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Abstract: Directed acyclic graph (DAG)-aware task scheduling algorithms have been studied exten-
sively in recent years, and these algorithms have achieved significant performance improvements in
data-parallel analytic platforms. However, current DAG-aware task scheduling algorithms, among
which HEFT and GRAPHENE are notable, pay little attention to the cache management policy, which
plays a vital role in in-memory data-parallel systems such as Spark. Cache management policies
that are designed for Spark exhibit poor performance in DAG-aware task-scheduling algorithms,
which leads to cache misses and performance degradation. In this study, we propose a new cache
management policy known as Long-Running Stage Set First (LSF), which makes full use of the task
dependencies to optimize the cache management performance in DAG-aware scheduling algorithms.
LSF calculates the caching and prefetching priorities of resilient distributed datasets according to their
unprocessed workloads and significance in parallel scheduling, which are key factors in DAG-aware
scheduling algorithms. Moreover, we present a cache-aware task scheduling algorithm based on
LSF to reduce the resource fragmentation in computing. Experiments demonstrate that, compared
to DAG-aware scheduling algorithms with LRU and MRD, the same algorithms with LSF improve
the JCT by up to 42% and 30%, respectively. The proposed cache-aware scheduling algorithm also
exhibits about 12% reduction in the average job completion time compared to GRAPHENE with LSF.

Keywords: DAG aware; cache management; cache aware; Spark

1. Introduction

Spark is an in-memory data analytics framework that is used extensively in iterative
data processing with low latency [1–4]. It uses resilient distributed datasets (RDDs) to
cache and compute parallel data, which results in significant performance improvements
compared to traditional disk-based frameworks [5]. The workflows in Spark can be
presented as a directed acyclic graph (DAG) and the edges in the DAG represent the data
dependencies in the workloads. The default FIFO task scheduler and LRU cache policy are
oblivious to data dependencies and exhibit poor performance in Spark.

In recent years, DAG-aware scheduling for iterative data processing has attracted
increasing interest [6,7]. Numerous efficient algorithms have been proposed to solve
various scheduling tasks in specific systems [8–11]. HEFT [12] calculates the schedule
priority based on the resource demands of the nodes and estimates the job completion time.
GRAPHENE [13] considers both the complexity and heterogeneity of the DAGs and exhibits
improved performance in multi-resource parallel computing. Branch scheduling [14]
focuses on the influence of the data locality and provides superior adaptability with the
cache policy compared to GRAPHENE. However, in an in-memory parallel computing
system such as Spark, the cache policy also has a significant impact on the task scheduling.
Current DAG-aware scheduling algorithms neglect the impact of the cache policy and fail
to use resources efficiently in multi-resource computing.
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The cache policy in Spark has also been studied in depth [15]. Several dependency-
aware cache policies have been proposed for Spark, such as LRC [16], LCRC [17], and
MRD [18]. All of these policies have led to progress in improving the cache hit ratio
compared to the default LRU cache policy. LRC traverses the DAG and assigns each RDD
a different caching priority according to its reference count, and RDDs with low reference
counts tend to be evicted when the memory is full. LCRC and MRD further exploit the
DAGs of jobs and consider the reference gap, which results in the cached RDD being more
time sensitive and achieves a better hit ratio than LRC. However, MRD is designed for
the default FIFO scheduler in Spark and cannot offer its advantage in the DAG-aware
scheduling method.

In this paper, we present an efficient cache policy for DAG-aware scheduling and
discuss the impact of the cache policy on task scheduling in Spark, with the aim of combin-
ing DAG-aware scheduling with the cache policy. The DAG-aware scheduling should be
optimized according to the cache policy to improve resource utilization and to obtain a
better job completion time (JCT) in the workflow.

Thus, we propose a novel cache policy and an efficient cache-aware scheduling
algorithm based on our cache policy in Spark. In cache-aware scheduling, the cache
results dynamically affect the scheduling policy, thereby resulting in an improved JCT. Our
contributions are as follows.

Considering the limitations of current cache policies, we designed a priority-based
cache policy for DAG-aware scheduling to improve the RDD hit ratio. Our cache policy is
deeply integrated with the scheduling algorithm and is proven to be efficient in iterative
data computing.

We investigated the impact of the cache policy on scheduling and proposed a cache-
aware scheduling method in Spark, which increases the parallelism of tasks and exhibits
better utilization of cluster resources. The schedule is based on the DAGs of the workloads
and the dependencies between stages are guaranteed. Our solution further improves the
resource utilization and reduces the JCT of the workloads.

