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Abstract: The absence of cardiovascular disease (CVD) diagnostic and management solutions cause
significant morbidity among populations in rural areas and the coronavirus disease of 2019 (COVID-19)
emergency. To tackle this problem, in this paper, the development of an Internet of things (IoT)
assisted ambulatory electrocardiogram (ECG) monitoring system is presented. The system’s wearable
single-channel data acquisition device supports 25 h of continuous operation. A right leg drive (RLD)
circuit supported analog frontend (AFE) with a high common mode rejection ratio (CMRR) of 121 dB
and a digitally implemented notch filter is used to suppress power-line frequency interference. The
wearable device continuously sends the collected ECG data via Bluetooth to the user’s smartphone.
An application on the user’s smartphone renders real-time ECG trace and heart rate and detects
abnormal heart rhythms. This data are then shared in real-time with the user’s doctor via a real-time
cloud database. An application on the doctor’s smartphone allows real-time visualization of this
data and detection of arrhythmias. Simulations and experimental results demonstrate that reliable
ECG signals can be captured with low latency and the heart rate computation is comparable to a
commercial application. Low cost, scalability, low latency, real-time ECG monitoring, and improved
performance of the system make the system highly suitable for the real-time remote identification
and management of CVDs in users of rural areas and in the COVID-19 pandemic.

Keywords: ambulatory ECG; telehealth; cardiac diagnosis; rural communities; PSoC; IoT; wearable
ECG; real-time ECG

1. Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs)
are the number one cause of deaths globally [1]. In addition, CVD related mortalities are
expected to stagger to 23.3 million by 2030 [2]. Individuals in rural communities often
experience limited access to healthcare services and have high rates of obesity, CVD, and
stroke [3]. The biggest barriers to accessing cardiovascular care for rural populations
include poor or non-existing transportation, cardiology workforce, and cardiology services.

Internet of things (IoT) based health monitoring is a key telehealth strategy that has
received increasing attention in recent years as a technological way to confront poor health
outcomes and bolster access to clinical services in rural communities. The IoT strategy has
been successfully implemented in many countries for remote diagnosis and evaluation of
patients and addresses the geographical maldistribution of cardiologists. In addition, more
recently, the corona virus disease of 2019 (COVID-19) pandemic emergency has enforced
traditional in-person visits to the IoT based health monitoring systems to overcome the
difficulties and deliver care. Many health monitoring systems using mobile devices have
been used for electrocardiogram (ECG) monitoring, diabetes control, dermatosis care,
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and other health services [4–7]. The growing application of smartphones, combined with
parallel advances in the IoT and cloud technologies, has enabled real-time remote ECG
monitoring by remote healthcare centers [8–11].

The early detection and management of CVDs are important for increasing the
patient’s survival chances. The real-time ECG monitoring by remote health care cen-
ters/doctors is, therefore, a crucial step in the prompt intervention of CVDs. There are
many ambulatory handheld cardiac event recorders available in the market that detect
arrhythmias automatically in real-time using smartphone built-in sensors and provide
information to the hospital/doctor/patient when a critical heart condition occurs. These
cardiac event recorders are suitable for short-term ambulatory ECGs of low-risk patients
with infrequent symptoms [11]. The AliveCor Kardia Mobile (KM) is such a handheld
ECG device [12]. In addition, the Qualcomm Wireless Reach (a Wireless Heart Health pro-
gram) [13] features a mobile broadband-enabled system based on handheld ECG phones.
The problem with these handheld event monitors is that they record ECG data for a short
period of time which is not sufficient to analyze the severity of the problem.

The recent wearable health monitoring systems are an effective and efficient choice for
long-term ambulatory ECG monitoring. The key advantage of the wearable mobile cardiac
telemetry is its ability to capture events that occur less frequently and make real-time
rhythm assessments. Such systems can be based on the wearable wireless ECG collection
node(s) that are supported by a patient’s smartphone, a Cloud, and a point-of-care device
for the doctor. Extended monitoring through a wearable ECG monitoring system allows
for an inclusive evaluation than the ECG handheld event recording systems. Currently,
many wearable monitoring systems have become commercially available for real-time ECG
analysis and diagnosis [14–18].

There are several ECG patch-monitoring non-invasive devices currently available
for long-term ambulatory ECG monitoring. One such example of this technology the
NUVANT mobile cardiac telemetry (MCT) system [14,15], which is a wireless-enabled
arrhythmia event monitor. It consists of a wearable monitoring device and a separate
zLink data aggregation device for data transmission to the monitoring center. The data
is then reviewed, and a response is assessed by trained cardiographers. Like NUVENT,
most commercial patch monitoring devices such as NowCardio [16], transmit ECG data
to a server for offline analysis by doctors. QardioMD [17] is another cloud-based patient
monitoring platform for doctors to connect with patients in real-time using QardioCore [18]
ECG wearable monitoring device. QardioCore renders a single-lead ECG signal on a
user’s smartphone through an accompanying application via Bluetooth technology. While
QardioCore allows sharing of patient’s real-time data, QardioMD tracks patients’ heart
health, giving remote doctors a powerful tool for real-time ECG monitoring, analysis, and
preventative care. The cost of QardioMD (priced at $1200 to $1800 per license per year)
and QardioCore wearable chest strap (priced at $449) is very high. It is, therefore, there
is a need for low-cost ambulatory ECG monitoring systems that allow doctors to connect
with rural and remote patients in real-time. Motivated by the above facts, in this article,
prototype design, development, and implementation of a low-cost, wearable, real-time
ambulatory ECG monitoring system is presented. Apart from being low-cost and real time,
other advantages of the system include a high common mode rejection ratio (CMRR), high
scalability, and low latency.

The main aspects of the proposed system include:

1. A right leg drive (RLD) circuit based analog frontend (AFE) with a high CMRR of
121 dB and a digitally implemented notch filter to suppress the power-line frequency
noise—for improved diagnostic performance.

2. A programmable embedded system-on-chip (PSoC) for conditioning of ECG signals
(with integrated digital filtering)—for power optimization of the hardware part,
portability, and further noise and interference suppression in the data acquisition
device.
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3. Heart rate calculations in the user’s smartphone (rather than in the wearable ECG
device)—for power saving in the wearable device.

4. A smartphone-based application for display of real-time ECG trace and heart rate,
and detection of abnormal heart rhythms—for monitoring by the user.

5. A smartphone-based application with real-time ECG trace visualization, heart rate
detection, and arrhythmia detection capability—for monitoring, assessment, and
diagnosis by the user’s doctor.

