
y(k)

)2
dy(k) (5)

where y(k) is the location of the generic point along ê(k)2 . J(k)P,eq is the equivalent coupling
term for the voltage and the bending deformation, selected as:

J(k)P,eq =

{
J(k)P in series connection

2J(k)P in parallel connection
(6)

where

J(k)P = b(k)
(∫ h(k)S /2+h(k)P

h(k)S /2
y(k)dy(k)

)(
e(k)31

2h(k)P

)
(7)

The kinetic energy term TE(k) for the element is

TE(k) =
1
2

∫ L(k)

0
η(k)


( .

u(k)
0

(
x(k), t

))2
+
( .

w(k)
0

(
x(k), t

))2
+ VX(t)

2 + VY(t)
2

2
.
u(k)

0

(
x(k), t

)(
VX(t) cos φ(k) + VY(t) sin

(
φ(k)

))
+2

.
w(k)

0

(
x(k), t

)(
−VX(t) sin φ(k) + VY(t) cos

(
φ(k)

))
dx(k) (8)

and the kinetic energy terms TN(n) and TN(n+1) for the nodes are

TN(n) =
1
2

M(n)

((
VX(t) +

.
X
(n)

(t)
)2

+

(
VY(t) +

.
Y
(n)

(t)
)2
)
+

1
2

I(n)
(

.
Θ

(n)
(t)
)2

(9)

TN(n+1) =
1
2

M(n+1)

((
VX(t) +

.
X
(n+1)

(t)
)2

+

(
VY(t) +

.
Y
(n+1)

(t)
)2
)
+

1
2

I(n+1)
(

.
Θ

(n+1)
(t)
)2

(10)

where . denotes time differentiation and η(k) is the mass per unit length given as

η(k) = b(k)
(

A(k)
S + 2A(k)

P

)
(11)
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The internal electrical energy in the piezoelectric layers is given as

W(k)
ie = J(k)P v(k)(t)

∫ L(k)

0
w(k)

0
′′
(

x(k), t
)

dx(k) +
1
2

C(k)
P,eqv(k)(t)2 (12)

C(k)
P,eq is the equivalent internal capacitance of the piezoelectric layer given as

C(k)
P,eq =

C(k)
P
2 in series connection

2C(k)
P in parallel connection

(13)

where

C(k)
P =

L(k)b(k)εS,(k)
33

h(k)P

(14)

and ε
S,(k)
33 is the permittivity of the piezoelectric material at constant strain.

2.3. Constraint Equations

The GCRM uses constraint equations and the Lagrange multiplier method to meet
compatibility and boundary conditions. The constraint equations for the unit element in
Figure 1a are given as

CE(k)
1 : u(k)

0 (0)−
(

X(n) cos φ(k) + Y(n) sin φ(k)
)

= 0 (15)

CE(k)
2 : u(k)

0

(
L(k)

)
−
(

X(n+1) cos φ(k) + Y(n+1) sin φ(k)
)

= 0 (16)

CE(k)
3 : w(k)

0 (0)−
(
−X(n) sin φ(k) + Y(n) cos φ(k)

)
= 0 (17)

CE(k)
4 : w(k)

0

(
L(k)

)
−
(
−X(n+1) sin φ(k) + Y(n+1) cos φ(k)

)
= 0 (18)

CE(k)
5 : w(k)

0
′(0)−Θ(n) = 0 (19)

CE(k)
6 : w(k)

0
′
(

L(k)
)
−Θ(n+1) = 0 (20)

The constraint equations impose the continuity of DOFs across the neighboring el-
ements. The boundary conditions can be applied by assigning corresponding values to
Equations (15)–(20). For example, a fixed-free boundary condition can be implemented by
setting X(n) = Y(n) = Θ(n) = 0 in Equations (15), (17) and (19).