We implemented our solution as a pluggable scheduler in Spark 2.4. We conducted
extensive evaluations on a six-node cluster with five different data analysis workloads
in SparkBench [19] to verify the efficiency of our method. The LSF cache management
and cache-aware scheduling algorithm achieved high performance and exhibit significant
advantages in memory-constrained situations on all benchmarks. According to our ex-
perimental results, compared to DAG-aware scheduling algorithms with LRU and MRD,
the same algorithms with LSF improve the JCT by up to 42% and 30%, respectively. Our
cache-aware scheduling algorithm also exhibits an average performance advantage of 12%
over GRAPHENE with LSF.

The remainder of this paper is organized as follows. In Section 2, the background of
the study is presented, and the inefficiencies of existing cache management policies and
DAG-aware task scheduling algorithms are described. The design of our solution and its
implementation details are presented in Section 3. The evaluation results are discussed in
Section 4. Finally, conclusions are provided in Section 5.

2. Background and Motivation

In this section, we discuss the background of the data access in Spark jobs and present
the motivation for introducing a novel cache-aware scheduling algorithm. Our discussions
are limited to the context of Spark; however, the details are also applicable to other in-
memory computing frameworks.

2.1. RDD and Data Dependency

Spark is a distributed, in-memory computing framework for big data, which provides
an RDD as its primary abstraction in computing. RDDs are distributed datasets that are
stored in memory. Spark can only transform an RDD into a new one with a transformation
operation. The data workflows on parallel computing frameworks are determined by
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DAGs that consist of RDDs. These DAGs contain rich information regarding data depen-
dencies, which is crucial for data caching and has not been fully explored in default cache
management policies [20].

For example, as a key abstraction in Spark, an RDD is a collection of objects that are
partitioned across the nodes in a Spark cluster [5] and all of the partitions can be computed
in parallel. In Spark, the operations are divided into transformation and action, all of which
are based on the RDDs. As illustrated in Figure 1, the scheduler of Spark is composed of
RDD objects, a DAG scheduler, task scheduling, and task operations. During construction
of the RDD objects, the scheduler will analyze the RDDs of the incoming tasks and submit
these to the DAG scheduler while the action operation is triggered. Subsequently, the DAG
scheduler forms a DAG, thereby implying a task execution sequence that is divided into
several stages. During the execution, dragging or failing tasks are recomputed. Therefore,
cache replacement strategies have a significant influence on the recomputing costs.
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2.2. Inefficient Cache Management in Spark

LRU, which is a classic history-based cache management method, is used as the cache
replacement algorithm in Spark. LRU tracks the data in memory and evicts the blocks
that have not been accessed for the longest periods. However, LRU is oblivious to the
lineage of Spark jobs, which results in poor efficiency in the eviction of RDDs. Several
DAG-based cache management policies have been proposed. LRC and MRD are both
representative DAG-based cache policies that have been proven to perform effectively
on common benchmarks. LRC traverses the lineage and tracks the dependency count
of each RDD. This count is updated continuously as a priority for evicting RDD blocks
from memory while the Spark jobs run. An RDD with a higher reference count is more
likely to be used in future computations and should be cached in memory. To save the
maximum memory space, the RDD with the lowest dependency count should be evicted
from memory. Compared to the default LRU policy, LRC improves the cache hit ratio and
provides an improved comprehensive application workflow. MRD is time sensitive and
performs better than LRC in the FIFO scheduler. However, it does not exhibit significant
advantages over other cache policies in DAG-aware scheduling.

We use a DAG to illustrate the possible problems in the current cache and scheduling
policies. In Figure 2, each box represents a stage with RDD blocks. The resource demands
and durations are indicated above each stage. The capacity is assumed to be 10 for the
executor. The schedule order and execution time for the FIFO and DAG-aware scheduling
are listed in Table 1. In a DAG-aware scheduler such as GRAPHENE, a job is scheduled
in the order of stage1, stage3, (stage4, stage0), (stage0, stage2, stage5) to achieve better
resource utilization and JCTs compared to FIFO. However, MRD still conducts its prefetch
policy according to the FIFO schedule order, which is the ascending order of stage numbers.
The RDD blocks that are prefetched in the cache are not accessed immediately, which leads
to frequent cache replacement and performance degradation. Cache management, which
is characteristic of DAG-aware scheduling, offers advantages in such situations.



Electronics 2021, 10, 1874 4 of 16

Electronics 2021, 10, x FOR PEER REVIEW 4 of 16 
 

 

leads to frequent cache replacement and performance degradation. Cache management, 

which is characteristic of DAG-aware scheduling, offers advantages in such situations. 