2. Materials and Methods
2.1. System Architecture

Figure 1 shows the architecture of the proposed system. The system consists of
multiple patients with a chest belt-based or wearable strap-based data acquisition and
wireless transmission unit (DATU) and three electrodes attached to it.

Figure 1. Proposed system architecture.

The DATU transmits (via the Bluetooth transmission link) the collected ECG data in
real-time to the user’s smartphone. A backend Android mobile application on the user’s
smartphone displays real-time received ECG trace and computed heart rate, and relays
registered user’s information along with the ECG data to a cloud for data storage and
sharing. Efficient real-time data sharing of the ECG data is achieved using the Google
Firebase cloud database. Multiple doctors are also shown in Figure 1 to access patient data
simultaneously from the Cloud. Data is synchronized in real-time to a connected doctor’s
smartphone. The Android application at the doctor’s smartphone selects the registered
user of interest and receives real-time instances of updated ECG data and heart rate from
the Firebase cloud. The doctor’s application helps to identify types of arrhythmias and
displays this information along with the real-time ECG trace and heart rate.

2.2. System Design and Implementation
2.2.1. DATU

Figure 2 shows the detailed DATU block diagram, consisting of four major sub-blocks:
sensing unit (SU), AFE, PSoC 5LP [19], Bluetooth module, and a power management
circcuit. The DATU is also supported by a rechargeable battery. The design and implemen-
tation of these sub-blocks is described next.
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Figure 2. DATU block diagram.

Sensing Unit

The sensing unit comprises of three silver-silver chloride (Ag-AgCl) electrodes. The
electrodes are attached to the patient’s body to effectively detect the electrical depolarization
of the heart and convey to the AFE via ECG cables. In Figure 2, sensing unit electrodes
are shown to focus on the Lead I measurement, which is the electrical potential formed
between the left arm (LA) and right arm (RA) with reference to a right leg (RL) reference
lead. The skin-electrode interface is normally modeled as a parallel RC combination of a
47 nF capacitor and a 52 kΩ resistor, with a DC source generator modeling as the offset
potential. The DC offset potential is due to the half-cell potential caused by different
energies of electrode, electrolyte, and skin [20]. The electrical model of the body impedance
model is included in the AFE design schematic of Figure 3.

Figure 3. AFE circuit with the electrode models.
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AFE

The AFE circuitry consisting of an instrumentation amplifier (INA), an RLD circuit,
and a low pass (LP) filter is shown in Figure 3. The ECG signal is generally superimposed
by a large common mode voltage. The source of common mode voltage is generally 50 Hz
or 60 Hz line frequency noise. Other sources that generate noise are muscle contractions,
respiration, electromagnetic interference, and electromagnetic emissions from electronic
components [21]. INA128PA [22] is chosen as the INA to reduce the common mode noise.
The INA128PA was selected due to its low current and voltage noise, and CMRR of 93 dB.
The INA128PA operates on ∓3.3 V to take advantage of the large input voltage range. The
gain for INA128PA is set to 54 times by setting the external gain resistor RG to 470 Ω.

The RLD circuit is used to invert and amplify the average common mode signal back
into the patient’s right leg, canceling the line frequency noise and thus improving the
CMRR. Two TLC2262 op-amps [23] operating at ∓3.3 V are used in the RLD circuit. The
TLC2262 is selected due to its low current and voltage noise, and high CMRR of 95 dB.
The first op-amp (U1) is used as a unity gain amplifier, whereas the second op-amp (U5) is
used in an inverting LP filter with a cutoff of 50 Hz to reduce instability. The RLD gain is
calculated using the formula:

Gain =
R6

R10
= 100 (1)

In addition, a current limiting resistor R7 of 500 kΩ is used to reduce the maximum
possible drive current being sent back to the body. Furthermore, a simple, single-pole LP
antialiasing RC filter with a 3 dB cut-off at 200 Hz is added at the INA output to band limit
the ECG signal. For the cut-off frequency of 200 Hz, the defined values of R and C were
calculated as 8.2 kΩ and 0.1 µF, respectively.

To eliminate the noise in the ECG signal due to unstable DC electrode offset, a DC
blocking capacitor was added to filter/AFE output. In Figure 3, the AFE also shows a
100 kΩ resistor and its routing for PSoC 5LP P2_6 and P2_7 terminals to support variable
full-scale input range and level shifting. An offset of 2.5 V was applied to the signal at pin
P2_6 for level shifting. This signal was then sent via an op-amp (in the PSOC 5LP block)
that conditions the signal to better levels for the ADC range.

Key technical parameters of the AFE sub-blocks are summarized in Table 1.

Table 1. AFE technical parameters.

Component Model Name Parameters

INA INA128PA

CMRR 93 dB

Supply voltage ∓ 3.3 V

Gain 54 (adjusted)

RLD

- Gain 100

TLC2262
CMRR 93 dB

Supply voltage ∓ 3.3 V

U1 based buffer amplifier Unity gain

U5 based inverting LP filter Cut-off 50 Hz

LP filter Single-pole anti-aliasing filter Cut-off 200 Hz

PSoC 5LP

The digital section of the DATU unit includes a PSoC 5 architecture based PSoC 5LP
unit and a Bluetooth low energy (BLE) module [24]. The circuit connection of PSoC 5LP
module is shown in Figure 4a. The PSoC 5LP component is used for ADC and digital
filtering, whereas wireless transmission of ECG data are carried out through the BLE
interface. The AFE outputs are directly connected to the built in 12-bit Sigma/Delta ADC
(Del Sig ADC or simply ADC) of PSoC 5LP. ECG signals entering the ADC block have
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a cut-off 200 Hz, thus according to the Nyquist criterion, the sampling rate should be at
least 400 Hz. The antialiasing filter is not ideal, so it is possible to have high frequency
components getting into the ECG signal. To ease the filter requirements and prevent
aliasing due to high frequency components beyond the cut-off frequency, the ECG signal
was oversampled at 4 K samples per second (sps). In addition, ADC was configured in
differential mode with a range of ±2.048 V.

Figure 4. (a) PSoC 5LP circuit connections; (b) HM-10 BLE circuit connections.

To reduce the DATU complexity and hardware cost associated with analog filtering,
real-time ECG signal filtering was carried out through PSoC 5LP digital filtering block
(DFB). To remove the baseline wander [25], in the first DFB stage, a second order biquad
high pass (HP) Chebyshev filter with cutoff frequency of 0.5 Hz was employed. Next, to
remove any residual power-line frequency interference, a two stage (i.e., DFB Stages 2
and 3) second order biquad band stop Chebyshev filter was implemented to give a notch of
bandwidth 10 Hz at 50 Hz. A normal heart operation is included in the frequency range of
0.5–150 Hz. It is therefore in the DFB Stage 4; a finite impulse response (FIR) LP Blackman
filter was used to give a sharp drop off after the 150 Hz cut-off. The biquad filters were
designed by using bilinear transformation using MATLAB, and associated filter coefficients
were then inserted manually in PSoC Creator [26]. To simplify the filter design, the Stage 4
filter was configured using drop-down menus in PSoC Creator to specify filter parameters.