2.4. Spatial Discretization and Electromechanical Equations of Motion

The deformation variables u(k)
0

(
x(k), t

)
and w(k)

0

(
x(k), t

)
are approximated as follows:

u(k)
0

(
x(k), t

)
=

ν(k)

∑
i = 1

Φ(k)
i

(
x(k)

)
p(k)i (t) (21)

w(k)
0

(
x(k), t

)
=

µ(k)

∑
i = 1

Φ(k)
i

(
x(k)

)
q(k)i (t) (22)

where p(k)i (t) and q(k)i (t) are the coordinates for the deformation variables and Φ(k)
i

(
x(k)

)
are trial functions. The choice of the trial function affects the rate of convergence, compu-
tational time, and numerical stability [51]. Different from the CRM, the GCRM can use
nonadmissible trial functions. Among others, this study selects the Legendre polynomials
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(Figure 3) that were successfully used for both GCRM-based static [41] and dynamic [42]
analyses. A mathematical expression for the Legendre polynomials is given as follows:

Φ(k)
i

(
x(k)

)
=

i−1

∑
j = 0

(
i− 1

j

)2
(

x(k)

L(k)
− 1

)i−j−1(
x(k)

L(k)

)j

(23)

where
(

a
b

)
is the binomial coefficient, or a!

a!(a−b)! where ! denotes the factorial of the

given integer.
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Figure 3. Graphical representation for the first four Legendre polynomials used to approximate the
deformation variables of the beam element.

According to the electromechanical Lagrange equations of motion with Lagrange
multipliers, we have

d
dt

∂

(
Ne
∑

k = 1
TE(k)+

Nn
∑

n = 1
TN(n)

)
∂

.
ξ

−
∂

(
Ne
∑

k = 1
TE(k)+

Nn
∑

n = 1
TN(n)

)
∂ξ

+
∂

Ne
∑

k = 1
U(k)

∂ξ −
∂

Ne
∑

k = 1
W(k)

ie

∂ξ −
Ne
∑

k = 1

6
∑

j = 1
λ
(k)
j

∂CE(k)
j

∂ξ = γ

(24)

where Ne and Nn are the total numbers of elements and nodes. In Equation (24), ξ rep-
resents a coordinate in the system, i.e.,

(
p(k)1 (t), · · · , p(k)

ν(k)
(t)
)

,
(

q(k)1 (t), · · · , q(k)
µ(k)(t)

)
,(

X(n), Y(n), Θ(n)
)

, and v(k)(t). γ represents either a mechanical forcing function (when ξ

is a coordinate for displacement) or an electrical charge output (Q(k)(t)) of the piezoelectric
layers (when ξ = v(k)(t)). It is noted that the mechanical forcing effect by ground movement
is already included in the kinetic energy formulations.

Between the two types of usual damping mechanisms—viscous air damping and
strain-rate damping—only the latter one is considered because the system is assumed not
to be operated in viscous fluids or microscale devices. The strain-rate damping effect is
modeled by adding the modal damping matrix to the derived equations of motion [1,52].
Following previous studies [31,36,53], the modal damping ratio of 0.025 is employed for
the first mode response.
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3. System Descriptions for the ΓEH
3.1. Uniform Strain Distribution in Γ-Shaped Structure

The CEH and ΓEH consist of piezoelectric and substrate layers and tip mass. In this
section, however, the simplified structures without the piezoelectric layers and tip mass
are analyzed for the simplicity of the analysis (detailed analysis and design are conducted
in Section 4). Figure 4a shows the simplified CEH whose length, Young’s modulus, and
the second moment of the cross-section area are LC, EC, and IC. xC is the coordinate of
the arbitrary point from the origin point OC along ĉ1 axis. Similarly, Figure 4b shows
the simplified ΓEH whose vertical length, horizontal length, Young’s modulus, and the
second moments of the vertical and horizontal beams’ cross-section areas are LΓ,V, LΓ,H,
EΓ, IΓ,V, and IΓ,H. xΓ,V is the coordinate of the arbitrary point on the vertical beam from the
origin point OΓ along γ̂1 axis. The vertical beam is to be implemented as a piezoelectric
sandwiched beam (Section 4).
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Figure 4. Simplified structures for (a) CEH and (b) ΓEH. L, E, I, F, δ, and O are the length, Young’s
modulus, second moment of the cross-section area, applied load, tip displacement, and origin point.
The subscripts C, Γ, Γ, V, and Γ, H denote cantilever, Γ-shaped structure, vertical beam of the Γ-shaped
structure, and horizontal beam of the Γ-shaped structure.