Table 1. Scheduling order and execution time. 

Algorithm Scheduling Order (Represented by Stage ID) Execution Time 

FIFO 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 23 

GRAPHENE 1 -> 3 -> (4, 0) -> (0, 2, 5) 12 

 
Stage0

Stage1

Stage3

Stage2

Stage4

Stage5

Stage6

RDD0_block0

RDD1_block0

RDD0_block1

RDD1_block1

RDD2_block0

RDD2_block1

RDD3_block0

RDD3_block1

RDD4_block0

RDD5_block0

RDD5_block1

RDD6_block0

(9,1)

(9,1)

(6,8)

(4,1)

(2,4)

(2,6)

(4,2)

 

Figure 2. DAG with resource demands and durations. 

2.3. Cache-Oblivious Task Scheduling 

DAG-aware scheduling has been studied extensively for both homogeneous and het-

erogeneous systems. HEFT and GRAPHENE are representative DAG-aware scheduling 

algorithms that have been proven to perform effectively in many parallel computing 

frameworks. HEFT traverses the DAG and assigns a rank value to each node according to 

the resource demands and durations of its child nodes. A node with a higher rank value 

implies a higher schedule priority. HEFT considers the resource demands of the nodes 

and estimated JCT to obtain an efficient scheduling order. Several optimization algorithms 

have been proposed for HEFT, such as HEFT with lookahead [21], to improve the resource 

utilization and JCT of applications further. GRAPHENE uses the concept of troublesome 

tasks, which are long-running tasks that are usually difficult to pack and play a decisive 

role in the task completion time. GRAPHENE identifies troublesome tasks and divides 

the other tasks into different task sets based on their dependencies with troublesome task 

sets. Subsequently, GRAPHENE schedules tasks in sets based on their resource demands, 

without violating the task dependencies. GRAPHENE further investigates the features of 

DAG-aware scheduling and improves the JCT. Inspired by GRAPHENE algorithm, the 

scheduling priority of long-running tasks has become the focus of many studies related to 

DAG-aware scheduling. For example, Stage Delay Scheduling [10] traverses jobs’ DAG 

and calculates the bounds of execution time in each path. Then, it schedules stages in the 

long-running execution path with high priority by delaying other stages in limitation time 

to minimize the resource fragments and maximize the benefits of resource interleaving. 

These DAG-aware scheduling algorithms offer advantages in parallel computing frame-

works compared to FIFO and capacity-based schedule policies. However, these algo-

rithms neglect the impact of the cache management policy in execution and can be further 

optimized in in-memory data analytics frameworks such as Spark. An efficient cache man-

agement policy can improve the cache hit ratio to reduce the JCT by making full use of the 

Figure 2. DAG with resource demands and durations.

Table 1. Scheduling order and execution time.

Algorithm Scheduling Order
(Represented by Stage ID) Execution Time

FIFO 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 23
GRAPHENE 1 -> 3 -> (4, 0) -> (0, 2, 5) 12

2.3. Cache-Oblivious Task Scheduling

DAG-aware scheduling has been studied extensively for both homogeneous and
heterogeneous systems. HEFT and GRAPHENE are representative DAG-aware scheduling
algorithms that have been proven to perform effectively in many parallel computing
frameworks. HEFT traverses the DAG and assigns a rank value to each node according to
the resource demands and durations of its child nodes. A node with a higher rank value
implies a higher schedule priority. HEFT considers the resource demands of the nodes
and estimated JCT to obtain an efficient scheduling order. Several optimization algorithms
have been proposed for HEFT, such as HEFT with lookahead [21], to improve the resource
utilization and JCT of applications further. GRAPHENE uses the concept of troublesome
tasks, which are long-running tasks that are usually difficult to pack and play a decisive
role in the task completion time. GRAPHENE identifies troublesome tasks and divides
the other tasks into different task sets based on their dependencies with troublesome task
sets. Subsequently, GRAPHENE schedules tasks in sets based on their resource demands,
without violating the task dependencies. GRAPHENE further investigates the features of
DAG-aware scheduling and improves the JCT. Inspired by GRAPHENE algorithm, the
scheduling priority of long-running tasks has become the focus of many studies related to
DAG-aware scheduling. For example, Stage Delay Scheduling [10] traverses jobs’ DAG and
calculates the bounds of execution time in each path. Then, it schedules stages in the long-
running execution path with high priority by delaying other stages in limitation time to
minimize the resource fragments and maximize the benefits of resource interleaving. These
DAG-aware scheduling algorithms offer advantages in parallel computing frameworks
compared to FIFO and capacity-based schedule policies. However, these algorithms neglect
the impact of the cache management policy in execution and can be further optimized in
in-memory data analytics frameworks such as Spark. An efficient cache management policy
can improve the cache hit ratio to reduce the JCT by making full use of the memory. As
mentioned previously, the scheduling order that is determined by DAG-aware scheduling
algorithms is mainly dependent on the resource utilization and possible completion time