The PSOC 5LP top design schematic is shown in Figure 5. The ADC component
measures the differential voltage between P2_7 and Vref pins. P2_7 is connected to the
ADC’s positive input. With Vdda = 5V on the CY8CKIT-050 PSoC® 5LP Development
Kit [27], Vref is configured to generate a constant voltage of 2.5 V on the ADC’s negative
input. The op-amp is simply configured in the buffer mode so that its output voltage is
equal to Vdda/2 = 2.5V. The op-amp provides a DC bias of 2.5 V for the maximum input
swing. The DMA is configured to transfer the ADC output to the DFB Channel A input, on
each rising edge of the ADC end of conversion (EOC) signal.

The DFB Channel A contains the composite filter (constituting a combination of above-
described HP, Notch, and LP filters). The composite filter processes this sample and sets
off the interrupt when the processing is complete. The data are used by a light emitting
diode (LED) to blink when an interrupt is detected. The data are then transferred to the
universal asynchronous receiver-transmitter (UART) for serial transmission. The UART
receiver pin (Rx) is connected to the transmitter pin (Tx) of the HM-10 BLE module and
the UART Tx pin is connected to the HM-10 Rx pin. The filtered data are then sent to the
HM-10 Rx pin for transfer to the user’s smartphone. When the phone sends a message to
the DATU via HM-10, it triggers a UART interrupt called ‘rxisr’. This interrupt is used to
stop (start) the ADC conversion and filtering when a stop (start) command is received.

Key technical parameters of the PSoC 5LP sub-block are summarized in Table 2.
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Figure 5. PSoC 5LP top design schematic.

Table 2. PSoC 5LP technical parameters.

Component Model Name Parameters

ADC
Del_Sig ADC

(Sigma Delta ADC)

12-bit resolution

Differential mode range ∓ 2.048 V

Sampling rate 4 Ksps

DFB
composite filter

Stage 1: Second Order
Biquad HP Chebyshev filter Cut-off 0.5 Hz

Stages 2 and 3: Second Order
Biquad Band Stop Chebyshev filter Notch of 10 Hz at 50 Hz

Stage 4: FIR Blackman Filter Cut-off 150 Hz

- - Source voltage 5 V

Bluetooth Connectivity

BLE, also known as Bluetooth Smart or Bluetooth 4.0, is a mainstream technology
with a growing adoption for wearable ECG devices. BLE devices can reliably transmit
data up to 30 m or more under the line-of-sight, but the typical operating range is 5 to
10 m, with a speed of 10 Kb/s [24]. The DATU module (the peripheral device) utilizes a
popular inexpensive Bluetooth 4 HM-10 module [28,29] which operates in the 2.4 GHz
industrial, scientific, and medical (ISM) band with a transmit power of +6 dBm and a
receiver sensitivity of −23 dBm. HM-10 directly connects to the PSoC 5LP using a serial
UART connection (as shown in Figure 4b) and uses Bluetooth wireless to connect with
other devices (such as the user’s smartphone). The data are framed in the form of packets
and transmitted wirelessly to the smartphone with one second interval [30]. The module
is powered using the 3.3 V from the power circuit and draws about 10 mA when active
and connected to a smartphone. A custom service in HM-10 is used to act as a read/write
function for the UART connection. The Generic Attribute Profile (GATT) Service UUID
(0000FFE0-0000-1000-8000-00805F9B34FB) is used to enable bidirectional communication
between the HM-10 module and any central device connected to it and characteristic UUID
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(0000FFE1-0000-1000-8000-00805F9B34FB) is used to allow 20 bytes of unformatted data
during data transfer.

Key technical parameters of the Bluetooth sub-block are summarized in Table 3.

Table 3. Bluetooth technical parameters.

Component Model Name Parameters

Bluetooth Bluetooth 4 HM-10
Operating frequency 2.4 GHz

Transmit power +6 dBm
Receiver sensitivity −23 dBm

Source voltage 3.3 V

Power Management

The total current consumption of DATU is 38.6 mA and our requirement was to power
up the DATU for 24 h of continuous operation. The minimum battery capacity requirement
was thus 926.4 mAh. It is, therefore, a 3.7 V, 1000 mAh rechargeable Lithium-ion battery
was selected to power the DATU unit for around 25 h.

A power management circuit (shown in Figure 6) was designed to provide a stable
working voltage and current to the DATU. The circuit provides PSoC 5LP a stable voltage
of 5 V and the AFE with ±3.3 V. A S7V8F5 [31] regulator is used to generate +5 V from the
battery output voltage, a S7V8F3 [32] regulator is then used to generate 3.3 V from the 5 V
input voltage, and a separate MAX1044 [33] voltage inverter to used further invert 3.3 V
input to −3.3 V output. The voltage provided by a lithium-Ion battery ranges from 4.2 V
when fully charged to 3 V when discharged. A micro-USB battery charger is used to charge
the battery with an output current of 500 mA at 3.7 V.

Figure 6. Power management circuit.

Key technical parameters of the power management sub-block are summarized in
Table 4.

Table 4. Power management unit technical parameters.

Component Model Name Parameters

Regulators S7V8F5 Output voltage +5 V
S7V8F3 Output voltage of 3.3 V from 5 V

Inverter IC MAX1044 Output voltage of −3.3 V from +3.3 V
Battery Lithiumion battery 3.7 V, 1000 mAh

2.2.2. Patient’s End Android Application

MIT App Inventor 2 integrated development environment (IDE) [34] was used to
develop the Android mobile applications used in this project. The applications were run
on a Samsung Galaxy S7 Edge smartphone with Android version 8.0. The patient’s end
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Android mobile application (named Health ECG Patient App) with a simple user interface
(UI) was developed to connect the DATU and user’s smartphone via a BLE connection,
computation of the heart rate, and sending this data with the user’s name to the Firebase
cloud. Additional features such as plotting of ECG trace, display of calculated heart rate,
and issuance of ECG warning were also added to the application.