This section performs a simply static analysis to explain how a uniform strain is
generated in ΓEH. In both structures in Figure 4, the tip load F is applied so that it causes
the tip displacements, δC and δΓ, respectively. The internal moments from each structure
are given as

MC(xC) = −F(LC − xC) (25)

MΓ,V(xΓ,V) = −FLΓ,H (26)

Based on the Euler−Bernoulli beam theory, the curvatures are represented as

wC
′′ (xC) =

MC(xC)

EC IC
(27)

wΓ,V
′′ (xΓ,V) =

MΓ,V

EΓ IΓ,V
(28)
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where w is the transverse displacement and the superscript (′′ ) means that the variable
is differentiated with respect to the spatial variable (xC or xΓ,V) twice. Substituting Equa-
tions (25) and (26) into Equations (27) and (28) gives

wC
′′ (xC) =

−F(LC − xC)

EC IC
(29)

wΓ,V
′′ (xΓ,V) =

−FLΓ,H

EΓ IΓ,V
(30)

To conclude, the bending curvature of the cantilever (wC ′′ ) linearly decreases, whereas
that of the vertical beam in Γ-shaped structure (wΓ,V ′′ ) is constant and uniform. The
uniform curvature results in a uniform strain distribution and higher power generation.
It is noted that one previous study—the L-shaped PE harvesters [32,33]—had a similar
angled geometry, but had a different contribution to increase the bandwidth.

It is necessary to validate the uniform strain distribution of the Γ-shaped structure by
finite element analysis (FEA). For the FEA analysis, a commercial software ANSYS v19.2
(Ansys, Inc., Canonsburg, PA, USA) was employed to conduct a static analysis. In the FEA
model, 1500 and 3764 quadratic hexahedron solid elements were used for the simplified
CEH and ΓEH, respectively. The specifications in terms of geometry and material are
not given here because the point of this FEA is to show the uniform strain distribution
of the proposed structure rather than values. Figure 5 shows the strain distributions,
boundary conditions, and loading conditions of the FEA models. The color in Figure 5
shows the magnitude of the von Mises strain induced by the applied static load F (the red
and blue colors mean high and low strains). It is noted that the simplified CEH had the
nonuniform strain distribution in its longitudinal direction as predicted in the analytical
solution (Equation (29)), i.e., its strain varied from high (red) to low (blue) along the
longitudinal direction (Figure 5a), whereas the simplified ΓEH had the uniform strain
distribution (Figure 5b) in its vertical beam.
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3.2. Configuration of Γ-Shaped Harvester

The configuration of the ΓEH is given in Figure 6. The PIC151 ceramic (PI-Ceramic
GmbH, Lederhose, Germany), polylactic acid (PLA), and lead were used for the piezo-
electric layers, substrate layers, and tip mass, and their material properties (Table 1) were
assigned to the numerical model. The piezoelectric layers were placed only in the vertical
part where a uniform strain distribution was observed.
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Figure 6. Side view of the ΓEH. The nodes, elements, and design variables are given in the figure.
The width of the beam (b), the width of the tip mass (bT), and the load resistance (R) connected to the
energy harvester, which are not shown in the figure, are remaining design variables to be determined
in the design problem.

Table 1. Material properties for the energy harvester.