Electronics 2021, 10, 1874 5 of 16

of long-running tasks, which are strongly influenced by cache management policies. Tasks
in Spark can be executed more efficiently if the scheduling algorithm dynamically updates
the resource utilization and estimates the JCT according to the cache management policy.

3. System Design

We propose a new cache management policy known as Long-Running Stage Set First
(LSF), which is efficient in DAG-aware task scheduling algorithms. Based on our cache
management policy, we further propose a cache-aware task scheduling algorithm to reduce
the resource fragmentation and the overall JCT of applications. Furthermore, we describe
our implementation in Spark.

As mentioned previously, Spark benefits from its cache management policy in com-
puting. Default cache management is scheduling-oblivious and exhibits poor performance
in DAG scheduling. A DAG-based scheduler with suitable cache management will offer
the advantage of improving the overall performance of Spark. Our solution is divided into
two parts according to task dependencies.

The cache management policy for DAG-aware task scheduling makes cache eviction and
prefetching decisions based on the characteristics of the DAG-aware task assignment policy.

The cache-aware schedule algorithm assigns tasks based on the dependency between
the stages and cache management policy in the current job. It overlaps with the execution
of long-running chains of stages to ensure more efficient resource utilization in the clusters.

3.1. Cache Management Policy for DAG-Aware Task Scheduling

The goal of the DAG-aware scheduling algorithm is to reduce the JCT. The resource
demands and execution times of the stages are key factors in DAG-aware scheduling. DAG-
aware scheduling algorithms generally aim to run the maximal number of pending tasks
that fit within the available resources. Moreover, the scheduling overlaps the long-running
chains of stages to guarantee the JCT. The cache management policy for DAG-aware
scheduling should consider both factors in caching and prefetching data blocks.

Definition 1. (Cache urgency). For an RDD_i, the cache urgency (CU) is defined as the remaining
resource occupation of the longest DAG components that are derived from the stages including
RDD_i. An RDD may have various CUs if it is computed in different stages.

The CU of the RDD can be used to measure the priority of the data block eviction and
prefetching. It is mainly dependent on the completion times and resource demands of the
previous stages. The CU of RDD_i can be defined as follows:

CU(RDDi) = CT(stagem)× R(stagem) + Max

 ∑
stagei∈SuccPath(stagem)

(CT(stagei)× R(stagei)

, (1)

where CT(stagem) and R(stagem) denote the execution time and the resource demand
of stagem, which includes RDDi, respectively. SuccPath(stagem) denotes the set of stages
starting from stagem and ending with the final stage of the current job, which can be viewed
as the possible execution path starting from stagem in the current job.

The DAG of the jobs is traversed, and several stage sets are established according to
the resource demands of the stages. Each stage set includes stages that can be executed
in parallel, without exceeding the resource demands. The RDDs in a stage set share the
same cache and prefetching priority in the workflow. The CU of RDDi in stage set m can
be defined as follows:

CU(RDDi) = Max
(
CU
(

RDDj
))

RDDi ∈ stage set m. (2)

Stage sets may have various combinations. DAG-aware scheduling overlaps long-
running stages in the workflow. First, the stage sets, including the long-running stage,
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are listed. The set with the maximum resource utilization (RU) is selected as a candidate
scheduling stage set in our algorithm. The RU of stage_set_i can be defined as follows:

RU(Stage seti) = ( ∑
stage j∈Stage seti

CT
(
stagej

)
× R

(
stagej

)
)/(R× CT(stagelr)), (3)

where stagelr denotes the long-running stage. The CUs of the RDDs are updated after
the candidate scheduling stage sets have been determined. RDDs with a higher CU are
more likely to be scheduled first according to the preference of the DAG-aware scheduling
method. The cache management policy tracks the process of the stages and updates the
CUs of the RDDs. The RDDs with the lowest cache urgency are evicted and that with the
highest urgency is prefetched to achieve better computing performance. An RDD that is
processed in different stages has various CUs, and the highest value among them is defined
as its current CU.