Figure 7 shows the flowchart of the Health ECG Patient App. At first, the patient is
required to enter his/her name to register. As the Enter button is pressed, the text entered
is saved as a tag name for the Firebase cloud database [35]. The user then chooses the
duration of the test. The chosen duration is then saved. The user is then provided with
Bluetooth control buttons. When the Scan control button is pressed, the smartphone scans
the available Bluetooth devices in the vicinity and displays the devices list. When the
user presses the Stop Scan button, the device halts scanning and allows the user to select
the device of choice for Bluetooth connectivity. After the selection has been made and
the Connect control button is pressed, the phone connects to the selected device. Pressing
the Disconnect control button disconnects the smartphone from the device. When the
smartphone is connected to the DATU, the ECG data are transferred to the application,
the incoming data are saved, and the ECG trace is plotted. The incoming data are set as a
y-coordinate and the x-coordinate is incremented by one to be ready for the next sample.
The coordinates are used to plot the EG trace on the canvas.

Figure 7. Flow chart of the Health ECG Patient App.
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It was decided to utilize the peak detection of R wave based on a set threshold value
for the automated determination of the heart rate. The applied threshold value depends on
the incoming ECG signal R peak amplitude. The threshold value is set in such a manner
that only R peaks having an amplitude greater than the set threshold value are detected
and other peaks smaller than the set threshold are ignored. The threshold value was set
to 60% of the maximum signal amplitude (easily observed from the incoming data on the
user’s smartphone). If the R peak is not detected, then the threshold needs adjustment to
a lower threshold value. The threshold value used in this study is not to be considered a
suggestion and should be set by the user till the heart rate is detected.

Accordingly, when the incoming data values are greater than the set threshold value,
the exact time of the event is logged. Next, incoming data are monitored for a value greater
than the threshold value. The exact time of this event is logged again and the interval
period (in milliseconds) between the two events/beat-to-beat (RRBB) is calculated. The RR
interval time series comprising of N = 10 successive beat intervals are then collected. The
mean RR interval (RRMEAN) and the mean heart rate (HRMEAN or simply HR) are then
calculated as:

RRMAEN =
1
N

N

∑
n=1

RRMEAN,n, HRMEAN =
1

RRMEAN
× 60000. (2)

The result of the calculated result goes through an if statement to check if it is lesser
than 60 beats per minute (bpm) or greater than 100 bpm, which are the limits for a realistic
human heart rate. If the heart rate is not within the normal limits, then a warning ‘heart
rate is not normal’ is displayed. The heart rate data are then formatted and sent with the
ECG data to the Cloud under the patient’s name tag.

2.2.3. Google Firebase

The Firebase real-time database [35] service uses WebSocket communication protocol
compared to a traditional HTTP communication protocol. This allows much faster commu-
nication between the server and client, with reduced latency. In addition, the database can
sustain up to 20,000 simultaneous connections which are roughly a monthly user base of
10 million. Moreover, it can handle 100,000 responses in a second with a transfer speed of
10 MB/s [36]. We thus chose Firebase’s real-time database due to its high scalability and
fast response time/reduced latency.

A Firebase Spark plan was registered, allowing storage of data of up to 10 GB per
month for free. Figure 8 shows the Firebase data tree stored as JSON objects. The database
is named ‘ecgcloud-mk1’ and contains an application bucket named ‘ecg1’. Inside the
application bucket is the data sorted by the name tag. Joe is the name of User 1 stored
under the first tag and Mary the name of User 2 under the second tag. The user’s data are
formatted under each tag using the JSON format.

Figure 8. Data tree in Firebase.

2.2.4. The Android Application at Doctor’s End

A second Android application at the doctor’s end (named Health ECG Doctor App) was
developed. The application connects the doctor’s smartphone with the Firebase database
to read the selected user’s real-time ECG and heart rate data. As in the case of the Health
ECG Patient App, the ECG data are visualized through a real-time trace and the heart rate
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is shown. Visual inspection of the real-time ECG trace allows the doctor to diagnose the
patient depending on the shape and characteristic of the ECG signal.

Figure 9 shows the flowchart of the Health ECG Doctor App. The user interface and
functions are loaded up at the application launch. As soon as the doctor presses the Find
button, the get tag list function is called to pull the available tags in the Firebase cloud
database as a list of registered users’ names. When the doctor selects the user, the user’s
name is saved. This data change is detected in the corresponding tag and the relevant data
is pulled. The formatted data from the Health ECG Patient app is decoded to get back the
heart rate and ECG data. The ECG trace and heart rate are then updated in real-time.

Figure 9. Flow chart of the Health ECG Doctor App.

Automated detection and classification of arrhythmias can play a crucial role in the re-
liable and accurate diagnosis of CVDs in remote ECG monitoring applications. Lower than
normal heart rates are usually an indication of a condition known as bradycardia, while
higher than normal heart rates (over 100 bpm) are known as tachycardia [37]. The Doctor’s
Android Application was designed to detect bradycardia and tachycardia in the patient’s
ECG signal. If the heart rate is greater than 100 bpm, a warning message ‘tachycardia is
detected’ is displayed. If the heart rate is lesser than 60 bpm, a warning message ‘bradycardia
is detected’ is displayed. If none of the conditions are met, the message ‘no abnormalities
detected’ is displayed.
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2.2.5. Hardware Implementation

For the DATU prototype implementation, the debugger was snapped away from the
CY8CKIT−059 PSoC 5LP prototyping kit [38] to reduce the footprint size. The prototype
DATU was then soldered onto a Veroboard. This Veroboard was supported by screws and
hooked onto a second Veroboard to provide a sturdy base. The battery was also tucked
in between the two Veroboards to prevent puncture and damage. Figure 10a shows the
prototype DATU top and side views. In addition, Figure 10b shows a visual depiction of
the DATU printed circuit board (PCB) and final package. The DATU unit can be easily
plugged in or out of the chest strap for charging and is estimated to cost around $55.

Figure 10. (a) DATU top and side views; (b) DATU PCB and final package visual depiction.

3. Results
3.1. Simulation Results
3.1.1. AFE Analogue Filtering

The simulated frequency response of the AFE LP filter is shown in Figure 11. The
−3 dB cut-off frequency of the LP filter can be seen at around 200 Hz, in addition, it is
shown that the filter offers −14.53 dB of attenuation at 1 KHz.
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Figure 11. AFE LP filter frequency response.

3.1.2. AFE Common Mode Noise Suppression

Figure 12 shows the circuit diagram for this simulation. A common-mode noise of 2 V
at 50 Hz was added to the circuit via the vcm source. In addition, transient ECG signals [39]
were added to the right arm and left arm as signal inputs. In Figure 13, clean ECG signals
that were sent to the inputs are named as Left Arm and Right Arm. vcm, INAout and
LPFout represent the noise source, INA128 output, and output of the LP filter, respectively.
Observing the INAout and LPFout, the circuit can suppress 50 Hz noise completely. In
addition, the LPF is not seen to affect the ECG signal. We, thus, conclude that the designed
AFE can effectively remove the common mode noise in the ECG signal without affecting
its shape and bandwidth.

