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Abstract: In this paper, we present a novel incremental learning technique to solve the catastrophic
forgetting problem observed in the CNN architectures. We used a progressive deep neural network
to incrementally learn new classes while keeping the performance of the network unchanged on old
classes. The incremental training requires us to train the network only for new classes and fine-tune
the final fully connected layer, without needing to train the entire network again, which significantly
reduces the training time. We evaluate the proposed architecture extensively on image classification
task using Fashion MNIST, CIFAR-100 and ImageNet-1000 datasets. Experimental results show that
the proposed network architecture not only alleviates catastrophic forgetting but can also leverages
prior knowledge via lateral connections to previously learned classes and their features. In addition,
the proposed scheme is easily scalable and does not require structural changes on the network trained
on the old task, which are highly required properties in embedded systems.

Keywords: incremental learning; catastrophic forgetting; CNN; progressive learning networks

1. Introduction

“Tell me and I forget, teach me and I may remember, involve me and I learn.” (Ben-
jamin Franklin). Natural learning systems are inherently incremental [1] where the learning
of new knowledge is continued forever, ideally. For example, a finger print recognition
system should be able to accept finger prints of a new person without forgetting the finger
prints of already registered persons. The forgetting process is also a natural process, where
a living being forgets past events unless reminded periodically. Despite the staggering
recognition performance of convolutional neural networks (CNN), one area where the
CNNs struggle is the catastrophic forgetting problem [2]. The degradation in the perfor-
mance of a CNN network on old classes (or tasks) when a pre-trained CNN is further
trained on new classes, is referred to as a catastrophic learning problem. Some researchers
have also termed this problem as a domain expansion problem [3]. This happens since the
weights in the network that are important for old classes are updated to accommodate the
new classes.

If all the data from old classes are available, this catastrophic forgetting problem can be
relieved by training the network from scratch using data from all the old and new classes.
However, this raises two new problems. First, training a network from scratch (also called
joint training [4]) with more data means more cumbersome training as more classes are
learned during training and consequently more training time overhead. Moreover, training
from scratch becomes impossible if the training data for old classes are no longer available.
Second, the addition of new classes creates a data imbalance problem that directly affects
the overall performance of the network.

Knowledge transfer [5,6] and zero-shot learning methods [7,8] are sometimes used
to eliminate the problem of unavailability of the old training data, but the capabilities of
these methods are upper bounded for their performance on old tasks. On the other hand,
methods in [9,10] propose generative adversarial network (GAN) to generate old training
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data using generative networks [11], but the reliability of these methods heavily rely upon
the generative capabilities of the GANs. So far, network distillation has been used by
many researchers [1,4,12–14] with partial success in dealing with the missing data problem.
Network distillation also eliminates the need to train the network again, and minimizes
the performance degradation on old classes to a great extent. Network distillation is the
process of saving the network responses on old classes, and making sure that the network is
at least able to generate the same responses on a smaller set of old classes, called exemplars,
during the incremental training step (after adding new classes). This, however, bounds the
performance of the distilled network [15].

Nevertheless, the previous studies on incremental learning do not achieve the state-of-
the-art accuracies on benchmark datasets such as CIFAR-100 [16] and ImageNet-1000 [17].
We propose a progressive incremental learning (PIL) method that uses progressive neural
network architecture to incrementally learn new classes. The proposed PIL method does
not require the access to old training data when training incrementally on new classes.
The proposed approach (i) is able to effectively exploit transfer knowledge for compatible
old and new classes and efficiently discriminate between them, (ii) is robust to the catas-
trophic forgetting problem, and (iii) outperforms state-of-the-art methods as well as the
classical baseline incremental learning approach (joint training) on image classification
task. Overall, the proposed approach corroborates the constructive, rather than destructive,
nature of the progressive architecture among the related solutions for incremental learning.

2. Related Work

Li et al. [4] classified the related work on incremental learning (IL) on the basis of
the underlying framework, i.e., feature extraction (the network trained on old classes is
only used as feature extractor) [5], fine-tuning (the network is only fine-tuned using data
from new classes) [18], and joint training (the network is trained from scratch using all
the old and new classes) [19]; however, many modern incremental learning methods use
a combination of these techniques. These incremental learning techniques are capable of
learning new information; however, they do not satisfy all of the incremental learning
criteria. For instance, they require full or partial access to old data, forget the previously
trained weights or show low accuracies on new classes.