For example, in Figure 2, LSF traverses the parallel chains in the DAG and establishes
stage sets (stage0, stage4), (stage0, stage2), (stage0, stage5), (stage2, stage5), and (stage0,
stage2, stage5). According to the principle of considering the Long-Running Stage Set First,
(stage0, stage2, stage5) is selected as a candidate stage set. The CU of each stage in the
candidate stage set is set to be the same as that of the long-running stage0. LSF updates the
priority of each RDD for caching and prefetching based on the new CUs. The CU of each
RDD is listed in Table 2. The pseudo-code for the data eviction and prefetching policy is
presented in Algorithm 1.

Table 2. CUs of RDDs.

RDD Stage ID CU

0 0 56
1 1 65
2 2 56
3 3 69
4 4 60
5 5 56
6 6 8

It is noted that, to achieve the basic cache priority, the DAG of the entire application
needs to be traversed. However, in systems such as Spark, the applications usually consist
of several jobs and only the DAG of the current job can be obtained from the Spark
scheduler. Therefore, it is challenging to achieve the entire DAG of the applications. To
solve this problem, we reconsider our cache policy in two situations.

Applications that run on in-memory data-parallel systems are mainly recurring and
they usually repeat certain jobs with the same DAG to process different datasets. Therefore,
it is feasible to learn the entire DAG from previous jobs to achieve higher performance of
our cache policy in these applications.

For non-recurring applications with jobs that have different DAGs, LSF operates in the
same manner as in recurring applications in each single job, but the cache priority should
be recomputed when new jobs arrive. The hit ratio decreases by a certain percentage
compared to that for recurring applications.

3.2. Cache-Aware Scheduling Algorithm

DAG-aware schedule algorithms, such as GRAPHENE, HEFT, and branch scheduling,
have been studied extensively and several efficient methods have been proposed. Such
algorithms exhibit superior performance in the processing of DAG-based applications
compared to traditional scheduling methods. However, they are oblivious to the cache
policy of Spark and should be optimized for improved performance. Thus, we propose
a cache-aware scheduling algorithm that considers the effects of LSF cache management
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policy. Compared to the current DAG-aware scheduling algorithms, our solution can
obtain better JCTs in applications that are processed on Spark.

Algorithm 1 LSF cache management policy.

Input: DAG of application, stage_set with long_running tasks
Candidate_Stage_set: Stage sets overlap long-running stages
Candidate_RDD: RDDs ready for prefetching
//Computing CU of each RDD
1: for each RDDi of DAG do
2: CU(RDDi) = CT(stagem)× R(stagem) + Max

(
∑stagei∈SuccPath(stagem )

(CT(stagei)× R(stagei)
)

3: CU_Table <- CU(RDDi)
4: end for
5: for each Stage seti including long-running tasks do

6: RU(Stage seti) = (∑stage j∈Stage seti
CT
(

stagej

)
× R

(
stagej

)
)/(R× CT(stagelr))

7: end for
8: Candidate_Stage_set <- Stage set with highest RU
9: for each RDDi in Candidate_Stage_set do

10: CU(RDDi) = Max
(

CU
(

RDDj

))
RDDj ∈ stagelr

11: end for
12: for each stage i of SuccPath do
13: update(CU_Table)
14: end for
//Eviction policy of cache management
15: if data block size of RDDi > free memory then
16: for each RDD cached in memory do
17: RDDj <- RDD with lowest cache urgency

18: if(CU
(

RDDj

)
< CU(RDDi)) then

19: if(CU
(

RDDj

)
) is not 0) then

20: evict(RDDj)
21: write RDDj to disk
22: update(CU_Table)
23: else
24: evict(RDDj)
25: end if
26: end if
27: end for
28: end if
//Prefetch RDD
29: for each stage unprocessed do
30: Candidate RDD <- RDD with highest CU in CU_Table
31: if size of (Candidate RDD) < free memory then
32: prefetch(Candidate RDD)
33: end if
34: end for

The DAG-aware scheduler traverses the DAG of the application and schedules tasks in
parallel chains simultaneously to optimize the overall JCT. We developed our cache-aware
algorithm on two layers. At the job layer, jobs on parallel chains have an inner relationship
owing to the utilization of the cache management policy. An appropriate combination of job
executions will increase the cache hit ratio and further improve the RU. The commonalities
in the RDD access can be used to measure the correlations between jobs, because jobs with
partially identical RDDs may perform similarly in the cache results.