PIC151 PLA Lead

Young’s modulus (GPa) 66.67 2.5 Not used

Density (kg/m3) 7800 1250 11,340

Transverse strain constant, d31 (10−12 C/N) −210
Not used

Relative permittivity at constant stress, εT
33/ε0 2400

The GCRM-P model does not need the serious mesh generation as required in an
FEM model, but only a few nodes where there is a change in material property, cross-
sectional property, or orientation of a structural member. Considering that the vertical
beam is not fully covered by piezoelectric material, there needs to be a dummy element
(which is rigid and massless) to place a gap between vertical and horizontal beams. The
tip mass is modeled as a point mass at the center of the tip mass. Therefore, a node has
to be defined there and is connected to the tip of the horizontal beam with a dummy
element. Accordingly, five nodes (boxed numbers) and four elements (circled numbers)
ware assigned as shown in Figure 6. In the design problem of this study, there are nine
(LP, LS, hS1 , hS2 , b, LT , HT , bT , and R for the CEH) design variables as explained in
Table 2 and Figure 6. The piezoelectric layer thickness (hP) is fixed to 0.21 mm which is
the manufacturer’s specification, i.e., PIC 151. The ground velocity term VY(t) is defined
based on the measurement signal from an outdoor condensing unit as shown in Figure 7.
A wireless accelerometer, Slam Stick X (Mide Technology Corporation, Woburn, MA, USA),
was used to acquire the time-domain data and was transformed into the frequency domain
by the fast Fourier transform (FFT). The Y directional acceleration component was found to
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have 40 Hz frequency with the amplitude of 0.16 g (g denotes the gravitational acceleration,
i.e., 9.81 m/s2), or

.
VY(t) = A sin(2π f t) (31)

where A and f are 0.16 g and 40 Hz, respectively, and
.

VX(t) is assumed to be zero.

Table 2. Geometrical specifications of the ΓEH used for the experimental validation.

Variable Note Unit Value

LP Length of the piezoelectric layer

mm

22.8

LS Length of the horizontal substrate layer 38

hS1 Thickness of the vertical substrate layer 0.25

hS2 Thickness of the horizontal substrate layer 2.2

b Width of the beam 10

LT Length of the tip mass 12

HT Height of the tip mass 9.5

bT Width of the tip mass 10

MTotal Total mass g 15

R Load resistance kΩ 930
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Figure 7. (a) Demonstration of the typical self-powered wireless sensor node and the outdoor condensing unit from which
the electricity is generated by the energy harvester attached to the vibrating surface. (b) FFT results for the acceleration data
in three axes. The acceleration in the y-axis is the most dominant and the main frequency component has 40 Hz and 0.16 g.

4. Shape Optimization

This section introduces the experimental validation of the GCRM-P model developed
in Section 2 and the design formulation for the ΓEH. In the experimental validation, the
accuracy of the GCRM-P model was verified by comparing the voltage output FRFs from
the experiment and simulation. With the experimentally validated model, the shape
optimization was performed and the design change trend was discussed when the total
mass of the harvester changed.

4.1. Experimental Validation of the GCRM-P Model for ΓEH

In this section, the simulation analysis result is validated experimentally, using the
ΓEH prototype as specified in Table 2. For prototyping, the substrates of the ΓEH were
fabricated part by part using a 3D printer (Prusa I3 MK3, Prusa Research, Prague, Czech
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Republic), with a 100% infill density, and assembled afterward. Then, the piezoelectric
layers with the electrode and tip mass made of the lead were glued on the substrate using
the cyanoacrylate adhesive.

The experimental setup in Figure 8 was prepared to measure the frequency response
function (FRF) for the voltage and power output of the fabricated prototype. An elec-
tromagnetic shaker (Type 4809, Brüel & Kjær, Nærum, Denmark), a function generator
(33250A, Agilent, Santa Clara CA, USA), and a power amplifier (Type 2718, Brüel & Kjær,
Nærum, Denmark) were used to excite the energy harvesting beam, and the accelerometer
in Section 4 was used to measure the acceleration of the base. The energy harvester was
connected to a variable load resistance from which the voltage output was obtained using
an oscilloscope (Tektronix DPO4054B, Tektronix, Beaverton, OR, USA). Then, the power
output could be calculated by applying Ohm’s law.
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tions (FRFs).