Muhlbaier et al. [20] proposed an ensemble-based approach and trained a neural
network (NN) pattern classifier that can handle an increasing number of classes; however,
the proposed algorithm requires training data for all the classes (old and new) at incremen-
tal learning steps. Using a small subset of all the data, Kuzborskij et al. [21] showed that
the accuracy reduction in training a linear multi-class classifier due to the addition of new
classes can be minimized.

Some studies partially overlap the concerns related with the IL such as unavailability
of old data. For instance, zero-shot learning (ZSL) [7] or a learning task that involves
recognizing categories for which there are no training examples, somehow, proposes
the solution for the unavailability of old training data. Never ending image learning
(NEIL) [22] can retrieve images of new classes from a few different internet platforms and
establishes a relationship between them and the old classes, without prior access to the
training data of those new classes. Similarly, Ref. [23] learns a model for visual variances
of different classes of concepts; however, these studies only concern about maintaining the
overall performance of the network [7], creating a relationship between old and unseen
classes [22] and developing a visual correspondence between objects and vocabulary of
visual variances [23], rather than training the network incrementally for the new classes.

The IL problem is also sometimes seen as a transfer learning problem, where the
knowledge acquired on old classes (or old tasks) is applied to predict the new classes
(or solve new tasks). Hence, these techniques do not rely heavily on the availability
of old training data. Donahue [5] investigated semi-supervised multi-task learning of
deep convolutional representations, where representations are learned on a set of related
problems but applied to new tasks that have too few training examples to learn a full deep
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representation. Jung et al. [6] presented a method that tries to maintain the performance
on old tasks by freezing the final layer and discouraging the change of shared weights in
feature extraction layers. With this method, Jung et al. [6] showed that the network exhibits
good transfer learning capabilities and also becomes less forgetful.

Some researchers [9,10] tried to solve the problem of the unavailability of old training
data by generating them using GANs [11]; however, implementing a sophisticated GAN
for complex tasks (such as unconstrained object detection) is a challenging problem. That is
why the results in [10] showed that the performance drops sharply on a relatively difficult
dataset [24] as compared with a simple digit classification task [25]. Moreover, these
generative techniques not only add the overhead of training a separate GAN network but
also require the generation of training data for incremental learning.

In contrast, knowledge distillation has been used by many researchers [1,4,12–14], out
of which [4,14] do not require old training data at all. The good thing about these methods
is that they require minimal or no network expansions, as such, they are ideal for conditions
where hardware resources are limited; however, for accuracy critical situations, such as
security applications, hardware resources can be traded off with consistent performance
on old classes. Moreover, the knowledge-distillation-based methods, although they use no
or only new examples for training, require the entire network to be trained every time a
new class is to be learned.

Given the limitations of previous IL methods, we aim at developing a simple yet
effective strategy on image classification tasks with CNN classifiers. We trained a pro-
gressive deep neural network incrementally, such that the performance of the network
is unaffected by the addition of new classes, while the system resources are traded off.
For each incremental set of new classes, an additional classifier (AC) is learned by taking
the input features from the intermediate layers of the networks learned on old tasks or
old networks (ONs). In this way, part of the existing network is re-used to predict the
new classes with much less performance degradation as compared with its fine-tuning
counterpart. Moreover, because only the portion of the network that learns the new classes
is updated during the training stage, the training is much faster as compared with joint
training [4]. The training also converges fast as the AC networks borrow their input from
already trained convolutional layers of ONs, rather than raw image data. This mimics the
knowledge transfer from previous tasks to improve convergence speed [26]. The proposed
method does not require the training data of old classes at the incremental learning stages
(of AC networks). Furthermore, the training also converges fast because, at each incremen-
tal learning step, the network is only optimizing the weights for a subset of classes, rather
than accommodating all the old and new classes. While the increased resource utilization
due to the growth of the network can be optimized by utilizing network pruning [27] and
compression techniques [15].