Figure 12. AFE common mode noise suppression simulation circuit.
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Figure 13. AFE common mode noise suppression at INA and LPF outputs.

3.1.3. AFE CMRR vs. Frequency

For this simulation, we used the circuit in Figure 12. In this case, CMRR was measured
by connecting a 1Vpp, 50 Hz common mode input signal with the differential inputs
shorted together. The AFE (without RLD circuit) CMRR plot in Figure 14a shows a CMRR
of 85.61 dB at 50 Hz. In contrast, the AFE (with RLD circuit) CMRR plot in Figure 14b
shows an increased in CMRR to 121 dB at 50 Hz.

Figure 14. Cont.
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Figure 14. (a) AFE without RLD CMRR plot; (b) AFE with RLD CMRR plot.

3.1.4. Digital Filtering

Figure 15a shows the magnitude response of the PSoC implemented Stage 1 biquad
HP Chebyshev filter. The drop-off prior to the cut-off of 0.5 Hz can also be seen. In addition,
Figure 15b shows the magnitude response of the PSoC implemented composite filter. The
two-stage notch filter offers mostly flat response in the passband and a deep notch of
around 102 dB can be seen at 50 Hz. This signifies that the 50 Hz component of the signal
created by the parasitic effect of the mains supply gets eliminated. This reduction has no
side effects. As can be seen in Figure 15b, after the notch at 50 Hz the gain can return to
its passband value before decreasing again so parts of useful information contained in the
signal are preserved.

Figure 15. (a) PSoC implemented HP filter frequency response; (b) PSoC implemented composite filter frequency response.
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In addition, notice that the stage 4 FIR LP filter (with Blackman windowing) provides
a good balance of flat-response at low frequencies and sharp drop off after the cutoff of
150 Hz.

3.2. AFE and PSoC Test Results

Initial experimental testing was performed in the laboratory with SKX-2000C ECG
simulator [40]. The ECG simulator was set up to produce Lead II ECG signals with different
heart rate settings between 60–100 bpm for sinus rhythm. We underscore that in this study,
Lead II measurement is the electrical potential formed between the left lower chest (LL)
and RA with reference to the RL lead. LA signal was thus replaced with LL signal. The
device was able to pick up all relevant ECG features (i.e., the P wave, T wave, Q wave,
R wave, and S wave) and no 50 Hz noise was present in the ECG signals. Further, PSoC
outputs were downloaded, and the intervals of these waves (i.e., RR interval, PR interval,
QT interval, and QRS interval) measured in MATLAB were within the associated ranges of
a normal ECG wave.

Separate AFE ECG signal tests were performed with the three electrodes connected
in Lead I configuration on a 25-year-old individual and the output was passed through
the AFE circuit board. Figure 16a shows the captured ECG signal. The QRS complex
of the ECG can be seen clearly. The deflections of the Q and S waves can also be seen.
The observed peak-to-peak voltage of the measured ECG signal is 34.4 mV. Furthermore,
spectra analysis of the ECG signal in Figure 16b shows spectrum magnitude of −65.4 dB
at 50 Hz. Figure 17a shows the test setup used to compare the AFE and PSoC filtering
outputs. The setup comprised of the AFE circuit board and passing its output through the
CY8CKIT-050 PSoC 5LP Development Kit for digital filtering. After setting up the PSoC
filter block, we added another DMA block (with the same settings as the first DMA block)
to the schematic, and VDAC (or voltage digital-to-analog converter) was added as the last
hardware block. The AFE and VDAC outputs were connected to the Oscilloscope CH1 and
CH2 inputs, respectively.

Figure 16. (a) AFE ECG output; (b) AFE ECG output FFT plot.
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Figure 17. (a) Experimental setup; (b) AFE and PSoC filtered outputs (CH2); (c) FFT of the AFE output; (d) FFT of PSoC
filtered output.

The PSoC filtered and AFE outputs are shown in Figure 17b as upper and lower traces,
respectively. The PSoC filtered output appears significantly cleaner and the 50 Hz noise
present in the AFE signal is highly reduced. As a result of PSoC filtering, the P wave (that
is hidden underneath the noise in the AFE trace) is visible.

The peak-to-peak amplitude of the PSoC filtered signal is 28.8 mV. This reduction in
amplitude is due to filter effects. A gain of 20 is introduced at the DAC output to see the
noise more clearly. The FFT of the AFE signal output in Figure 17c shows that the spectrum
amplitude of −65.7 dB at 50 Hz. In contrast, the FFT of the PSoC output in Figure 17d
shows an amplitude of −74.9 dB at the 50 Hz noise. The results thus show that the 50 Hz
noise is well attenuated by the PSoC to produce a clean ECG signal.

3.3. Android Applications Test Results

Using the Lead 1 configuration setup, ECG measurements were taken through the
DATU prototype. Figure 18a shows the user interface prior to connection with any Blue-
tooth device. The user’s name is entered as a tag name in the database. Choices for the
duration of the ECG test and list of discovered Bluetooth devices can also be seen. The
duration of 5 h for analysis and selection of HMSoft (HM-10 Module device name) is
made. Figure 18b shows the application after connecting to the HM-10. ‘HR Thr’ of 134
is added as the threshold limit to compute the heart rate. The added threshold is also
shown next to the label ‘HR Thr’. The calculated heart rate is shown under the label ‘Heart
Rate’ as 112 bpm, ECG real-time data sample amplitude is shown under the label ‘Data
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Incoming’ and the remaining time for data transmission is also displayed under ‘HR Thr’
input window. Analysis of resulting real-time ECG trace clearly shows P, Q, R, S and T
waves of the ECG signal.

Figure 18. (a) Main menu and selections of the Health ECG Patient App; (b) real-time plot of ECG trace and HR display in
the Health ECG Patient App; (c) main menu of the Health ECG Doctor App; (d) real-time ECG trace and HR analysis in the
Health ECG Doctor App.

Figure 18c shows the ECG Health Doctor App interface. The doctor presses the Find
button to reveal the list of patients in the Firebase database. After the patient is selected, the
incoming heart rate and associated ECG data are read from the database and displayed on
the doctor’s smartphone (please see Figure 18d). As can be seen, the doctor’s application
shows a very clear and stable ECG trace. In addition, the Tachycardia warning is shown as
the heart rate is above 100 bpm.