Definition 2. (RDD access similarity). For jobs i and j, the RDD access similarity (RAS) is defined
as the sum of the RDD CUs, which are both scheduled in jobs i and j.
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According to the cache management policy, RDDs with various CUs have greater
opportunities to be cached in the workflow. The RAS between jobs can be expressed by the
sum of the same RDDs with various CUs for simplification. After traversing the DAG of
the application, an initial schedule order is generated according to the data dependencies
among the jobs, and the RAS of successor jobs relative to the entry job is calculated. The
job with the highest RAS will be scheduled together with the entry job. As the application
is executed, the RAS of the successor jobs is updated dynamically based on the running job
in the work nodes.

The entry job and its successor job with the highest RAS are submitted simultaneously.
In our solution, a heuristic algorithm based on stage dependencies and a cache management
policy are selected for the running jobs.

At the stage layer of our cache-aware scheduling algorithm, the CU in LSF is used as
the initial scheduling order. To reduce resource fragmentation, we propose the concept
of schedule idle time (SIT), which is determined by the estimated JCT and cache hit ratio
during execution.

Definition 3. (Schedule idle time). The SIT of stage_i is defined as the longest delay time of stage_i
without postponing the overall JCT.

As mentioned previously, the CU of the RDDs is defined as the remaining completion
time of the longest DAG components that are derived from the stages including these RDDs.
The longest remaining completion time of the stage can be calculated in the same manner,
and is represented as TR (stage). In our solution, the scheduling order is determined
according to both the job dependencies and cache management policy. The RDDs that are
cached in memory have a significant impact on the CU of the stages. The SIT of stage_i can
be defined as follows:

SIT(stagei) = JRT −
(

TR(stagei)− ∑
RDDm∈stagei

TC(RDDm)

)
, (4)

where JRT(stagem) denotes the remaining estimated JCT starting from the running stages
and TC(RDDm) denotes the estimated execution time of RDDm that is cached in memory.
Moreover, SIT(stagei) represents the possible delay time for stage_i without delaying the
overall JCT. It also implies that the stage from another job could be scheduled before stage_i
if its execution time is less than SIT(stagei). Algorithm 2 presents the pseudo-code for the
cache-based DAG-aware task scheduling.

3.3. Spark Implementation

Architecture overview. Figure 3 presents an overview of the architecture as well as
the interaction between the modules of the cache manager and DAG scheduler. Our imple-
mentation is composed of three pluggable modules and modifications in DAGScheduler:
AppProfiler and CacheManager are deployed on the master node and CacheMonitor is
deployed on each slave node. DAGScheduler is modified for the DAG-aware scheduling
algorithm. The other modules, such as BlockManager EndpointMaster and BlockManager
SlaveEndpoint, are original Spark components. The main APIs for our implementation are
listed in Table 3.

Table 3. APIs of spark implementation.

API Description

DAGProfile AppProfiler analyze DAG and generates an initial scheduling order
updateCachePriority CacheManager sends a new cache urgency file to CacheMonitor

updateRAS DAGAnalyzer returns a new RAS index when receiving new DAGs
BlocksEviction When the cache is full, data with a low cache urgency will be evicted
DataPrefetch Prefetches specific blocks for use in the next stage
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Algorithm 2 Cache-aware scheduling.

Input: DAG of application, initial schedule sequence init(Apps)
jobentry: stage set of initial job in application
jobcandidate: stage set of job suitable for parallel execution
jobrunning: stage set of running jobs
Pending_stage: stages pending for scheduling
1: jobentry <- initial job of init(Apps)
2: for each job of Apps do
3: RAS_Table <- RAS(jobentry, jobi)
4: end for
5: jobcandidate <- job with highest RAS in RAS_Table
6: jobrunning <- stages in jobentry and jobcandidate
//Schedule phase
7: Pending_stage <- sort stages of jobrunning by CU(stage) calculated in LSF
8: Cache_Queue <- RDDs cached in memory
9: for each stage i in jobentry do

10: SIT(stagei) = JRT −
(

TR(stagei)−∑RDDm∈stagei
TC(RDDcached)

)
11: SIT_Table <- SIT(stagei)
12: end for
13: for stage m in Pending_stage do
14: if stage m is runnable then//Parent stages have been executed
15: for each RDDcached in Cache_Queue do
16: if RDDcached ∈ stagem then
17: TE(stagem) <- TE(stagem)− TC(RDDcached)
18: end if
19: end for
20: end if
21: If SIT(stagei) > TE(stagem) then
22: Schedule_Queue() <- stagem
23: Schedule_Queue() <- stagei
24: update(Pending_stage)
25: else
26: Schedule_Queue <- stagei
27: end if
28: update(SIT_Table)

AppProfiler. AppProfiler derives the DAG of a job from the Spark application to pre-
pare essential information for CacheManger and DAGScheduler. In recurring applications,
it creates the entire DAG of the application by analyzing the DAG of the previous job.
Subsequently, it analyzes the DAG and calculates RAS of each job. Finally, DAGAnalyer
sends the DAG of the application to CacheManager and DAGScheduler.