Progressive learning is not a new domain, and several studies have already utilized
progressive learning on a variety of tasks, such as reinforcement learning [28]. Progres-
sive learning has also been previously used for optimizing network performance, where
the goal is to find an optimal neural architecture design for a given image classification
task [29,30]. Zhang et al. [31] used progressive learning to adapt the inference process and
complexity of the neural network for images with different visual recognition complexity.
His proposed scheme consisted of a set of network units to be activated in a sequential
manner, with progressively increased complexity and visual recognition power.

Ye et al. [8] used progressive ensemble networks for zero-shot learning (ZSL), where
the aim of ZSL is to transfer knowledge from labeled classes into unlabeled classes, to re-
duce human labeling efforts. The ZSL deployed a progressive training framework, to grad-
ually label the most confident images in each unlabeled class with predicted pseudo-labels
and update the ensemble network with the training data augmented by the pseudo-labels.
Some researchers have also used progressive learning for improving the performance of
the baseline CNNs for varieties of visual recognition tasks [32,33].
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The goal of our study is to derive benefits from the progressive neural networks
to incrementally learn image classifier by avoiding catastrophic forgetting phenomena.
Our work is different from the fine-tuning work in [3] where the shared parameters are
fine-tuned along with the parameters for the new task. In contrast, we shared convolutional
layers, but the shared layers are not fine-tuned during the training process. The shared
layers only act as feature extractors. Moreover, as compared with the network expansion
techniques presented in [14,28,31,34–37], our proposed method consists of many architec-
tural differences that are not only aimed at reutilizing the convolutional features learned
on older tasks, but also enabling the network learned on new tasks to differentiate between
old and new tasks, without additional learning (explained with details in Section 3). Below,
we summarize the main contributions of this paper:

1. For the first time, we experimented with a progressive neural network for incremen-
tally learning convolutional network-based image classifiers and presented meaning-
ful results.

2. We show that the progressively learned network borrows useful information from
the previously learned network to discriminate between the old and new classes,
even without access to the old data, and outperforms some of the learning-without-
forgetting techniques.

3. By extensively experimenting with two different ResNet architectures, we provide an
analysis on the trade-offs of the performance, speed and GPU resource utilization,
for the progressive neural network architectures.

The rest of the paper is organized as follows. We explain the details of the proposed
method in Section 3. In Section 4, we present the experimental settings and report the
performances on the Fashion MNIST [38], CIFAR-100 and ImageNet-1000 datasets. We also
show that the proposed scheme is able to perform better as compared to other incremental
learning methods when (i) the old data are unavailable, and (ii) only exemplars are available.
Finally, we conclude our work in Section 5 with a discussion about the limitations of the
proposed scheme and future directions.

3. Proposed Method

The assumption is that the proposed approach keeps a frozen pool of pre-trained
models throughout the training, and learns lateral connections from these along with an
additional classifier (AC) network to extract useful features for the newly arrived classes.
The AC network is realized by instantiating a new CNN for every group of new classes
(a new row in Figure 1a), while the knowledge transfer is enabled via lateral connections
to the convolutional features of the networks that are trained on old classes (represented
with dashed arrows in Figure 1a).

The proposed network can be extended and incrementally learn to adapt to any number
of new classes. We demonstrate the overall method with the help of CIFAR-100 dataset, that
contains 100 classes. We denote the training dataset by D(train) = {{xj}train

m ,{yj}train
m }(M,J)

(m=1,j=1),
where M denotes the incremental set of classes used to train each incremental step, J is the
number of training samples in each incremental stage, x and y represents images and their
corresponding class labels and j is the sample index inside the set of classes. The test set can
be represented in a similar way. Furthermore, we denote the depth of the network with L

layers containing convolutional activation blocks a(m)
i ∈ R((

(b1−F)
S )+1×( (b2−F)

S )+1×d)i , where b1,
b2, F, S and d represent the convolutional filter width, height, size, stride and depth (channels),
respectively, at layer i ≤ L. We call it a convolutional activation block because it contains several
convolutional, batch normalization and pooling layers, as shown in Figure 1b. Let θ(m) denote
the parameters to be learned for m-th set of classes, then for every new incremental set of classes,
the parameters θ(m) are frozen and a new additional network (as shown with rows in Figure 1)
with parameters θ(m+1) is instantiated (with random initialization), where the new layers a(m+1)

i
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receives activation maps from both a(m)
i−1 and a(m+1)

i−1 if i > 1 and m > 1. If i = 1 and m ≥ 1, then

a(m+1)
i receive activation maps from only a(m)

i−1.