The experimental and numerical FRFs for the voltage and power outputs are shown in
Figure 9. The symbols and lines denote the experimental and numerical results, respectively.
It is noted that the results are normalized by gravitational acceleration (g). The voltage
outputs were measured at two load resistance conditions: one was the open-circuit condi-
tion (Roc) and the other was the optimized load resistance condition (Ropt ≈ 1/(ωC(1)

P,eq))
given in Table 2, and the power output was measured only at the optimized load resistance
condition. In both voltage and power results, the experimental FRFs were slightly shifted
to the right-hand side. This stiffening effect could result from the thickness of electrodes in
between the layers, unevenly distributed adhesive, substrates more thickly printed than
intended, or a combined effect of some of the aforementioned possible causes. Nonetheless,
we conclude that both results showed a reasonable agreement—the errors on the maximum
open-circuit voltage output, voltage output at the optimized load resistance, and power
output were about 11.4%, 2.6%, and 5.5%, respectively.
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4.2. Design Formulation

The energy harvester design problem is formulated to maximize the peak value of
power output. The design constraints consider cost-effectiveness and compactness as
well as durability, and are formulated to limit: total mass (Mtotal), horizontal length (Lhor),
vertical length (Lver), closest vertical distance between the bottom surface of the tip mass
and the ground (dver), piezoelectric material volume (VP), and the maximum stress at
piezoelectric material (σmax

st+dy) as follows:
Maximize power at the load resistance subject to

Mtotal : b

(
2ρPIC151LPhP

+ρPLA

(
LPhS1 +

(
LS +

hS1
2 + LT

)
hS2

) )+ ρLeadLT HTbT ≤ Mallowed (32)

Lhor: hP +
hS1

2
+ LS + LT ≤ 50 mm (33)

Lver: LP + hS2 ≤ 25 mm (34)

dver: LP −
(

HT + Y(5)
st+dy

)
≤ 0 mm (35)

VP: 2bLPhP ≤ 100 mm3 (36)

σmax
st+dy ≤ 30 MPa (37)
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where ρPIC151, ρPLA, and ρLead are density values of the materials given in Table 1. Y(5)
st+dy

in Equation (38) is the amplitude of the downward nodal displacement at node 5. The
subscript “st + dy” indicates that the value is evaluated considering static (gravity effect)
and dynamic (base excitation) loads. It is noted that the gravity effect can be removed
or changed based on the installation orientation of the harvester. The value of 30 MPa in
Equation (40) is decided by applying a safety factor of 1.5 to the tensile strength of the PIC
151, i.e., 45 MPa [54]. The lower/upper bounds in this design problem are

0 mm ≤ LS ≤ 50 mm (38)

0 mm ≤ hS1 ≤ 2.5 mm (39)

0 mm ≤ hS2 ≤ 7.5 mm (40)

0 mm ≤ LP, b, LT , HT , bT ≤ 25 mm (41)

105 Ω ≤ R ≤ 106 Ω (42)

We select to use the differential evolution (DE) algorithm for design optimiza-
tion [55,56], which evolves a pool of design candidate populations generation to gen-
eration. Let’s suppose at Gth generation we have NP populations of D-dimensional vectors,
i.e., Xi,G =

{
x1

i,G, . . . , xD
i,G

}
, i = 1, . . . , NP. The initial populations are generated

by sampling random real numbers within lower and upper bounds Xmin and Xmax. In
the mutation operation, the DE employs mutation strategies to produce a mutant vector
Vi,G =