We validated our smartphone application heart rates against a dedicated photoplethys-
mography (PPG) sensor in the Samsung Galaxy S7 edge smartphone. For this test, ECG
sample and heart rate data were transmitted to the Firebase cloud database and updated in
real-time for the patient name ‘Ricky’. The ECG Health patient app in Figure 19a is seen
to show a heart rate of 96 bpm for the user Ricky. In contrast, the Samsung Health app in
Figure 19b can be seen to show a heart rate of 100 bpm. To get a better assessment of HR re-
sults, ten measurements were performed on the 25-year-old individual. The measurements
were taken after lying down for 2 min. The average heart rate found through the Samsung
application and the ECG Health patient app was 98 bpm and 96 bpm, respectively. This
suggested that our HR application has comparable accuracy with a commercial heart rate
application.

Furthermore, a 10-s segment window of the ECG signal was captured from the
prototype for 15 individuals. A threshold for QRS detection (60% of the ECG amplitude)
was applied to this segment. To assess the QRS detection algorithm, two performance
parameters were used: sensitivity, Se, and positive predictability, +P [41]. The sensitivity
was 100% for all the recordings, and the lowest positive predictability obtained was 99.5%.
The lack of false negatives confirms the quality of the QRS detection algorithm. To minimize
motion artifact during ECG data collection the subjects were in sitting down condition. In
addition, during ECG testing on normal humans, the signal remained mostly stable while
the subjects were standing or walking, and relevant ECG features were clearly visible. The
device thus can be worn during daily routine activities carried out at low intensity levels.
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Figure 19. (a) Heart rate reading on the Health ECG Patient App; (b) heart rate reading on Samsung Health App; (c) both the
apps running simultaneously.

To access the system latency, both the patient and doctor’s applications were run
minimized on the same smartphone. This is shown in Figure 19c with the ECG Health
Patient App running at the bottom and ECG Health Doctor App running at the top using the
Android multi-window function. Both the applications display the same heart rate and
ECG traces. The warning flag returns to ‘no complications detected’ as the heart rate is not
above 100 bpm or below 60 bpm to trigger the warning. As can be seen, the ECG trace
on the doctor’s application is around one beat off as compared to the ECG trace on the
patient’s application. Specifically, the proposed system offers an average latency of 0.75 s.
This difference is well within the acceptable range for an effective response from a doctor.
The proposed system thus shares real-time data with low latency.

4. Discussion
4.1. Comparison with RLD Circuit Based Wireless ECG Monitoring Systems

In two electrodes wireless wearable ECG devices (such as [12,18,42–44]), often the
bandwidth is restricted in the range 0.05–40 Hz, to achieve a low sampling rate and avoid
the line frequency interference signal. Due to the absence of a line frequency signal, the RLD
circuit is also omitted. These systems save significant battery power due to the omission of
the RLD circuit and use low sampling rates. However, due to limited bandwidth, these
devices are primarily aimed at personal well-being and fitness applications rather than
being suitable for real-time remote monitoring and diagnosis. In contrast, our proposed
ECG module spans a bandwidth of 0.5–150 Hz and uses a third electrode with an RLD
circuit to suppress the interference signal and to further improve the CMRR. Accordingly,
a comparison of our proposed system with RLD based wearable single channel wireless
ECG monitoring systems [45–48] is given in Table 5.
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Table 5. Comparison with RLD circuit based wireless ECG monitoring systems.

[45] [46] [47] [48] This Work

Number of Leads Single Single Single Single Single

Electrodes Dry reusable Dry reusable Dry reusable Ag/AgCl single use Ag/AgCl single use

INA
CMRR (dB) N/A * INA333

100
INA106

86
INA333

100
INA128PA

93

Bandwidth (Hz) 0.05–150 1–150 0.5–85 0.05–150 0.5–150

AFE CMRR (dB) N/A * N/A * N/A * N/A * Max 121 at 50 Hz

RLD Yes Yes Yes Yes Yes

Microcontroller TI MSP430 (SoC) nRF51422 PIC24FJ64GA ATmega328P PSoC 5LP

ADC (bits) 12 10 10 8 12

fs (Hz) 512 500 500 1 K 4 K

Communication
Protocol Bluetooth v2.0 + EDR ANT ANT ZigBee Bluetooth 4.0 BLE

Power Lithium-Ion
battery

Lithium-Ion
battery

Lithium-Ion
battery

Lithium-Ion
battery

Lithium-Ion
battery

Voltage (V) 3.7 3.7 3 5 3.7

Battery (mAh) 1100 280 256 3000 1000

Battery Life (h) 33 24 15 39.62 25

System Highlights

• Wearable
• Mobile phone monitors patient’s

heart rate and transmits the
average of one minute heart rates
every 2 h to a healthcare server
via short message service (SMS)
using the Global System for
Mobile communications (GSM)
cellular network.

• SMS alert message containing raw
ECG data and Global Positioning
System (GPS) information is sent
to the healthcare provider when
the abnormal heart is detected.

• Wearable
• Collected ECG data are sent

via ANT+ wireless
technology to a local
computer for processing
and storage.

• Wearable
• Collected ECG data are sent

via ANT+ wireless
technology to a local
computer for processing
and storage.

• Wearable
• Real-time ECG monitoring

ability.
• Collected ECG data are sent

over a ZigBee link to a
gateway personal computer
(PC) at the patient’s
premises for processing,
storage, and display.

• ECG data can be sent via
email to a remote doctor.

• Gateway PC acts as a web
server for sharing real-time
ECG data with the patient’s
doctor(s).

• Wearable
• Real-time ECG monitoring ability.
• Collected ECG data are sent over a

Bluetooth link to the user’s
smartphone.

• Ability to generate continuous
rhythm signal, heart rate
monitoring, and abnormal heart
rate warning using user’s
smartphone.

• Sharing of continuous rhythm
signal, heart rate, and classification
of arrhythmias using doctor’s
smartphone and cloud technology.

System Cost (USD) N/A * N/A * N/A * $70–80 $55

* N/A: not available.
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We exclude the system in [45] from our discussion, as the system relies on SMS
technology for sharing heart rate and abnormal conditions of the user with the health
care provider, and no real time data are shared with the doctor/health care provider. The
American Heart Association (AHA) recommends a minimum bandwidth of 125 Hz for
adults and a minimum bandwidth of 150 Hz for children of 12 to 16 years age group [49].
The bandwidth of the ANT wireless technology-based ECG system in [47] is restricted in
the range of 0.5–85 Hz. In addition, the ANT wireless technology-based ECG systems [46]
and [47] transmit data to a local computer for processing and storage. We thus also exclude
systems [46] and [47] from this discussion. The system in [48] and our proposed system
fulfill AHA bandwidth requirements. Further, both the systems share real-time ECG data
continuously with a remote doctor. A fair comparison is thus carried out between the
system in [48] and our proposed system.