Figure 1. Proposed architecture of the progressive network for incremental learning. (a) Each row represents an additional
classifier (AC) trained on task ‘m’. (b) The implementation details of the blocks used in (a).

The convolutional activation blocks at the same level of i are identical, which em-
powers the proposed method with feasibility to scale up with less complexity; however,
as shown in Figure 1a, the outputs of a(m)

i−1 and a(m+1)
i−1 (for i ≥ 1 and m ≥ 1) are first con-

catenated before passing them into a(m+1)
i which causes a channel size mismatch; therefore,

we added a convolution operation with the same number of filters as the number of filters
in a(m+1)

i for dimension reduction. The parameters of this convolutional operation are
also included in θ(m+1) and updated during training. This not only helps to solve the
channel mismatch but also adds an intelligent connection having the ability to select the
best features among the current set of classes (i.e., output from a(m+1)

i−1 ) and prior knowledge

from old classes (i.e., connections from a(m)
i−1). This concept of using lateral connections to

efficiently summarize knowledge of the prior and current set of classes in the proposed
method makes it unique among other approaches [14,34–37].

This method of combining previously learned features achieves a richer representation
of prior knowledge which is integrated with every additional classifier network (AC) in
the chain of the overall progressive network. The addition of the AC network can be
considered as an additional capacity alongside the old networks (ONs), which provides
the overall network the flexibility to reuse the old computations and learn the new ones,
at the same time.

In order to realize the network with ResNet-18 and ResNet-101 architectures, each
convolutional activation block am

i (where i > 0) is comprised of N ResNet basic blocks
followed by batch normalization, pooling (downsampling) and ReLU operations, where
N = b (network depth−2)

6 c and network depth = 20 and 110 for ResNet-18 and ResNet-101,
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respectively. As shown in Figure 1b, the downsample layer only appears in the last (n-th)
basic block of each convolutional activation block am

i (where i > 0). Hence, the network
only downsamples the input image by four times. Further implementation details about
the network feature map sizes are given in Section 4.2.

The p(m)
3 denotes average pooling layer and f c(m)

1 represents the fully connected (FC)
layers for each AC network trained on a set of m classes. The ‘Final layer’ in Figure 1a
comprises a softmax layer which takes the concatenated FC features from f c(1,...,M)

1 , if the
old training data are not available. If the old data or exemplars from the old data are
available, then the ‘Final layer’ consists of an additional FC layer (which takes the FC
features from f c(1,...,M)

1 ) followed by a softmax layer. The additional FC layer is fine-tuned
with the old data or exemplars from the old data. Details of experimental settings are
presented in the next section.

At the training time, an AC network is added and trained with a new set of ‘m + 1’
classes by minimizing cross entropy loss on the new set of classes only. The networks
trained on the old set of ‘m’ classes are only used as feature extractors, and hence success-
fully avoids catastrophic forgetting. Moreover, the AC networks drive their input from
convolutional features of the network trained on the previous set of ‘m’ classes, rather
than raw RGB features. Due to these reasons, the training processes of the proposed
method is much faster than the joint training (JT) method, as shown in the results section.
Unlike classical transfer learning methods [5,6], the foundation of our proposed method is
not laid heavily upon the assumption that the old and new classes share some common
characteristics. Rather, our method makes use of any of such characteristics flexibly.

4. Experiments and Analysis

The experimental settings were formed on the basis of our aim to predict total M sets
of classes using independent classifiers by eliminating catastrophic forgetting problem and
improve the learning (convergence speed and accuracy) via knowledge transfer. The brief
introduction to the dataset, implementation details of the network, training strategies,
experimental settings and the results are presented in the following subsections.

