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Abstract: Every day, a moss rose generates new flowers with variable diameters. Two flowering 

mechanisms are controlled by exposure to sunlight, namely, a variable concentration of florigen 

based on photoreceptors called phytochromes, and the biological clock, which is responsible for the 

changing diameters of the plant flowers at night and some hours during the day. By explaining and 

idealizing the flowering mechanisms of the moss rose in nature, a new sort of nature-inspired 

optimization algorithm called the moss rose optimization algorithm (MROA) was proposed in this 

study. The MROA was benchmarked using three methods. First, 18 benchmark functions were 

utilized to evaluate the effectiveness of the MROA. Second, the MROA was used for planning a 

smart antenna system (SA) as an online solution to find unknown weights. Third, the MROA was 

used to find the optimal dimensions for a microstrip antenna for the frequency (2.4 GHz) as an 

offline solution. The MROA was compared with other algorithms. The results show the capacities 

and proficiencies of the proposed algorithm regarding finding the ideal solutions. The promising 

arrangements for smart antenna identification and microstrip antenna design highlight the 

importance of this algorithm for resolving current issues with unknown fields of investigation. 

Keywords: moss rose optimization algorithm; metaheuristic algorithms; benchmark functions; 

smart antenna system identification; microstrip patch antenna 

 

1. Introduction 

In many applications, such as in engineering, businesses and industrial designs, 

optimization is extremely important. Many researchers ask a common question: there are 

so many optimization algorithms, so what is the best? 

It is a simple question, but unfortunately, there is no simple answer. We cannot 

answer this question simply for several reasons. One reason is that the complexity and 

diversity of problems in the real world often make it easier to solve some problems, 

whereas others can be extremely difficult. Consequently, a single method is unlikely to 

solve all types of problems. Another reason is due to the so-called no free lunch (NFL) 

theorem, which reads that no universal algorithm exists for all problems [1]. 

This theorem states that: in the search for an extremity of an objective function, if any 

algorithm A surpasses another algorithm B, then algorithm B surpasses other objective 

functions. In general, the NFL theorem applies to the scenario of either deterministic or 

stochastic parameters, where the objective or cost function can be defined using a set of 

continuous (or discrete or mixed) parameters [1]. 

The aim of every optimization solution involves at least some of the following: to 

reduce energy and costs and to maximize profit, output, performance and efficiency. 

Metaheuristic algorithms are currently turning out to be incredible techniques for solving 

numerous complex issues using streamlining [2–13]. By far, most heuristic and 
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metaheuristic algorithms were inspired by the behavior of biological system frameworks 

or potential frameworks in nature. There are several different types of algorithms; some 

of the popular and modern algorithms are discussed below. 

The beginning of the study of metaheuristic algorithms was developed in the thesis 

of [2] in 1992, where he proposed an algorithm that was inspired by an ant colony (AC). 

This search technique was inspired by the swarm intelligence of social ants using a 

pheromone as a chemical messenger. 

In 1995, ref. [3] proposed an algorithm called particle swarm optimization (PSO), 

which was created based on the swarm behavior of birds and fish. The multiple-particle 

swarm moves in the search space, starting from some initial random guess. The swarm 

gives information about the current best solution. Then, to focus on the high-quality 

solutions, they share the global best solution. 

In 2006, ref. [4] presented a novel numerical algorithm for stochastic optimization 

that is based on weeds. In a simple but successful optimization algorithm known as 

invasive weed optimization (IWO), the robustness, adaptation and randomness of the 

colonizing weeds is tested. 

In 2009, ref. [5] proposed an algorithm called the firefly algorithm (FA), which is 

based on the behavior of firefly flashlights in the summer night’s sky. Then, they provided 

a comparison study between the FA and PSO algorithms. 

In 2010, ref. [6] proposed an algorithm called the cuckoo search algorithm (CS), which 

is based on some cuckoo species that engage in brood parasitism.  

In 2010, ref. [7] proposed a novel nature-inspired metaheuristic algorithm called the 

bat algorithm (BA). This algorithm is based on microbats’ behavior, which involves using 

echolocation for finding certain directions. 

In 2012, ref. [8] proposed an algorithm called the flower pollination algorithm (FPA). 

Using another domain for metaheuristic inspiration, this algorithm is based on the 

pollination behavior of plants and types of pollination spreads in fields. 

In 2013, ref. [9] presented research on complex system modeling and calculations 

using a novel biologically inspired approach known as the root growth algorithm (RG). 

This general model of optimization gleaned ideas from the behaviors of root growth in 

soil. 

In 2016, ref. [10] proposed a novel algorithm for nature-based metaheuristic 

optimization named the whale optimization algorithm (WOA), which mimics humpback 

whales’ social behavior. The bubble-net hunting strategy was the inspiration of the 

algorithm. 

The bio-inspired computational technique for geometrically optimized joints of a 

compact coplanar waveguide (CPW)-fueled microstrip antenna with a defective ground 

structure was introduced in 2017 by [11] and is known as the adaptive bacterial foraging 

optimization (ABFO). The ABFO was compared with the original (BFO) technique, PSO, 

the invasive weed optimization technique, and the artificial bee colony (ABC) to check its 

adequacy. 