The proposed DATU and the ECG sensing module in [48], use gold standard dispos-
able Ag-AgCl electrodes to minimize motion artifacts and achieve good quality measure-
ments. In addition, in the proposed system, DATU is attached directly to the chest strap to
reduce the length of electrode cables and thus minimize the motion artifact.

The interpretation of ECG signals depends on the precision and quality of ECG signals.
As compared to the ECG module of [48], the proposed DATU relies on a high sampling rate
to ease restrictions on the anti-aliasing filter and prevent aliasing due to high frequency
components beyond the cut-off frequency of the filter. Further, in contrast to the low-
resolution 8-bit ADC used in [48], our proposed DATU supports 12-bit ADC to achieve
high precision ECG measurements.

To obtain a clear and noiseless ECG signal, it is necessary to use three filters: an
HP filter to eliminate DC voltage from electrodes and visualization baseline wander, a
stopband filter to eliminate line frequency noise, and an LP filter to eliminate the high
frequency noise. In contrast to the fixed function microcontroller used in the sensing
module of [48], the proposed DATU module relies on a PSoC 5LP microcontroller with a
higher number of programmable blocks to implement these filters. This approach reduces
the number of external components needed in the AFE stage. The size and cost of the
system are thus significantly reduced. In addition, the reconfigurability feature of the
PSoC 5LP microcontroller allows the designers to obtain different filter configurations,
with different cutoff frequencies, as per their own requirements. Moreover, the PSoC 5LP
Delta Sigma ADC is also highly flexible. It offers a maximum resolution of 20-bits at a
sampling rate of 187 sps and a maximum sampling rate of 384 Ksps at 8-bits resolution.
This feature allows the designers to obtain different resolutions with the desired sampling
rates (depending on the operational modes).

According to the recommendations of the Association of the Advancement of Medical
Instrumentation (AAMI), CMRR is required to be higher than 90 dB. Further, according
to Article 51.5.3 of the European-Spanish Legislation UNE-EN 60601-2-47, the minimum
CMRR must be 60 dB. Our DATU sensing module fulfills both requirements. In contrast,
the sensing module of [48] does not list its AFE CMRR.

The proposed system is based on smart technologies such as smartphones, cloud
technology, and applications to share real-time data with the user’s doctor. After the
real-time ECG data are obtained through the wearable DATU and smartphone, cloud
hosted Firebase real-time database is used to provide an effective and efficient way to
store and share real-time data for a doctor’s analysis. The Firebase real-time database
is highly scalable and allows much faster communication between the server and client,
with reduced latency. This means that many users can be connected to the Cloud and
many doctors can access the patient data simultaneously from the Cloud, without any
problems. In addition, security and data validation can be implemented through security
rules. Moreover, with the help of the cloud services (such as computing, data analytics,
and machine earning), computationally intensive denoising and atrial fibrillation (AF)
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detection filtering techniques, data analysis, and disease warning can be carried out at the
Cloud-end to ease the burden on smartphones.

The system in [48] relies on a home PC for visualization of real-time Lead-I ECG trace.
The home PC also acts as a web server for sharing real time ECG data with the patient’s
doctor(s). Though multiple doctors can access user’s real-time ECG tracing, the home
server is restricted to a single user. Further, the system in [48] does not support heart rate
calculation and arrhythmia classification. Moreover, the system in [48] consumes 1817 mAh
energy in 24 h and is estimated to cost around $70–80. In contrast, the DATU consumes
926 mAh energy in 24 h, and the proposed system is estimated to cost about $45. Due
to the above advantages, the proposed system is a low-cost, scalable, high speed, and
high-resolution ECG monitoring system.

4.2. Comparison with Commercial Real-Time ECG Monitoring Systems

A comparison of the proposed system with commercial cloud-based real-time contin-
uous ECG monitoring systems iHealth Rhythm [50–52] and QardioCore [18] is given in
Table 6.

The iHeart Rhythm prototype was revealed in 2015. The Company (iHealth Labs)
claimed that it is a flat recorder that clips onto a consumable patch allowing individuals to
monitor 72 h of continuous ECG recording using the internal memory of the device. The
device allows continuous ECG data sharing via smartphone and cloud technologies with
the user’s doctor. While iHealth Rhythm and its associated features appear much promising,
the device is not yet commercially available in the market and no further information
including its AFE parameters, battery life, and the cost is available. We thus only compare
our proposed system with the QardioCore device. In both the systems, a single lead ECG
data are transmitted via BLE for (i) real time viewing on the user’s smartphone and (ii)
real-time sharing of data with the user’s doctor via cloud technology. While our proposed
system detects one type of arrhythmia (i.e., Bradycardia or Tachycardia), no arrhythmia
detection feature is available with QardioCore. QardioCore (our proposed system) is only
compatible with Apple products (Android smartphones). QardioCore relies on a high
resolution 16-bit ADC (as compared to the 12-bit resolution ADC in our system), its AFE
CMRR information is not available. More importantly, QardioCore fails to fulfill the AHA
minimum bandwidth requirements of ECG signals for adults and children in the age
group 12–16 years. It is not US Food and Drug Administration (USFDA) approved and is
not available for sale in the US. In contrast, our proposed system fulfills AHA minimum
bandwidth requirements. In addition, as compared to the QardioCore (priced at $449) our
system is estimated to cost around $45. The proposed system is thus not only suitable for
the acquisition of medical grade ECG signals but is highly cost effective and affordable for
use in remote rural communities.
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Table 6. Comparison with real-time cloud-based ECG monitoring systems.

iHealth Rhythm [50–52] QardioCore [18] This Work

Recoding mode Continuous Continuous Continuous

Electrodes ECG patch Dry Ag-AgCl

Number of leads Single Single Single

ADC (bits) N/A * 16 12

fs (Hz) N/A * 600 4 K

Bandwidth (Hz) N/A * 0.04–40 0.5–150

AFE CMRR (dB) N/A * N/A * Max 121 dB at 50 Hz

Communication Protocol Bluetooth 4.0 BLE Bluetooth 4.0 BLE Bluetooth 4.0 BLE

ADC (bits) N/A * 16 12

Power Lithium-Ion battery Lithium-Ion battery Lithium-Ion battery

Battery life (h) N/A * 24 25

System Highlights

• Wearable
• Real-time sharing of data with the doctor
• Button to mark the time whenever symptoms occur
• Detects four types of arrhythmia:

◦ tachycardia or bradycardia
◦ wide QRS which exceed 120 milliseconds
◦ abnormal baseline is detected with too many

ripples and variation
◦ R-R interval variation which exceeds 120

milliseconds

• Up to 2 GB built-in memory
• Micro-USB sync
• Secure and free data storage
• Import patient home-monitoring data into the iHealth

PRO App

• Wearable
• Ability to generate continuous rhythm
• Real-time sharing of data with the doctor

using smartphone and cloud technology
• Heart Rate
• Respiratory Rate
• Skin Temperature
• Heart Rate Variability
• Activity Tracking

• Wearable
• Collected ECG data are sent over a

Bluetooth link to the user’s smartphone.
• Ability to generate continuous rhythm

signal, heart rate monitoring, and
abnormal heart rate warning using
user’s smartphone.