4.1. Dataset

We used Fashion MNIST, CIFAR-100 and ImageNet-1000 datasets for all the exper-
iments carried out in this paper. CIFAR dataset contains 60,000 32 × 32 RGB images of
100 object classes. Each class has 500 training images and 100 test images. There were
100 classes are split into 10 incremental batches for training the network incrementally;
therefore, the value of M = 10, J = 5000, in D(train) = {{xj}train

m , {yj}train
m }(M,J)

(m = 1, j = 1)

and M = 10, J = 1000, in D(test) = {{xj}test
m , {yj}test

m }
(M,J)
(m = 1, j = 1). ImageNet contains

1,281,167 training images and 50,000 validation images for 1000 classes, which are split
into 10 incremental batches. Fashion MNIST consists of 60,000 train and 10,000 test 28 × 28
grey scale images for 10 object classes. Each class has 6000 training and 1000 test samples.
For incremental training, we used an additional 1 class each time, for the total of 10 incre-
mental batches. For the experiment setting where we train an additional FC layer with
exemplar set from the old data, we select an exemplar set of 10,000 images (100 samples
per class from CIFAR and FashionMNIST) using the strategy proposed in [13], but without
a memory constraint. For ImageNet-1000, the exemplar set comprises 20,000 samples per
class. We only use the exemplar set at the time of fine-tuning the additional FC layer (‘with
FC layer’ setting).

4.2. Implementation Details

Our implementation is based on the Pytorch 1.0 library [39]. We used two network
architectures throughout the experiments, i.e., ResNet-18 and ResNet-101. Due to the
sequential nature of the experiments, these experiments were expected to take a longer
time, so we selected these two network architectures to analyze the proposed method.
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ResNet-18 being quicker and smaller achieved lower limits of the speed, memory uti-
lization and performance, while ResNet-101 achieved the upper limits of these metrics.
For experimenting with ImageNet-1000 and Fashion MNIST, we only used ResNet-18.

We altered these network architectures in order to accommodate the 32 × 32 input
image size of the images in CIFAR-100 dataset. As shown in Figure 1b, the features are
downsampled by pooling features with size = 2 in every convolutional activation block
(i > 0), and hence the depth of ResNet architecture is divided among three convolutional
activation blocks for each AC network. The output size of these convolutional activation
blocks at i = 1, 2, 3 is 32 × 32, 16 × 16, 8 × 8, respectively. The features after average
pooling (p(m)

3 ) are flattened and then passed to the FC layer ( f c(m)
1 ). For Fashion MNIST

dataset, we simply scaled up the input images from 28 × 28 to 32 × 32, to keep the CNN
architectures the same as for the CIFAR-100 dataset, while for ImageNet-1000 we resized
the images to 224 × 224 and used the original ResNet architecture.

Each incremental training has 3 stages of 2000 epochs each. In order to augment
the dataset and avoid overfitting, a random flip is applied to every 4th training sample.
The training samples are scaled between the range of 0.16– 1, 0.08–1, 0.04–1, ratio between
0.75–1.22, 0.70–1.33 and 0.65–1.5 and then cropped to 32 × 32, for 1–2000, 2001–4000 and
4001–6000 epochs, respectively. The learning rate starts from 0.001 initially and reduces by
ten times every 50 epochs until 300 epochs, after which the learning rate remains constant
for up to 2000 epochs. This learning rate again becomes 0.001 and same pattern of change
in the learning rate is repeated at the start of 2001st and 4001st epochs. The weight decay
is set to 0.0001 and the batch size is 32, through 6000 epochs. These settings were chosen
based on the initial experiments using MNIST digit dataset, and then kept the same for all
experiments discussed in this paper for uniformity.

We trained the networks separately on a single GPU (NVIDIA’s RTX 2080 Ti (11GB),
CUDA 10.1 and CUDNN 7.6.1) because the current implementation lacks multi-GPU
processing. The machine is equipped with Intel Xeon Bronze 3104 CPU @ 1.70 GHz
processor with 6 cores and 128 GB of RAM.