In 2018, ref. [12] proposed a modern model for optimization that was inspired by 

nature called the squirrel search algorithm (SSA). This optimization algorithm imitates 

the southern flying squirrel’s complex foraging behavior and its effective method of 

transport known as gliding. The proposed algorithm mathematically modeled this 

behavior to realize the optimization process. In terms of the efficiency of the proposed 

SSA, the statistical analysis, convergence rate analysis, Wilcoxon test and ANOVA were 

evaluated with respect to the classic and modern CEC 2014 benchmarks. The performance 

of the SSA over other popular optimization techniques with regard to the optimization 

accuracy and convergence rate was demonstrated in an exhaustive comparative analysis.  

In 2019, ref. [13] proposed a new modified algorithm with a high calculation speed 

and simplified camel-based structural optimization (modified CA). The results showed 

that the modified camel algorithm is preferable when compared with particle swarm 

optimization (PSO) and the crow searching algorithm (CSA). 
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In 2020, the smart flower optimization algorithm (SFOA) was proposed in [14] to 

provide a new kind of nature-inspired optimization algorithm. There were two modes for 

the proposed algorithm: sunny and cloudy or snowy, depending on weather conditions. 

For the testing of SFOA’s efficiency using statistical analysis and Wilcoxon’s test, a 

collection of 15 benchmarking features in the CEC 2015 was used. For the design of a 

system of adaptive IIR to adapt to an unknown system, SFOA was used. 

Each of these algorithms has specific weaknesses and focal points. For example, 

simulations annealing can almost guarantee that the ideal arrangement is found if the 

cooling process is moderate and the simulation is sufficiently long [15]. 

In this study, another metaheuristic technique was proposed, known as the moss rose 

optimization algorithm (MROA), which is based on the flowering of this type of plant. In 

addition to other factors, such as day length and daytime temperature, the ability of the 

moss rose to flower at some time of day depends mainly on light factors. In the rest of the 

paper, the moss rose optimization algorithm for optimizing the plant’s floral diameters is 

proposed. A brief overview of the algorithm is then given, and a comparison with other 

algorithms is provided to show that the proposed algorithm works correctly. 

2. Moss Rose Optimization Algorithm 

In this part, the proposed plant algorithm’s inspiration is considered. Then, the 

mathematical model of the algorithm is presented. 

2.1. Inspiration 

The inspiration for the proposed approach was the flowering behavior of the moss 

rose. The scientific name of this plant is Portulaca grandiflora Hook. This plant is classified 

as a long-day plant. The most important factor that activates the flowering is exposure to 

red light. The light interacts with photoreceptors (phytochromes) to make a special 

protein called florigen. 

A phytochrome is a multiform pigment that is capable of absorbing red light. These 

pigments absorb light in a very narrow and specific spectral range. The phytochromes are 

the first step in providing information about the red phytochrome (Pr) and far-red 

phytochrome (Pfr) levels in a signaling system, leading to developmental changes in gene 

expression. There are two convertible forms of the phytochrome molecule: first, Pr absorbs 

red light at a 660 nm wavelength, and second, Pfr absorbs 730 nm long-red light. The light 

from the Sun contains more red light than far-red light. Pr is biologically inactive; when 

red photons are present, it is transformed into the active form, Pfr. When far-red photons 

are available, Pfr is transformed back into Pr. In other words, if Pfr is present, there will 

be biological reactions affecting the phytochromes. The reactions cannot occur if most of 

the Pfr has been replaced by Pr [16], as shown in Figure 1a. 

The phytochromes are located in the cytoplasm but enter the core to allow light-

response genes to be transcribed. It can pass into the nucleus when Pr is converted to Pfr. 

Once inside the nucleus, Pfr binds to other proteins to form a transcription complex, which 

leads to the production of light-controlled genes. This operation is shown in Figure 1b 

[16]. 

From the information above regarding the biological mechanism, we see that light is 

the flowering signal of moss roses. Light activates photoreceptors and triggers signal 

cascades in plant cells of apical or lateral meristems [17]. 
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Figure 1. Moss rose flowering mechanism: (a) phytochrome generation and (b) florigen generation in the cell. 

2.2. Mathematical Model 

The moss rose optimization is a population-based optimization algorithm. For the 

proposed algorithm, the search space can be modified based on the mechanisms of 

flowering in the plant. In this algorithm, it is assumed that each moss rose has the ability 

to produce flowers in a dimensional search space. 

Since the moss rose algorithm depends on the population, a population of a flowering 

cluster can be represented in a matrix as follows: 

𝐹𝑑 =

[
 
 
 
𝑓𝑑1,1 𝑓𝑑1,2 ⋯ ⋯ 𝑓𝑑1,𝐷𝑖𝑚

𝑓𝑑2,1 𝑓𝑑2,2 ⋯ ⋯ 𝑓𝑑2,𝐷𝑖𝑚

⋮ ⋮ ⋮ ⋮ ⋮
𝑓𝑑𝑀,1 𝑓𝑑𝑀,2 ⋯ ⋯ 𝑓𝑑𝑀,𝐷𝑖𝑚]

 
 
 
 (1) 

where M denotes the number of flowers in a plant and Dim denotes the number of 

variables (dimension). In the proposed algorithm, the diameter of each flower of a moss 

rose leads to a random solution to the optimization problem. Each flower has a fitness 

value that depends on the fitness function value of the optimization problem that 

represents the diameter of its flower. A better fitness value represents the diameter of a 

larger flower. New flower diameters (solutions) allow the algorithm to predict and 

prepare to complete their flowering during the same day in the decision space based on 

internal mechanisms. The definitions of the properties of the MROA are represented in 

Table 1. 