DAGScheduler. DAGScheduler is responsible for dividing the DAG of the jobs
into stages and setting an appropriate scheduling order for the stages. FIFO is the
default scheduling policy. We modify DAGScheduler to adapt it to our DAG-aware
scheduling algorithm.

CacheManager. CacheManager is one of the key components of this architecture.
It reconstructs the DAG of the application according to the information that is received
from AppProfiler. CacheManager computes the cache urgency for each RDD according
to LSF cache management policy. Furthermore, with the information that is collected by
CacheMonitor deployed on the slave nodes, CacheManager is also responsible for the
eviction and prefetching algorithm of the RDDs at runtime.

CacheMonitor. CacheMonitor is deployed on the slave nodes in the cluster. It ac-
cesses various APIs and collects the necessary information from memory. Moreover, it
carries out the RDD eviction strategy according to the instructions that are sent back
from CacheManager.
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Workflow. After submitting the application, the Spark driver creates a SparkContext
within which AppProfiler and CacheManager are established. The other modules in Spark
are also established. Subsequently, the driver informs the slave nodes to launch the Spark
executors, and then deploys CacheManager and BlockManager. After establishing the
connection between the driver and executor, AppProfiler derives the DAG from the appli-
cation and generates an initial scheduling order according to the dependencies between
jobs. Thereafter, it sends the essential information, including initial scheduling order and
RAS of each job, to DAGScheduler and CacheManager. CacheManager reconstructs the
DAG and recomputes the cache urgencies of the RDDs. In combination with the running
information received from CacheMonitor and the new cache urgencies, CacheManager
sends the eviction and prefetching strategy of the current stages to BlockManager Mas-
terEndpoint. DAGScheduler receives the cache stats and stage stats of the executor nodes,
following which it calculates the scheduling order for the jobs and stages according to
the cache-aware scheduling algorithm. DAGScheduler assigns tasks according to the
optimized scheduling sequence.
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Communication overhead. Our solution introduces a slight communication overhead
in Spark. While CacheManager reconstructs the DAG and determines the cache priority for
each RDD, the cache priority file is sent to each slave node and can be maintained locally
during the workflow. CacheManager only updates the cache priority when necessary
through heartbeats between the master and slaves. In particular, CacheManager should
inform the slave nodes to update their initial RDD caching priority when AppProfiler
receives the DAG of a new job. Thus, the overhead caused by communication can be
neglected during this workflow.

4. Evaluations

We evaluated the performance of our cache-aware scheduling algorithm using typi-
cal benchmarks.

4.1. Experimental Environment

Our experimental platform was composed of several virtualized machines in two
high-performance blade servers, each with 32 cores and 64 GB of memory. The main tests



Electronics 2021, 10, 1874 11 of 16

were conducted in this virtual environment with nine nodes, which consisted of one master
node and eight slave nodes. The master node obtained a better configuration to satisfy the
computing demand for the cache policies. All nodes were deployed using Spark 2.4.0 and
Hadoop 2.8.0. The datasets were generated using SparkBench. The workloads and input
data sizes are listed in Table 4.

Table 4. Workloads and data input sizes.

Workloads Data Sizes

KMeans 6 GB
PageRank 9 GB

Connected Component 8 GB
PregelOperation 10 GB

SVD++ 8.3 GB

4.2. Performance of LSF

The master was configured with eight cores and 8 GB of memory, whereas the slave
node was configured with four cores and 4 GB of memory. We implemented two typical
DAG-aware scheduling algorithms in our cluster to evaluate the performance of our cache
management policy LSF. The benchmarks were selected from SparkBench. Each DAG-
aware task scheduling algorithm was implemented with three different cache management
policies: LRU, MRD, and LSF. LRU is the default cache management policy in Spark,
whereas MRD evicts the furthest data block and prefetches the nearest one according to the
FIFO task scheduler. The results are presented in Figure 4.