4.3. Results

We report the results of the proposed approach in two settings. The first one is
‘Without FC layer’, where we do not train any extra FC layer, rather we concatenate and
pass the FC layer outputs ( f c(m)

1 ) of each AC network to a final SoftMax layer. Hence,
this setting is equivalent to using no old training data [4]. The purpose of this setting is
to analyze the characteristic of the laterally connected AC networks, where we want to
check the effectiveness of the AC networks in discriminating between old and new classes.
The second is ‘with FC layer’ setting where we connect the outputs of all the f c(1,...,M) to
an additional FC layer and fine-tune the additional FC layer with old and the new training
data. The ‘with FC layer’ setting is further divided into two modes: (i) fine-tuning the
FC layer using all the training data, and (ii) by using a class-balanced set of exemplars
from the train set of old and new classes. For selecting the set of exemplars, we adopted
the strategy proposed in [13], but without memory constraints. In addition to comparing
the proposed progressive incremental learning (PIL) method with joint training (JT), we
also compared PIL with a network structure that trains an independent classifiers on each
subset of incremental classes, without any lateral connections. We call the implementation
without lateral connections PIL with no lateral connections (PIL-NLC). In the following
subsections, we present and discuss the results of the experiments under the settings
explained above.

4.3.1. Accuracy

The ‘no old data’ setting in Figure 2 means that the outputs of networks in both PIL
and PIL-NLC cases are concatenated and passed to the softmax layer. Each node j of the
f c(m) layer corresponds to the probability score of the k-th class in the subset m. It is evident
that the proposed PIL method shows superior performance over the PIL-NLC for all the
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three dataset. This proves the fact that the lateral connections to the prior knowledge about
old classes are helpful in enabling the additional classifier (AC) networks to differentiate
between old and new classes and that the PIL method positively exploits the knowledge
transfer. This fact is further evident from the ‘all data’ setting in Figure 2, where all the
old and new training data are used to fine-tune the additional FC layer of the PIL and
PIL-NLC network. Moreover, when PIL is only trained with exemplars in contrast with JT
(all data), it still outperforms JT, due to the detailed knowledge about prior information
already present in the convolutional layers of the AC networks of PIL.

Figure 2. Performance comparison between joint training (JT), PIL-NLC and proposed PIL using two base networks (Res18
and Res101). Performance on (a) Fashion MNIST, (b) CIFAR-100 and (c) ImageNet-1000. In all the settings, the proposed
PIL scheme achieve better results than PIL-NLC scheme.

In the graph of Figure 2b, the PIL-Res101 (no old data) shows a sharp performance
drop for some of the incremental steps (classes 11–20, 31–40, 51–60, 91–100), which ap-
pears unintuitive. We believe that there are two reasons for this performance drop. First,
the transferred knowledge caused a convergence to poor local minima. Second, the f c(m>c)

1
layer decided a high local maximum probability for the old class ‘c’ due to visual simi-
larities between a class in ‘m > c’ and class ‘c’. This local convergence and local decision
problems are solved when an additional FC layer is fine-tuned on all or exemplars of old
and new data, rather than fine-tuning the entire network. As shown in Figure 2b, there is a
performance gain at incremental step 91-100 after fine-tuning the additional FC layer, which
shows that the PIL overcomes local and sub-optimal decisions with the help of exemplars.