Table 1. The properties of the MROA. 

Decision Variable  → Moss Rose’s Flowering in a Day 

Initial solution  → Randomly generated lighting of a moss rose 

Old solution  → Old flower diameter of a moss rose 

New solution  → New flowering of a moss rose 

Best solution  → Best flower diameter of a moss rose  

Objective function  → 

Florigen amount, which depends on the light 

(phytochrome tincture) and biological clock (red 

photon spectrum) 

Process of generating a new 

solution  
→ Flowering mechanisms of a moss rose 
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The mathematical model that was used to simulate the flowering mechanisms of a 

moss rose is presented in the following equations: 

1. Create random variables that represent the flowering diameters: 

𝑓𝑑(𝑖) = [𝑚𝑎𝑥 − 𝑚𝑖𝑛 ] ∗ 𝑟𝑎𝑛𝑑 𝑓𝑑 + 𝑚𝑖𝑛 (2) 

where 𝑓𝑑—the diameters of roses between max and min values. 

2. Generate the flowering age parameter, which depends on the current diameter and 

the maximum diameter that the flower will reach. The equation for the 𝑎𝑔𝑒 is 

𝑓_𝑎𝑔𝑒 = (𝑓𝑑𝑚𝑎𝑥 ∗ 𝑇𝐻) +  𝑓𝑑 (3) 

where 𝑓𝑑𝑚𝑎𝑥—maximum flower diameter and 𝑇𝐻—total hours in a day. 

3. Generate the phytochrome parameter, which depends on the max flowering 

diameter, the number of hours the flowers are open, a random time in the morning 

and the minimum flowering diameter: 

𝑝ℎ𝑦𝑡𝑜𝑐ℎ𝑟𝑜𝑚𝑒 = 𝑓𝑑𝑚𝑎𝑥 ∗ 𝑒−(𝑆𝐹∗𝑐𝑙𝑜𝑐𝑘−𝐵𝐹)𝑜ℎ
+ 𝑓𝑑𝑚𝑖𝑛 (4) 

where BF—biological opening factor (controls the clock time of flowering; the value 

is 3), SF—scaling factor (to ensure the maximum reaction of the rose to light effect; 

the value is 2.7), 𝑜ℎ—maximum number of hours the flowers are open and 𝑓𝑑𝑚𝑖𝑛—

minimum flower diameter. 

4. Calculate the new fd according to the following equation: 

𝑓𝑑𝑛𝑒𝑤 = 𝑓𝑑𝑜𝑙𝑑 + 𝑝ℎ𝑦𝑡𝑜𝑐ℎ𝑟𝑜𝑚𝑒 ∗ 𝑓𝑎𝑔𝑒 ∗  Pr∗  (𝑓𝑑𝑏𝑒𝑠𝑡 − 𝑓𝑑𝑜𝑙𝑑) (5) 

where Pr—red photon wavelength (nm) and 𝑓𝑑𝑏𝑒𝑠𝑡—best flowering diameter, which 

is calculated based on the fitness function. 

Any flower on the plant can update its diameter according to the random sunlight 

receptors in response to the composition of the ‘phytochrome’ in the apical meristem 

without the other. Therefore, the same concept can be extended with a dimensional search 

space by changing the exponential morning clock function ‘clock’, which is chosen 

randomly between 7 a.m. and 3 p.m. 

In order to have a clear visualization of the work of the algorithm, the basic work of 

the two equations mentioned in steps 2 and 3 involves adding the values that control the 

improvement of the random variable. As for step 4, this is the basic equation for updating 

the randomly imposed value and it contains the values of the variables that were 

generated in the previous two steps. 

The moss rose will close its flowers during the night and for several hours of the day, 

and its flowers will bloom during the rest of the day. This cyclic prototype permits a moss 

rose to be repositioned around another solution. This can guarantee that the 

intensification of the space is characterized by two arrangements. To diversify the inquiry 

space, the flowers should have the option to look outside the local space of the best 

arrangements they are comparing. This can be achieved by changing the scope of the 

phytochrome during a 24 h day/night cycle, as shown in Figure 2. 
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Figure 2. Period of flowering for one day/night cycle. 

In stochastic algorithms, a calculation should have the option to adjust between 

intensification and diversification stages to compute the promising regions of the pursuit 

space and eventually join to produce the global optimum. For adjusting the intensification 

and diversification, the flowering diameter of the roses was decreased during successive 

iterations. It is shown in Figures 1 and 2 that the MROA investigates the pursuit space 

when the phytochrome is enacted and the organic clock of the moss rose works regularly. 

5. The MROA finalizes the optimization process when evaluating the maximum 

number of fitness functions or obtaining the accuracy of the global optimum. The 

pseudocode of the MROA is illustrated in Figure 3. The flowchart of the MROA is 

shown in Figure 4 

 

Figure 3. General pseudocode of the MROA. 
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Figure 4. Flowchart of the proposed MROA. 

3. Computational Results of Benchmark Functions 

To check the efficiency of the proposed MROA, a total of 18 benchmark functions 

were implemented. Two types of functions composed these benchmarks:  

(a) Unimodal functions for benchmarking;  

(b) Functions for multimodal benchmarks.  
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The experiments were carried out using the R2019a version of MATLAB software 

and Windows 10 Pro N on a laptop with an i7 Core 2.4 GHz processor, a 256 Gb SSD and 

8 Gb RAM. 

Table 2 lists the global/local benchmarking functions’ names, measurements, 

attributes and the associated values. Details of the 18 benchmark functions are given in 

[18,19]. 