• Real-time sharing of continuous rhythm
signal, heart rate, and classification of
arrhythmias using doctor’s smartphone
and cloud technology.

Compatibility Apple and Android Apple Android

System Cost (USD) N/A * $449 $55

* N/A: not available.
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4.3. Limitations

Our system has the following limitations.

1. Like most of the wearable smartphone-based ECG systems, the proposed system
allows recording of a single lead ECG signal which limits detection of arrhythmias.
For detection of ischemia or other cardiac diseases, more leads are required. Though
the proposed system does not allow simultaneous recording of multiple leads, serial
recording of multiple leads by the proposed system is feasible. The device thus has
the potential to play an important role in the detection of arrhythmias, allowing
early screening of cardiac disorders. Due to the complexity of this process, relevant
screening and diagnostic studies of the proposed device will be carried out in future
studies.

2. The DATU power consumption is high, and it supports only 25 h of operation before
the next recharge. Continuous mode of operation, high sampling rate, and 12-bit
ADC are responsible for the high-power consumption. PSoC 5LP consumes most of
the power in active power mode and around 2 µA in deep sleep mode. It is, thus,
if the DATU is run in the sleep wake-up mode then the device can be run for much
longer periods of time before the next recharge. The duration and frequency of data
recording depends on the doctor’s advice. It thus will necessitate the inclusion of a
control feature in the doctor’s application to set the ECG test duration and frequency.
In addition, significant power can be saved if the device is run at a low sampling
rate and/or a reduced resolution ADC is used at the cost of sacrificing performance.
Furthermore, the authors recommend using the Cypress Semiconductor CYBLE-
416045–02 Ultra Low Power BLE Module [53]. The recommended BLE module offers
a transmit power of +4 dBm against +6 dBm transmit power used in the HM-10
module.

3. The rural residents are less likely to own a smartphone as compared to the urban or
suburban residents. However, the use of smartphones in rural areas is on the rise
recently due to their affordability. For example, a recent budget iVOOMi Android
smartphone is priced at $55 [54]. The current cost can still present a problem for rural
residents from low-income countries. Therefore, Government efforts are needed to
provide subsidies on the purchase of smartphones and offer low-cost data plans to
rural communities to support digitalization and use of telehealth technologies.

4.4. Improvements and Future Work

Over 100 bpm is generally defined as a fast heart for adults. However, the setting
of this threshold depends on the user’s age and overall health. Further, for athletes and
people that exercise on regular basis, a heart rate of under 60 bpm is normal and even
healthy. These thresholds should be set by a doctor after accessing each user’s health
conditions. Accordingly, the user’s smartphone application will be revised to allow the
user to enter his/her health conditions and age for the doctor’s review and the necessary
setting of these thresholds through the Doctor’s Health App.

The warning message about tachycardia or bradycardia gets displayed on the doctor’s
application only when the doctor’s application is launched. For a prompt intervention,
it could be useful to send an alert to the doctor, regardless of the application launch. In
addition, in the proposed system ECG features are inspected visually in short segments.
In the case of longer-range ECG signals, beat-by-beat inspection of ECG signals is a chal-
lenging task. To facilitate the compact display of short- and long-range ECG signals and
a beat-by-beat examination of ECG features, sliders and markers are to be added to the
existing display of the Doctor’s Health App. Both these features will be included in our
future refined version of the Doctor’s Health App.

The device was not calibrated and tested on real patients. The proposed system was
designed as a proof of concept. Due to this, our focus in this work was mainly on the design
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and preliminary testing. Further studies are required to evaluate the calibrated system’s
detection accuracy and feasibility in patients with arrhythmias and heart disorders. This
work will be presented in our future research work/studies.

Further future suggested improvements of the proposed system include:

• Detection of detailed cardiac abnormalities in the home environment (for patients of
different age groups) and the heart rate variability.

• Development of a three-lead wearable patch-type ECG device.
• Detection of motion artifacts through adaptive filtering methods and removal through

denoising methods.
• Use of machine learning to identify CVDs.
• Development of a full-scale database for long-term healthcare applications.
• Development and use of dry electrodes to reduce patient discomfort.

5. Conclusions

A single-channel IoT based real-time wearable ambulatory ECG monitoring system is
proposed. The system consists of a wearable device with three ECG leads. The collected
data by the wearable device are streamed via BLE technology to a user’s smartphone.
An accompanying Android application on the user’s smartphone then renders the user’s
ECG data as a single lead trace and heart rate including a warning for abnormal heart
rate rhythms. The same information is shared with the user’s doctor via a real-time cloud
database and a dedicated Android application on a doctor’s smartphone. The doctor’s
smartphone also displays the selected user’s live ECG trace and heart rate and classifies
heart rate into types of arrhythmias (bradycardia or tachycardia).

The system’s AFE employs an RLD circuit to achieve a high CMRR of up to 121 dB
to suppress 50 Hz power line frequency interference. A further digitally implemented
notch filter completely eliminates the 50 Hz power-line interference. The use of a PSoC
microcontroller in the proposed wearable device allows increasing flexibility through
scalable options as well allows reduced size and cost of the wearable device. The system is
highly scalable as multiple users can send the data to the Cloud and multiple doctors can
access the patient data simultaneously. Further, the system supports 25 h of continuous
monitoring without constraining users’ locations.

Experimental results suggest that the device is highly capable of producing clean
ECG signals with relevant features and complete elimination of 50 Hz noise. The device
demonstrated high sensitivity and lack of false negatives which confirmed the quality of
the built in QRS detection algorithm. It was also shown that the device’s reliability detects
cardiac abnormalities and has comparable accuracy to a commercial heart rate application.
It was evident from experimental results that the system offers fast response/low latency.

Android smartphones have a consistent lead in the market share versus Apple due to
their affordability and reliability. It thus makes the proposed system an attractive low-cost,
highly scalable, low latency, and high-performance real-time ECG monitoring system for
prevention, early diagnosis, and effective treatment of CVDs for users in rural communities
and in the COVID-19 pandemic scenario.
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