Figure 2a,b also show that both PIL and PIL-NLC, when only FC layers are trained
with all data, perform better than baseline method JT and also avoid catastrophic forgetting.
The results on Fashion MNIST are depicted in Figure 2a, which also proves that not only
PIL and PIL-NLC (all data) perform better than baseline method JT, but the PIL trained with
the exemplars also performs better than the JT method with all data. Hence, the proposed
method outperforms the baseline method by using only exemplars from the old data.
This is due to the fact that the PIL method has better class discrimination capabilities
than the baseline JT method. These networks hold more capacity to learn new weights
on new classes, as well as keep the old weights (learned on old classes) frozen, while
progressively learning the incremental classes. On the other hand, the JT counterpart
fails to converge on optimal weights while trying to accommodate all the old and new
classes. The proposed PIL method shows consistent performance on the two different
datasets (RGB images in CIFAR-100 and grey images in Fashion MNIST), which proves
its robustness against modality changes; however, the results on ImageNet-1000 dataset
(Figure 2c), although the PIL scheme outperforms PIL-NLC scheme, it shows a little less
accuracy than the JT method. We think that this is due to the fact that the ImageNet-
1000 contains a large number of visually similar classes, such as 90 classes that belong to
different breeds of dogs. Training the extra FC layer with exemplars helps to improve the
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performance, but not above the baseline JT method in case of the ImageNet-1000 dataset;
another reason being the size of the images in ImageNet-1000 dataset (224 × 244), which
limits the memory usage. Consequently, our experiments on the ImageNet-1000 dataset
were constrained to smaller batch sizes as compared with the JT method. For JT method
(which uses only one Res-18 network), we used batch size = 64, and hence JT method learns
better inter-class and intra-class variances per batch. In contrast, for the PIL method (uses
multiple Res-18 networks called additional networks), we could only use batch size = 2 for
experiments on the ImageNet-1000 dataset; therefore, the JT method performs better than
the PIL method on the ImageNet-1000 dataset.

The confusion matrices in Figure 3 also reflect the less-forgetful property of the proposed
PIL method (Res101). Figure 3a shows that the PIL method does not lose performance on
the first 10 classes (1–10), after the network is trained with additional 10 classes (11–20).
Figure 3b,c show the performance of the PIL network after it is trained for all the 100 classes
(addition of 10 classes in every incremental step); however, the network in Figure 3c contains
a final FC layer, which is trained with exemplars from the old data, in contrast with the
network in Figure 3b, which is not trained with old data. Despite not using old data, the PIL
method achieves similar performance on old classes as compared with the performance
on the new classes. Furthermore, Figure 3c shows that the performance on old and new
classes improves after fine-tuning the final FC layer with exemplars from the old data.
The percentage of classification errors contributed by incremental classes are tabulated in
Table 1, which also proves that the PIL method does not distinguish between old and new
classes. Hence, the PIL method learns new classes while it maintains the performance of
the old classes.

Figure 3. Confusion matrices for the PIL method on the CIFAR-100 dataset. (a) PIL is first trained with 10 classes (1–10),
and then incrementally trained for additional 10 classes (11–20) (without using old data). (b) PIL incrementally trained on
all 100 classes (adding 10 classes per incremental step), without using old data and (c) using exemplars from the old classes.

Table 1. Percentage errors incurred on old and new classes using the PIL method (FC trained using exemplars).

Classes 1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100

Errors(%) 13.075 17.275 14.400 18.050 14.675 20.275 17.675 15.175 18.400 17.075

4.3.2. Overhead (Training Time and Memory Utilization)

The graph in Figure 4a compares the average time required to complete one train-
ing epoch by the different network implementations. All the PIL-NLC implementations
show almost steady training times, due to the fact that the AC networks in PIL-NLC are
independently trained on incremental set of classes. Only a slight increase in training
time is recorded when the additional FC layers of PIL-NLC are fine-tuned with all the
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training data, because feature extraction is performed in parallel while only the additional
FC layer is learned. The PIL scheme takes more time (on average) to complete one epoch
as compared to PIL-NLC, due to the fact that the features from the AC networks in PIL
also pass through additional convolutional operations in the lateral connections.

The JT shows the worst average time to complete one training epoch due to the
obvious reason of the dataset size. For every incremental set of classes, the JT training
routine has to pass all the training images (old + new classes) through the network to
complete the epoch. On the other hand, the PIL and PIL-NLC training routines only handle
the new incremental set of classes, hence much faster than the JT counterpart.

Figure 4. (a) Training time and (b) GPU memory utilization comparison between the joint training
(JT), PIL-NLC and proposed PIL methods on ImageNet-1000 dataset.