Three well-known search algorithms, namely, the crow searching algorithm (CSA) 

[20], the modified camel algorithm (MCA) [17] and particle swarm optimization (PSO) [3], 

were used as tests of MROA’s benchmarking functions. The maximum population size 

and the iteration values were set to 50 and 5000, respectively, for all algorithms to ensure 

that the comparison was fair. All algorithms in Table 3 had the default parameters. For 

the proposed MROA, the default parameter values of maximum diameter, minimum 

diameter, Pr and daylight hours were set to 4, 0.5, 660 nm and [7,15], respectively. Each 

algorithm was run 20 times for every function to evaluate the algorithms using the 

benchmark functions. The results of the benchmark functions are shown in Table 4. For 

each algorithm, the minimum value of the functions is called ‘Min. Value’, the average 

solution for a given function after 20 implementations is called ‘Mean’, the standard 

function deviation for each algorithm is ‘Std. Dev.’ and a bold number represents the best 

mean for each benchmark function for every single algorithm. The algorithms were 

ranked according to the smallest mean solution. It is easy to detect that MROA produced 

much better results than the compared algorithms based on the results of the mean values 

illustrated in Table 4. 

Table 2. Characteristics of benchmark functions. 

Type Name Specifications Search Range Global Minimum at 

Unimodal 

Acklay2 Function Continuous, differentiable, non-separable, non-scalable −32 ≤ xi ≤ 32. f(x∗) = −200 at x∗ = (0, 0) 

Beale Function  Continuous, differentiable, non-separable, non-scalable −4.5 ≤ xi ≤ 4.5 f(x∗) = 0 at x∗ = (3, 0.5) 

Dixon and Price Function  Continuous, differentiable, non-separable, scalable −10 ≤ xi ≤ 10 f(x∗) = 0 at x∗ = (2 (2i–2/2i )) 

Leon Function  Continuous, differentiable, non-separable, non-scalable −1.2 ≤ xi ≤ 1.2 f(x∗) = 0 at x∗ = (1, 1),  

Matyas Function  Continuous, differentiable, non-separable, non-scalable −10 ≤ xi ≤ 10 f(x∗) = 0 at x∗ = (0, 0)  

Powell Sum Function  Continuous, differentiable, separable, scalable −1 ≤ xi ≤ 1 f(x∗) = 0 at x∗ = (0, 0) 

Elliptic Function Continuous, differentiable, non-separable, non-scalable −100 ≤ xi ≤ 100 f(x∗) = 0 at x∗ = (0, 0) 

Rosenbrock Function  Continuous, differentiable, non-separable, scalable −30 ≤ xi ≤ 30 f(x∗) = 0 at x∗ = (1, …, 1) 

Schwefel 2.22 Function  Continuous, differentiable, non-separable, scalable −100 ≤ xi ≤ 100 f(x∗) = 0 at x∗ = (0, 0) 

Step 2 Function Discontinuous, non-differentiable, separable, scalable −100 ≤ xi ≤ 100 f(x∗) = 0 at x∗ = (0.5, …, 0.5) 

Sum Square Function Continuous, differentiable, non-separable, non-scalable −10 ≤ xi ≤ 10 f(x∗) = 0 at x∗ = (0, 0) 

Multimodal 

Colville Function  Continuous, differentiable, non-separable, non-scalable −10 ≤ xi ≤ 10 f(x∗) = 0 at x∗ = (1, …, 1)  

Easom Function  Continuous, differentiable, separable, non-scalable −100 ≤ xi ≤ 100 
f(x∗) = −1  

at x∗ = (π, …, π) 

Quartic Function Continuous, differentiable, separable, scalable −1.28 ≤ xi ≤ 1.28 f(x∗) = 0 at x∗ = (0, …, 0) 

Quartic with Noise Function Continuous, differentiable, separable, scalable −1.28 ≤ xi ≤ 1.28 f(x∗) = 0 at x∗ = (0, …, 0) 

Schwefel 2.36 Function  Continuous, differentiable, separable, scalable 0 ≤ xi ≤ 500 
f(x∗) = −3456  

at x∗ = (12,…, 12) 

Griewank Function  Continuous, differentiable, non-separable, scalable −100 ≤ xi ≤ 100 f(x∗) = 0 at x∗ = (0, …, 0) 

Schaffer 6 Function  Continuous, differentiable, non-separable, scalable −100 ≤ xi ≤ 100 f(x∗) = 0 at x∗ = (0, …, 0) 

It can be concluded from Table 4 that the MROA algorithm found the best solution 

(global optimum) for all benchmark functions. The multimodal benchmark functions 

illustrated the second part of the functions testing, which contained seven functions. 

Given the difficulty of solving these functions, this means that the global searchability test 

is hard for any algorithm [19]. It is shown in Table 4 that the MROA ranked first for all 

functions (Colville Function, Easom Function, Quartic Function, Quartic with Noise 

Function, Schwefel 2.36 Function, Griewank Function and Schaffer 6 Function) based on 

the mean of each solutions. These results show that the MROA provided better results 

than the other algorithms.  
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Table 3. The parameters of compared algorithms. 