{
v1

i,G, . . . , vD
i,G

}
, i = 1, . . . , NP. After the mutation operation, a crossover opera-

tion is employed to each pair of the target and mutant vectors Xi,G and Vi,G to generate a

trial vector Ui,G =
{

u1
i,G, . . . , uD

i,G

}
, i = 1, . . . , NP. The binomial crossover is the most

commonly used crossover operation given as

uj
i,G =

{
vj

i,G if
(
randj(0, 1) ≤ CR

)
or (j = jrand)

xj
i,G otherwise

, i = 1, . . . , NP and j = 1, . . . , D (43)

where CR is a user-defined crossover rate (0 < CR < 1) that controls the fraction of vector
components copied from the mutant vector, rand j (0, 1) is jth random real number in the
range of [0, 1], and jrand is a randomly selected integer within the range [1, D].

After the trial vectors Ui,G, i = 1, . . . , NP have been generated, the selection
operation determines the survivors for the next (G + 1)th generation. The operator compares
each pair of the target and trial vectors Xi,G and Ui,G, keeping the vector having a better
fitness value in the population as follows:

xi,G+1 =

{
ui,G if f (ui,G) > f (xi,G)

xi,G otherwise
, i = 1, . . . , NP (44)

where the function f (·) is a fitness function to be maximized. These three operations—
mutation, crossover, and selection—are repeated until the termination criterion is met in
terms of the number of maximum function evaluations.

In this study, we chose one of the DE variants, L-SHADE-EIG [57,58], combined with
the oracle penalty method [59] to handle a constrained problem. This DE variant gained
great attention as it won the first prize in a real-parameter single objective optimization
competition at 2015 IEEE congress on evolutionary computation. In the algorithm imple-
mentation, the numbers of initial populations and the maximum function evaluation for
the algorithm termination are set depending on the number of design variables (D = 9) to
be 10× D and 1000× D (or 90 and 9000) respectively, and other settings are adopted from
the original L-SHADE-EIG algorithm. The fitness function is chosen as the peak value of
power output obtained with the given input acceleration conditions.
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4.3. Shape Optimization Results and Discussions

In this section, four different system mass values are attempted (Mallowed = 15 g, 30 g,
45 g, and 60 g) for the optimization and the corresponding design change trend is studied.
The optimal design parameters at different Mallowed values are found as shown in Table 3,
Figure 10 (in the normalized scale), as well as Figure 11. The normalized values in Figure 10
were calculated by the following formulation.

Normalized value =
Unnormalized value− Lower bound

Upper bound− Lower bound
(45)

Table 3. Optimized design variables depending on the allowed total mass (15 g, 30 g, 45 g and 60 g).

Variable Unit
Allowed Total Mass

15 g 30 g 45 g 60 g

LP

mm

13.81 13.95 15.93 17.50

LS 26.86 29.64 32.64 32.72

hS1 0.52 0.72 1.06 1.25

hS2 4.62 5.65 7.10 7.50

b 3.35 5.40 6.05 7.05

LT 8.32 11.21 13.16 14.87

HT 7.82 10.05 11.88 13.47

bT 19.31 22.19 23.97 25.00

R kΩ 977 667 511 405

1 
 

Figure 10. Changes of the normalized design variables depending on the allowed total mass.
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Figure 11. Graphical demonstrations of the four optimized ΓEHs having different allowed total mass: (a) 15 g, (b) 30 g,
(c) 45 g, and (d) 60 g.

In all four cases, the mass constraint (Equation (32)) is found active, obviously indicat-
ing that a larger power is generated from a heavier harvester. More interesting observations
include: (1) the tip mass dimension parameters (LT , HT , and bT) are dominant factors to
increase the total mass and base excitation forcing effect, (2) the external resistor (R) is the
only decreasing parameter due to the impedance matching issue—the increased piezoelec-
tric internal capacitance by Lp and b [60], and (3) hS1 and hS2 also increase so that the beam
stiffness is increased and the natural frequency of the system stays close to the excitation
frequency (40 Hz).