As far as the GPU memory utilization is concerned, the memory requirement trend
for both PIL and PIL-NLC implementations is reflected in Figure 4b. The training time and
GPU memory utilization curves for Fashion MNIST and CIFAR-100 dataset show similar
trend as the training time and GPU memory utilization curves for ImageNet-1000 dataset.
Moreover, the experiments on ImageNet-1000 shows the upper bounds on training time
and memory utilization. Hence, we only show the curves for ImageNet-1000 dataset to
avoid repetition; however, the maximum memory utilization by PIL (with ResNet-101),
when the CIFAR-100 dataset is evaluated, is about 39% of the total GPU memory on
NVIDIA RTX 2080 Ti, which means that 61% of the memory is still unused. The training
latency of the proposed PIL can further be improved using a bigger batch size by utilizing
the unused GPU resources, when the number of classes are less than 1000. As can be seen
in Figure 4b, the memory utilization is still lower than the total memory of the GPU, even
though the image size of ImageNet-1000 is seven times bigger than the image sizes in
CIFAR-100 dataset, and the number of classes is 10 times more than the number of classes
in CIFAR-100 dataset. These results show that the trade-off between the accuracy and
memory utilization (only one GPU is used) is not big.

4.3.3. Comparison with the State-of-the-Art Techniques

We compare the performance (in terms of classification accuracy) of our proposed
PIL method with those of the recent state-of-the-art IL techniques [1,4,12,13,40] and a
baseline JT method. The implementations in [1,12,13,40] use exemplars from the old and
new classes, while [4] does not use any old data. Hence, we compared these methods with
the three implementations of PIL, using (i) all training data, (ii) exemplars and (iii) no old
data. Figure 5a shows these comparisons, and clearly illustrates the superior performance
of proposed PIL method with only using exemplars from the old and new classes. Using
the same algorithm as [13] to select the exemplar set, the PIL method outperforms all
the state-of-the-art schemes in terms of classification accuracy. When all the training
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data are available, the PIL scheme acts as an upper bound for performance comparison.
In the case of the ImageNet-1000 dataset (Figure 5b), the PIL method achieves very similar
performance as compared with the state-of-the-art IL technique [1] and the baseline JT
method. Moreover, for the case when the number of classes are smaller than 600, the PIL
method performs better than the [1] method.

Figure 5a,b also show that the PIL scheme with no access to old data performs much
better than the counterpart learning without forgetting scheme [4]. This confirms that the
AC networks in PIL are indeed taking advantage of the features learned by the networks
trained on old tasks (ONs). To ensure the uniformity in the experiments, we trained the AC
networks in PIL with a fixed batch size, and up to a fixed number of epochs. We believe that
more performance gains can be extracted from the proposed PIL method (under all settings)
with extensive experiments by exploring different combinations of the training parameters.

Figure 5. Comparison of the proposed PIL method with the state-of-the-art incremental learning
methods on (a) CIFAR-100 and (b) ImageNet-1000 datasets.

5. Conclusions and Future Work

Progressive networks are immune to catastrophic forgetting by design as they natu-
rally accumulate experiences from old tasks, making them an ideal choice for handling
the catastrophic learning problem in convolutional neural networks. Hence, in this paper,
we presented a novel progressive CNN architecture with lateral connections to the pre-
trained networks as a solution to the catastrophic forgetting problem. With experiments,
we validated our hypothesis that these lateral connections to pre-trained networks enable
the overall network to differentiate (to some extent) between old and new classes without
using old training data. It is shown that the proposed method outperforms state-of-the-art
incremental learning techniques in terms of accuracy by using exemplar sets on CIFAR-
100 dataset, and achieves similar performance on ImageNet-1000 dataset. The proposed
method is scalable and shows consistent image classification performance when trained
with incremental sets of new classes from the Fashion MNIST, CIFAR-100 and ImageNet-
1000 datasets.

This paper also presents limitations associated with progressive neural networks.
The nature of the training in progressive learning is sequential, which mainly kept us
from quickly evaluating the proposed technique using different network architectures,
such as ResNext and VGG with various training parameters, such as batch size, gradient
and loss optimization parameters. We believe that the choice of the base network will
play an important role in deciding the overall accuracy. Furthermore, the exemplar set we
used is bigger than the one used by the BiC scheme, because the additional FC layer in the
proposed scheme must be largely learned. The BiC scheme only used the exemplar set for
bias correction in FC layers. These limitations illustrate possible future research direction.
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In addition, network pruning and distillation techniques can be jointly incorporated to
reduce resource utilization.
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