Algorithms Parameters Value 

MROA 

Number of rose flowers for each plant 30 

Plant population 50 

Maximum number of iterations 5000 

Red photon wavelength 660 nm 

Maximum flowering diameter 4 

Minimum flowering diameter 0.5 

CSA 

Number of steps for each flight 30 

Flock population 50 

Awareness probability 0.1 

Flight length (fl) 2 

Maximum number of iterations 5000 

MCA 

Number of decision variables 30 

Camel caravan population 50 

Maximum number of iterations 5000 

Visibility 0.1 

Minimum temperature 30° 

Maximum temperature 60° 

PSO 

Number of decision variables 30 

Population 50 

Maximum number of iterations 5000 

Cognitive constant (c1) 1 

Social constant (c2) 1 

Inertia weight 0.4–0.9 

As displayed above, the benchmark functions were classified into two parts. The first 

part (unimodal) contained eleven functions, where MROA had the best mean values for 

eight of the eleven unimodal functions, (bold numbers in the Table 4), the eight unimodal 

functions are: Acklay2 Function, Dixon and Price Function, Matyas Function, Powell Sum 

Function, Elliptic Function, Rosenbrock Function, Step 2 Function and Sum Square 

Function, but had the second-best mean values for three functions (Beale Function, Leon 

Function and Schwefel 2.22 Function). 

Table 4. Compared algorithms’ results for the benchmark functions. 

Function  Results  MROA PSO MCA CSA 

Acklay2  

Min. Value −200 −199.42 −198.34 −200.00 

Mean −200 −194.2915 −194.8375 −199.9995 

St. Dev. 0 2.991608043 2.797878661 0.002236068 

Rank 1 3 4 2 

Beale  

Min. Value 3.2471 × 10−15 0 0.00012672 2.548 × 10−17 

Mean 6.0773 × 10−5 0.049739907 0.097696486 6.37883 × 10−13 

St. Dev. 0.000177395 0.100935338 0.086289362 1.89474 × 10−12 

Rank 2 3 4 1 

Dixon & Price  

Min. Value 0.018996 0.022127 0.00049427 0.019022 

Mean 0.1036305 0.20409175 0.148765864 0.1661664 

St. Dev. 0.08940493 0.170401316 0.136410879 0.13953285 

Rank 1 4 2 3 

Leon  
Min. Value 2.3882 × 10−17 2.1952 × 10−16 2.4476 × 10−11 7.8064 × 10−11 

Mean 1.55727 × 10−9 0.008226761 1.30748 × 10−9 1.89626 × 10−8 
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St. Dev. 3.75185 × 10−9 0.021144602 1.60812 × 10−9 3.18738 × 10−8 