It is noted from the optimization results (Figure 10) that both the length and the width
of vertical piezoelectric beam (LP and b) increase but their increasing trends are different.
Basically, LP (flexibility) and b (stiffness) increase at the same time to maintain the beam’s
natural frequency. When Mallowed is changed from 15 g to 30 g, the stress condition is
satisfactory (σmax

st+dy < 30 MPa) and there is a substantial increase of b (61.19%) rather than LP

increase (1.01%). On the other hand, when the design scale becomes larger and the stress
constraint becomes more active (σmax

st+dy ≈ 30 MPa when Mallowed is changed from 30 g to
45 g), more increase of LP is preferred rather than increasing b (the slope of LP between
30 g and 45 g is 2.05 times stiffer than that of b) to maintain the stress within the bound
while keeping the similar natural frequency by increased hS1 and hS2 . This observation
indicates there exists a preferable way to increase the stiffness depending on the stress
condition. The increase of piezo-substrate width (b) is preferred when there is no stress
violation issue because it can increase the power using more piezoelectric material. On
the other hand, the increase of substrate thicknesses (hS1 and hS2 ) is preferred as the stress
violation is concerned—the bending moment of inertia is a cubic function of the thickness,
which is more effective to decrease stress than the width (linear function). The tip mass
parameters are increased correspondingly to maintain the harvester’s resonant frequency.

Several performance measures are compared from four different designs as shown in
Figure 12. The stress values increase as a larger mass is allowed as shown in Figure 12a. In
this figure, σmax

st and σmax
dy are the maximum stresses of the piezoelectric material induced
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by the static and dynamic loads, respectively. This result confirms the gravity-induced
initial stress must be considered given that the proportion of σmax

st is almost 40% of σmax
st+dy.

Especially, no consideration of σmax
st in the last two cases (Mallowed = 45 g and 60 g) will

violate the maximum stress constraint (Equation (37)) and deteriorate the durability of the
energy harvester. 

2 

 
Figure 12. Results for the four optimized ΓEHs: (a) maximum stress induced by static, dynamic, and combined loadings,
(b) piezoelectric material volume, (c) horizontal length, (d) vertical length, (e) closest distance between ground and tip mass,
(f) power output and NPD.

Figure 12b shows the change of the piezoelectric material volume that increases
gradually. However, the piezoelectric material volumes are found not active (100 mm3)
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in all of the cases. This implies that using the maximum allowable piezoelectric material
does not necessarily guarantee the higher power output, because of increased stiffness and
decreased strain generation in the piezoelectric material. The harvester clearance from the
ground (dver, Figure 12e) is found positive from all of the cases by satisfying Equation (35).

The power output and the normalized power density (NPD) is compared in Figure 12f.
The NPD is defined as

NPD =
Power output

Volume of piezoelectric material×Amplitude of input acceleration2 (46)

The power output (in mW) shows almost linear behavior with respect to Mallowed
(in g), and it can be approximated by linear regression formula as

Power output = 0.0492Mallowed (47)

with the R2 (coefficient of determination) of 0.999. Based on this formula, energy harvester
designers can approximately estimate a total mass that will be needed to meet the power
requirement. An additional optimization study at Mallowed = 37.5 g found the power output
1.857 mW (the optimized design variables can be found in Table 4) and confirms this linear
relation—only 0.6% different from a predicted value (1.845 mW).

Table 4. Optimized design variables where the allowed total mass is 37.5 g.