LSF exhibited a significant decrease in the benchmark runtime by increasing the hit
ratio of the cache in both DAG-aware task scheduling algorithms. We used a combination
of the default scheduler FIFO and default cache management policy LRU as a baseline in
Spark. It is clear that the DAG-aware task scheduling algorithm exhibited a performance
advantage compared to the default scheduler. HEFT with LRU and GRAPHENE with
LRU reduced the JCT by an average of 9% and 15%, respectively, compared to the default
FIFO with LRU. As illustrated in Figure 4, HEFT and GRAPHENE with the MRD policy
implemented outperformed the same scheduling algorithms with LRU. This was mainly
a result of the prefetching method. MRD always prefetches data blocks with the nearest
distance in the FIFO scheduler. Although an inconsistency existed between the scheduling
order of the DAG-aware task scheduling algorithms and prefetch priority of MRD, the
prefetch policy exhibited its advantage in increasing the hit ratio of the cache. HEFT with
LSF and GRAPHENE with LSF demonstrated significant performance advantages in our
results. GRAPHENE with LSF reduced the job completion time by up to 19% compared
to GRAPHENE with MRD in ConnectedComponent. Compared to the default FIFO with
LRU, the improvement reached 39%. LSF exhibited better interaction with DAG-aware task
scheduling algorithms than MRD and LRU. The hit ratio of the cache during the execution
is depicted in Figure 5.

As mentioned above, LSF works in different ways in recurring applications and non-
recurring applications. In non-recurring applications, LSF recomputes the cache urgencies
of RDDs in each single job because the data dependency and runtime information of these
jobs are usually not available a priori. We evaluated the performance of LSF in recurring
mode and non-recurring mode. As shown in Figure 6, GRAPHENE with LSF suffered about
14% performance loss in non-recurring mode on average compared to its performance in
recurring mode. We attribute the performance loss to the fact that workloads of succeeding
stages in future jobs, whose DAG is yet available in non-recurring mode, directly affect the
computation of cache urgencies. Therefore, the cache priority calculated in non-recurring
mode may not be accurate. Studies show that a large portion of cluster workloads are
recurring applications [22]. In most instances, LSF works in recurring mode to achieve
better performance.
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LSF significantly increased the hit ratio of the cache in the jobs scheduled by GRAPHENE.
The reference distance in the MRD was calculated according to the FIFO scheduling
order. Thus, MRD performed effectively in the default mode but suffered a significant
performance loss in the DAG-aware task scheduling algorithm. Thus, LSF exhibited its
efficiency in DAG-aware task scheduling algorithms, and its advantages will be expanded
in memory-constrained situations.
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4.3. Performance of Cache-Aware Scheduling

We evaluated our cache-aware task scheduling algorithm with the LSF cache man-
agement policy using the same benchmarks as above in Spark. Cache-aware algorithms
dynamically update scheduling priorities based on both the resource demands and cache
status. Compared to the current DAG-aware task scheduling algorithms, our approach was
more sensitive to the available resources of the cluster and exhibited improved resource
utilization. The results are presented in Figure 7.
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As illustrated in Figure 7, the cache-aware task scheduling algorithm with LSF out-
performed FIFO with LRU and GRAPHENE with MRD by an average of 48% and 23%,
respectively. Moreover, it achieved a performance improvement of approximately 12%
compared to GRAPHENE with LSF. Particularly on the CPU-intensive benchmarks, such
as PregelOperation and ConnectedComponent, the cache-aware task scheduling algorithm
reduced the JCT by up to 15% compared to GRAPHENE with LSF. Cache-aware scheduling
calculates the remaining resources and estimated JCT that are dynamically associated with
the cache management policy. It postpones certain stages with negligible overheads to
reduce resource fragmentation, which improves the overall JCT. The CPU utilization during
the execution is depicted in Figure 8. Our cache-aware task scheduling algorithm made
full use of the SIT and achieved better performance in reducing the CPU fragmentation.
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5. Conclusions

We have presented a cache management policy with data eviction and prefetching
in Spark, known as LSF. LSF calculates the caching and prefetching priority of the RDDs
according to their unprocessed workloads and significance in parallel scheduling, which
are key factors in DAG-aware scheduling algorithms. Furthermore, we proposed a cache-
aware task scheduling algorithm based on LSF to reduce the resource fragmentation in
computing. We implement LSF and cache-aware scheduling algorithm as a pluggable
memory manager in Spark 2.4. The proposed approaches are evaluated in a Spark cluster
by typical benchmarks of parallel computing. With different evaluation methods, the
results show that LSF outperforms present cache management policies in DAG-aware
task scheduling approach and the LSF-based scheduling algorithm further improves the
job completion time in Spark. Further study will explore the impact of unified memory
management [23] in Spark, a flexible allocation method of storage and execution memory
will improve the efficiency of cache management policy and task scheduling algorithms.
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