Rank 2 4 1 3 

Matyas  

Min. Value 3.6864 × 10−17 5.5254 × 10−18 0.00032757 1.2634 × 10−10 

Mean 3.50209 × 10−10 0.000349969 0.005781294 1.5075 × 10−9 

St. Dev. 1.05425 × 10−9 0.001343955 0.004856965 1.85197 × 10−9 

Rank 1 3 4 2 

Powell Sum  

Min. Value 2.6923 × 10−116 4.0765 × 10−43 5.1255 × 10−82 4.0934 × 10−20 

Mean 3.38865 × 10−31 9.01383 × 10−7 0.012883587 4.14734 × 10−16 

St. Dev. 1.51545 × 10−30 3.95512 × 10−6 0.057616743 1.82849 × 10−15 

Rank 1 3 4 2 

Elliptic  

Min. Value 1.01 × 10−8 0.000024538 0.000096338 3.26000 × 10−6 

Mean 1.11779 × 10−6 0.001778024 0.045285091 3.43628 × 10−6 

St. Dev. 1.61468 × 10−6 0.004665153 0.078707248 3.52554 × 10−5 

Rank 1 3 4 2 

Rosenbrock  

Min. Value 8.6376 × 10−14 0 −79367000 −29.999 

Mean 5.12256 × 10−6 0.000824868 −80249600 3 

St. Dev. 1.60557 × 10−5 0.003229872 697280.5371 30.62496402 

Rank 1 2 4 3 

Schwefel 2.22  

Min. Value 2.46 × 10−8 0 0.00084192 5.6813 × 10−7 

Mean 8.25162 × 10−6 0.0740245 0.007106103 −3.32486 × 10−7 

St. Dev. 1.01709 × 10−5 0.186976099 0.008900305 6.07854 × 10−6 

Rank 2 4 3 1 

Step 2  

Min. Value 1.9125 × 10−14 0 0.086092 0 

Mean 0.00191227 0.053905812 0.7723646 0.182425969 

St. Dev. 0.008507456 0.241070298 0.592366856 0.292870893 

Rank 1 2 4 3 

Sum Square  

Min. Value 9.6547 × 10−21 0 4.9192 × 10−6 2.8783 × 10−9 

Mean 3.75465 × 10−10 0.0072807 6.51515 × 10−5 0.014581727 

St. Dev. 1.18746 × 10−9 0.022974547 0.000121492 0.030715494 

Rank 1 3 2 4 

Colville  

Min. Value 1.9816 × 10−7 0.000019144 10.403 0.000060625 

Mean 0.00990933 0.112682992 54.9052 0.064946773 

St. Dev. 0.013830272 0.191159812 31.80264295 0.164085831 

Rank 1 3 4 2 

Easom  

Min. Value −1 −1 −0.34376 −1 

Mean −0.9999945 −0.937501 −0.01718949 −0.99984 

St. Dev. 1.70062 × 10−05 0.130961483 0.076866722 0.000493335 

Rank 1 3 4 2 

Quartic  

Min. Value 0 0.00094364 5.0625 × 10−24 1.7000000 × 10−20 

Mean 1.0326 × 10−141 0.006156197 5.59873 × 10−10 1.81534 × 10−19 

St. Dev. 4.6177 × 10−141 0.006189817 2.00435 × 10−9 7.70156 × 10−19 

Rank 1 4 3 2 

Quartic with Noise  

Min. Value 6.6502 × 10−6 0.000086509 0.00024593 0.0068233 

Mean 0.000151943 0.002846577 0.007795547 0.010313575 

St. Dev. 0.000129066 0.011295313 0.006333955 0.026795825 

Rank 1 2 3 4 

Schwefel 2.36  

Min. Value −3456 −3456 −3435.2 −3452.9 

Mean −3208.137 −1.3532 × 10+11 −3051.015 −3854443.57 

St. Dev. 863.9120062 3.54737 × 10+11 424.5019339 15039861.74 
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Rank 1 4 2 3 

Griewank  

Min. Value 0 0 −0.080845 −1.9164 × 10−9 

Mean 7.00056 × 10−10 0.003452655 −0.09689335 1.17946 × 10−9 

St. Dev. 1.66136 × 10−09 0.009206785 0.19265963 4.96471 × 10−9 

Rank 1 3 4 2 

Schaffer 6  

Min. Value 1.0991 × 10−14 0 0.010537 −3.9162 × 10−10 

Mean 5.68756 × 10−10 0.015566735 0.04689305 −6.08983 × 10−10 

St. Dev. 2.05703 × 10−9 0.050868454 0.02463849 2.36199 × 10−9 

Rank 1 3 4 2 

4. Engineering Optimization Applications 

This section demonstrates MROA’s benefits regarding optimizing application 

parameters in two fields (an online control system application and an offline application). 

A smart anti-jamming antenna system was chosen as an online system to demonstrate its 

ability to solve problems of real-time optimization. The dimensions of narrowband 

microstrip patch antenna are estimated as a problem of offline optimization. 

4.1. Smart Antennas with Anti-Jamming 

Smart antennas with anti-jamming are extremely helpful in military applications, 

where they are presented with intentional jamming attempts sent by an adversary. It is a 

real-time system, as it refreshes its activity boundaries continuously. Figure 5 represents 

the operation idea and the boundaries of an M-component smart antenna system. The 

ideal transmission is fixed in the line of sight (LOS) of the receiving station. The other 

jamming sources are appropriated in various ways, either to communicate fake messages 

or just to meddle with the target system. The smart antenna system with anti-jamming 

attempts to arrange the receiving antenna’s fundamental beam toward the ideal 

transmission and finds nulls in the directions of the jamming signals, as shown in Figure 

5. In fact, if there is any correlation between the ideal signal and the jamming signal, the 

beam-forming calculations cannot drop the jamming signal completely [21]. Under this 

condition, the regular beam-forming calculations can only weaken the jamming signals. 

Since the jamming signals are sometimes communicated with a higher power than the 

ideal signal power, attenuation will be a bad solution for this situation. The moss rose 

algorithm does not depend on the correlation of signals; it completely nullifies the 

jamming signals without taking into consideration the transmission power.  

Let there be K + 1 signals that are received by an M-component smart antenna from 

various directions, where these signals are given by their strengths S (the power signal 

square root) as [So, S1, S2, …, SK]. The arrived signal So is thought to be the ideal signal, 

which is received by the smart antenna from the broadside direction (Φ = 90°). Various 

incoming signals are viewed as jamming signals. The signals that are received by all 

components can be represented by the vector x = [x1, x2, …, xm] and the weights vector of 

the system array is represented as w = [w1, w2, …, wm], The smart antenna system output 

is given by: 

𝑦 = 𝑤𝐻𝑥 (6) 

where H represents the Hermitian transpose. The vector of the received signal that is 

selected by the smart antenna system is created as follows [21]: 

𝑥 = ∑ 𝑆𝑘𝑎𝑘                       

𝐾

𝑘=0

 (7) 

where the steering vector’s kth signal is referred to as ak , which has an arrival angle of 𝜙𝑘. 

The formula for the steering vector signal is as follows [21]: 
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𝑎𝑘 =

[
 
 
 
 

1
𝑒𝑥𝑝 [𝑗𝛽𝑑𝑐𝑜𝑠 (𝜙𝑘)]

𝑒𝑥𝑝 [𝑗2𝛽𝑑𝑐𝑜𝑠 (𝜙𝑘)]
⋮

𝑒𝑥𝑝 [𝑗(𝑀 − 1)𝛽𝑑𝑐𝑜𝑠 (𝜙𝑘)]]
 
 
 
 

 (8) 

where d represents the space between two adjoining elements in terms of the wavelength 

λ and β denotes the propagation phase constant: 

𝛽 =
2𝜋

𝜆
 (9) 

For an array antenna, the array factor (AF) is equal to the radiation pattern whenever 

the antenna elements are omnidirectional [22]. Thus, the array factor equation can be used 

to determine the radiation pattern as follows [21]: 

𝐴𝐹 = 𝑤𝐻𝑎(𝜙) (10) 

where 𝑎(𝜙) denotes the common steering vector for any angle 𝜙: 

𝑎(𝜙) =

[
 
 
 
 

1
𝑒𝑥𝑝 [𝑗𝛽𝑑𝑐𝑜𝑠 (𝜙)]

𝑒𝑥𝑝 [𝑗2𝛽𝑑𝑐𝑜𝑠 (𝜙)]
⋮

𝑒𝑥𝑝 [𝑗(𝑀 − 1)𝛽𝑑𝑐𝑜𝑠 (𝜙)]]
 
 
 
 

 (11) 

The phase angle δ between the elements of the weights vector can be used to find the 

angle of the main beam of the antenna, which should be guided toward the desired signal 

direction 𝜙𝜊. The phase angle between the elements of the weights vector can be found 

using the following criterion [22]: 

𝛽𝑑 cos(𝜙𝜊) + 𝛿 = 0 (12) 

 

Figure 5. Smart antenna array with M-components. 