Variable Unit Value

LP

mm

16.41

LS 34.36

hS1 1.09

hS2 7.49

b 4.99

LT 10.96

HT 11.44

bT 24.82

R kΩ 623

Table 5 [61–67] shows the NPDs and modified NPDs of various PE harvesters and
their specification in terms of piezoelectric material, excitation amplitude, piezoelectric
material volume, system volume, power output, and total mass. The modified NPD is a
new index defined similarly as the NPD. However, the power output is divided by the
volume of the system rather than that of the piezoelectric material. Therefore, the modified
NPD can be referred to when the compactness is more important than the cost. All four
optimized ΓEHs in this study show higher NPDs (15.49 × 103~23.10 × 103 kg·s·m−3) than
those of any other PE harvesters reviewed in this table (0.016 × 103~11.55 × 103 kg·s·m−3).
It is noted that the highest NPD among the referenced works, i.e., 11.55 × 103 kg·s·m−3 by
Yang et al. [63], was enabled by its large mass (100 g) and the high piezoelectric coupling
constant of 275 pC/N. However, more than doubled NPD can be obtained from our
design using a smaller mass (Mallowed = 60 g) and a smaller piezoelectric coupling constant
(210 pC/N). In terms of the modified NPD, the proposed designs with Mallowed = 45 g
and 60 g have higher values than the design in [63]. This shows the effectiveness of the
optimized ΓEH. By the way, the NPD increases as the mass becomes larger, but shows a
saturated trend (around 24 × 103 kg·s·m−3), because the constraints of vertical dimension
and stress (Equations (34) and (36)) become active.
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Table 5. NPD and other information on various mesoscale PE harvesters.

References

Material
(Piezoelectric

Charge Constant
(10−12 C/N))

Excitation
Amplitude

(m/s2)

Piezoelectric
Material Volume

(mm3)

System Volume
(mm3)

Power Output
(mW)

Total Mass
(g)

NPD
(103 kg·s·m−3)

Modified
NPD

(106 kg·s·m−3)

Tang and Yang [61] MFC
(d31: −170) 2.83 58.8 29,167 1.43 10.42 3.04 6.12

Yang and Zu [62] PZN-PT
(d31: −1346) 2.94 28.8 4277 0.86 2.61 3.45 23.26

Yang et al. [63] PZT-5H
(d31: −275) 2.94 300 101,250 30 100 11.55 34.28

Pan and Dai [64] PZT-5H
(d31: −275) 29.43 20 10,400 31.1 7.6 1.80 3.45

Li et al. [65] MFC
(d31: −174) 0.98 300 25,232 0.427 11.57 1.48 17.62

Gao et al. [66] PIN-PMN-PT
(d15: 3480) 29.43 200 7500 2.756 8.5 0.016 0.42

Lee et al. [67] PZT
(N/A) 0.98 17.78 6135 0.012 N/A 0.703 2.04

This study
(Mallowed: 15 g)

PIC151
(d31: −210) 1.57

19.43 12,684 0.74 15 15.49 23.67

This study
(Mallowed: 30 g) 31.62 18,010 1.48 30 19.03 33.34

This study
(Mallowed: 45 g) 40.55 25,685 2.22 45 22.22 35.06

This study
(Mallowed: 60 g) 51.81 30,259 2.95 60 23.10 39.55
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5. Conclusions

This paper performed design optimization of a new ΓEH using the GCRM-P and DE
algorithm. Some conclusive remarks are as follows:

(1) The accuracy of the proposed GCRM-P model used for the frequency response
analysis of the ΓEH was experimentally validated with the error 5.5% for the peak
power frequency.

(2) The proposed DE-based approach successfully provided the optimized solutions
with the high NPDs, while satisfying the six design constraints. Specifically, we
could obtain higher harvester NPDs than the multiple mesoscale PE harvesters from
recent studies.

(3) The linear relation between the harvester mass (Mallowed) and power performance does
not necessarily mean that all the design variables are linearly scaled—they need to be
carefully chosen to maximize the power output while satisfying all of the constraints,
especially the stress and the natural frequency measures.

This study focused on the power and NPD at a fixed frequency as a performance
index. A more practical design study considering broadband characteristics, durability,
manufacturing cost, and compactness of the ΓEH remains as future work.
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