If the desired signal angle is (𝜙𝜊 = 90𝜊), then δ has a value equal to zero. The null 

positions of the antenna array factor magnitude are determined using the weights vector. 

As a result, the weights vector magnitude |w| is the optimization variable of these 

systems. The proposed objective function F for the system is 

𝐹 = min [|𝑆𝜊 − |𝑤𝐻𝑥||] (13) 

Numerical example: Consider M = 10 smart antenna equivalents to So = 1 with a 

desired signal power. The assumption of serious jamming involves three strong jamming 

Jamming Signal 

Desierd 

Transmission 

Beamforming 

algorithm 
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signals with S1 = 3, S2 = 2 and S3 = 3 powers. For the four jamming signals, the following 

cases indicate different arrival angles:  

Case 1: 𝜙1 = 20ο, 𝜙2 = 60ο, 𝜙3 = 120ο 

Case 2: 𝜙1 = 40ο, 𝜙2 = 80ο, 𝜙3 = 140ο 

Case 3: 𝜙1 = 50ο, 𝜙2 = 100ο, 𝜙3 = 130ο 

The optimized magnitude of the weight vector is shown in Table 5 after the moss 

rose flower that was produced for each event. The normalized size of the array factor that 

resulted from the vector weights for each case is shown in Figure 6. The same numerical 

example was applied using the other compared algorithms (MCA, CSA and PSO). It is 

apparent that the antenna system perfectly removed the jamming signal by pointing nulls 

toward its arrival angle, irrespective of the similarity between the signals for all 

algorithms, but with different average elapsed times for 20 runs. The smallest elapsed 

time for finding the optimal weights in the numerical example was found when using the 

moss rose algorithm. The elapsed time for each algorithm is shown in Table 6. 

 
(a)  

 
(b) 

S2 

S1 So 

S3 

S2 

S1 So 

S3 
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(c) 

Figure 6. Standardized smart antenna array factor using the moss rose algorithm: (a) case 1, (b) case 2 and (c) case 3. 

Table 5. The optimized sizes of the vector weights for the smart antenna system proposed. 

|wopt| Case 1 |wopt| Case 2 |wopt| Case 3 

0.3398 0.2494 0.2824 

0.4334 0.6775 0.5368 

0.2699 0.4279 0.3438 

0.5270 0.1571 0.3622 

0.3145 0.1670 0.3168 

0.2633 0.3353 0.1845 

0.6227 0.1745 0.1952 

0.3644 0.4673 0.3178 

0.2383 0.5486 0.5901 

0.1947 0.2801 0.4896 

Table 6. Elapsed times (s) for finding the optimal weights. 

Algorithm MROA CSA MCA PSO 

Ave. time 0.4039 0.8815 0.4452 1.0504 

Rank 1 3 2 4 

4.2. Narrowband Microstrip Patch Antenna Design 

The 1970s were especially popular regarding space-borne applications for microstrip 

antennas. They are currently used for public and commercial purposes. A microstrip 

patch antenna involves a metal patch on a grounded substratum. There are several 

variations for the metallic patch. However, because of its easy analysis and development 

and its attractive radiation characteristics, especially the low cross-polarization radiation, 

the rectangular and circular patches are the most common [23]. 

A thin metal band (patch) with a substrate height that is a small fraction of a 

wavelength (h ≪ 𝜆𝜊, typically 0.003𝜆𝜊 < h < 0.05𝜆𝜊) is made up of microstrip antennas that 

are mounted above the ground plane. The patch is designed in such a way that its pattern 

is natural for the patch (broadside radiator). This is done by correctly selecting the mode 

(field configuration) for the patch. Careful mode selection also allows for end-of-fire 

radiation. The L length of an element is typically 𝜆𝜊/3 < L < 𝜆𝜊/2 for a rectangular patch. A 

dielectric sheet separates the strip (patch) from the ground plane (referred to as the 

substrate), as shown in Figure 7 [22]. 

S2 

S1 So 

S3 
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To achieve the desired frequency, this antenna must be equipped with certain 

parameters.  

The design procedure assumed that the specified information contains the dielectric 

substrate constant (𝜀𝑟), as well as the substrate height (h), and is as follows: [22,23] 

1. Specify the center frequency and choose a permittivity (𝜀𝑟) and the thickness of the 

substrate (h): 

ℎ ≥ 0.06
𝜆𝑎𝑖𝑟

√𝜀𝑟

  

2. Find the patch width (Wp) using 

𝑊𝑝 =
𝑣𝑜

2𝑓𝑟
√

2

𝜀𝑟 + 1
 (14) 

where  𝑣𝑜 is the light velocity, and 𝑓𝑟 is the resonant frequency.  

3. Calculate the effective dielectric constant 𝜀𝑟𝑒𝑓𝑓 using the following equation: 

𝜀reff =
𝜀𝑟 + 1

2
+

𝜀𝑟 − 1

2
[1 + 12

ℎ

𝑊𝑝
]−1/2 (15) 

4. Calculate the extended length (Δ𝐿): 

Δ𝐿

ℎ
= 0.412

(𝜀reff + 0.3)(
𝑊𝑝

ℎ
+ 0.264)

(𝜀reff − 0.258)(
𝑊𝑝

ℎ
+ 0.8)

 (16) 

5. Calculate the patch length (Lp) using the following equation: 

𝐿𝑝 =
𝑣𝑜

2𝑓𝑟√𝜀𝑟𝑒𝑓𝑓

− 2Δ𝐿 (17) 

6. Find the notch width using the following equation: 

𝑓𝑟 =
𝑣0

√2 × 𝜀𝑒𝑡𝑗

4.6 × 10−14

𝑔
+

𝑓

1.01
 (18) 

7. Calculate the matching impedance Zo as follows: 

𝑍𝑜 = 𝑅𝑖𝑛cos2 (
𝜋

𝐿𝑝
𝑑) (19) 

where the input impedance (Rin) is obtained using 

𝑅in =
1

2(𝐺1 + 𝐺12)
 (20) 

The input admittance G1 can be calculated using the following equation:  

𝐺1 =
1

120𝜋2
∫ [

sin(
𝑘0𝑊𝑝

2
cos 𝜃)

cos 𝜃
]2

𝜋

0

sin3 𝜃𝑑𝜃 (21) 

The mutual admittance G12 can be calculated using the following equation:  

𝐺12 =
1

120𝜋2
∫ [

sin(
𝑘0𝑊𝑝

2
cos 𝜃)

cos 𝜃
]2

𝜋

0

∗ 𝐽0(𝑘0𝐿𝑝sin 𝜃)sin3 𝜃𝑑𝜃 (22) 
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Figure 7. Microstrip patch antenna. 

Numerical example where the resonant frequency was chosen to be 2.4 GHz: By 

using the above technique, the width and length of the patch are considered random input 

variables. The permittivity was 4.3 and the substrate thickness was h = 1.6 mm. The 

microstrip patch antenna dimensions were found as shown in Table 7. 

Table 7. Dimensions (mm) of the microstrip patch antenna. 

Dimension MROA CSA MCA PSO 

Wp 38.3935 10.1 26.0 40.1 

Lp 29.4 10.0 32.6 30.0 

Fi 9.0442 3.0 9.9 9.4 

Wf 3.3353 1.2 3.4 3.2 

It is concluded that the proposed algorithm produces exact dimensions that has 

minimum reflection coefficient of (S11 = −34.041775 dB) and minimum voltage standing 

wave ratio of (VSWR = 1.0405184) at the target frequency (2.4 GHz) when compared with 

the other algorithms. The comparison algorithms have not significant results at the target 

frequency. The results of S11 and VSWR are as shown in Figures 8 and 9, and Table 8 

compares S11 and VSWR values between different algorithms. 

 

Figure 8. Sr value for target frequency. 
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Figure 9. VSWR value for the target frequency. 

Table 8. Dimensions (in mm) of microstrip patch antenna. 

Parameter MROA CSA MCA PSO 

S_Parameter −34.041775 −0.23977709 −2.4879888 −5.5074249 

VSWR 1.0405184 72.454306 3.2592233 7.0299327 

5. Conclusions 

In this study, a new algorithm known as the moss rose optimization algorithm 

(MROA), which was inspired by the flowering process of the moss rose, was suggested. 

During the day, a moss rose opens toward the sunlight. For the flowering of plants, 

proteins, such as florigen, play a major role. Florigen is released to allow for plant 

flowering with various diameters at different points of the light cycle. The flowers are 

opened several hours a day and are then closed in preparation for the next day to re-adjust 

the diameters. The main structure of the algorithm is as follows:  

1. Generate random variables. 

2. Identify the values of the variables that produced the best solution to the calculated 

fitness function. 

3. Generate a new variable representing the lifetime of the variable. 

4. Generating a second variable that represents the extent of the influence of natural 

factors upon updating the variable data. 

5. Update the variables and compare the results with the previous results to obtain 

convergence toward a better outcome. 

The proposed MROA was tested for extremely demanding modern requirements. 

The results of the benchmark function tests showed that the proposed algorithm was 

better than other algorithms, especially for multimodal functions, as illustrated in Table 

4. In addition, these tests showed that the MROA balanced the exploitation and 

exploration stages with the results well (especially for multimodal functions) in 

comparison to other algorithms, namely, the crow search algorithm (CSA), the modified 

camel algorithm (MCA) and particle swarm optimization (PSO).  

MROA’s success was also confirmed by optimizing restricted selected engineering 

applications, namely, an anti-jamming smart antenna as an online problem and the 

computation of microstrip antenna dimensions for a 2.4 GHz frequency as an offline 

problem.  

For the online problem, the algorithm perfectly removed jamming signals by 

nullifying them. The advantage of this algorithm in this application came from the 

algorithm speed when finding the results. 

VSWR 
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For the offline problem, the algorithm found the optimal dimensions that operated 

at a target resonant frequency  despite the complexity of the system; the other algorithms 

did not give accurate results for this application. 
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