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Abstract: The local damage detection procedures in rotating machinery are based on the analysis
of the impulsiveness and/or the periodicity of disturbances corresponding to the failure. Recent
findings related to non-Gaussian vibration signals showed some drawbacks of the classical methods.
If the signal is noisy and it is strongly non-Gaussian (heavy-tailed), searching for impulsive behvaior
is pointless as both informative and non-informative components are transients. The classical
dependence measure (autocorrelation) is not suitable for non-Gaussian signals. Thus, there is a need
for new methods for hidden periodicity detection. In this paper, an attempt will be made to use
alternative measures of dependence used in time series analysis that are less known in the condition
monitoring (CM) community. They are proposed as alternatives for the classical autocovariance
function used in the cyclostationary analysis. The methodology of the auto-similarity map calculation
is presented as well as a procedure for a “quality” or “informativeness” assessment of the map is
proposed. In the most complex case, the most resistant to heavy-tailed noise turned out the proposed
techniques based on Kendall, Spearman and Quadrant autocorrelations. Whereas in the case of
the local fault disturbed by the Gaussian noise, the most efficient proved to be a commonly-known
approach based on Pearson autocorrelation. The ideas proposed in the paper are supported by
simulation signals and real vibrations from heavy-duty machines.

Keywords: local damage detection; vibration analysis; heavy-tailed time series; measures of depen-
dence; periodicity detection

1. Introduction

Many phenomena observed in the real world reveal cyclic behvaior, for example, me-
teorological data [1,2], hydrological data [3,4], air quality data [5,6] and financial data [7,8].
If the length of the cycle is approximately the same or the domain of observation could be
rescaled to the periodic phenomenon, one can take advantage of well-established math-
ematical theory to model such processes. Vibration data from rotating machines will be
used to illustrate the problem. It should be said that periodically correlated processes,
or in other words, second-order cyclostationary processes, are probably the most intu-
itive and powerful methods for condition monitoring applications, especially for local
damage detection in rotating machinery such as bearings or gearboxes. The identification
of cyclostationary properties in the signal is related to the detection of periodicity in the
signal, often hidden in the whole signal, that is, masked by non-informative components. It
should be clearly said that periodicity detection does not mean the simple usage of spectral
analysis. Cyclostationary signals are a special class of nonstationary signals for which
statistics are changing in time [9].

The most common approach is based on the autocovariance function (or Pearson
autocorrelation measure) calculated for the frequency band from spectrally decomposed
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signals via a filter bank or short-time Fourier transform (STFT). Unfortunately, this method-
ology can be applied under a strong assumption of the finite-variance distribution of the
noise. The classical example is a Gaussian distribution. In many research works, such an
assumption is reasonable (the character of the noise is strongly Gaussian) or it is just a way
to simplify a complex problem. For processes for which some unexpected disturbances
may appear (due to various reasons, e.g., disturbances in the measurement system or dis-
turbance related to the natural process of the machine operation), the assumption regarding
the Gaussian character of the signal may be an oversimplification. From the theoretical
point of view, the classical approaches for periodic behavior identification cannot be ap-
plied for non-Gaussian signals. Clearly, the value of the estimator (i.e., value of the statistic)
can be calculated for a real dataset; however, the obtained value might be non-informative,
as the estimator does not approximate (estimate) any theoretical quantity. Most of the
classical methods for periodic behavior detection are very sensitive to large observations
and thus, the crucial information obtained by using these methods can be hidden when
we apply them for signals with impulsive behavior. It is a case described in the paper in
the applications section. Although cyclostationary analysis is a powerful approach for
damage detection in various situations, it should be said that many machines generate
vibration signals that could be described as non-Gaussian processes [10–12]. In such a
case—classical cyclostationary approaches fail—one needs alternative techniques for peri-
odicity measurement (dependence measurement) that are more dedicated for non-Gaussian
processes [13–18].

This work is a continuation of the authors’ previous research focused on cyclosta-
tionary analysis for heavy-tailed signals with an application to local damage detection.
Here, we extend the formula proposed by Zak [19], Moshrefzadeh [20] and recently by
Kruczek [18] by providing a set of alternative measures that could be useful in local damage
detection. Moreover, it is demonstrated that the proposed technique based on alternative
measures of dependence can provide more clear diagnostic information, especially if a
localized damage is immersed in heavy background noise.

1.1. Local Damage Detection—A Brief Overview

The local damage detection methods for gearboxes and bearings attract the attention
of many researchers, thus, there are many diagnostic signal processing methods designed
to diagnose the damage. Mostly, they are based on the physical understanding of damage
signature analysis (impulsive, cyclic, modulated, nonlinear, etc. phenomenon) [21]. Re-
cently, Kumar et al. [22] discussed the latest and most widely used diagnosis methods for
gearbox condition monitoring.

One of the most used elements in rotating machinery is bearings and their failure
is the most important reason for machinery breakdown. As the vibration signal from
a damaged machine is expected to be nonstationary, the time–frequency methods were
favoured by many researchers [23,24]. Moreover, the contact of a damaged rolling element
with the inner race, outer race, or their damaged surfaces provides impulsive (wide-band)
disturbance, hence the usage of the time–frequency representation allows understanding
of the nature of the informative signal and its location in frequency—often called the
informative frequency band (IFB). The second issue is critical because often the final
stage of the diagnostic process is the envelope spectrum analysis [25,26] to identify fault
frequencies. The wavelet analysis is used for both time–frequency representation as well
as for signal prefiltering [27–30]. The combined wavelets with HMM (hidden Markov
model) have been used in [31] to detect abnormal behavior. The discussion about the
usage of the hidden Markov model (HMM) for bearing diagnostics and prognostics one
can find in [32,33]. The EMD (Empirical Mode Decomposition) has also been proposed
in many applications as a data-driven approach for signal decomposition [34]. Although
the wavelet analysis is very powerful, its use raises many questions related to the base
selection, depth of decomposition, stopping criteria, and so forth. As the nature of the
signal is generally known, many authors proposed various statistical methods for filter



Electronics 2021, 10, 1863 3 of 27

design such as kurtogram [35], spectral kurtosis [36] and many similar approaches [37–39].
Optimal and adaptive filters have also been used for signal enhancement [27,40–42]. The
last two decades delivered (mostly thanks to the massive pioneering work of Jerome Antoni)
a solid theoretical background of cyclostationary analysis with engineering applications
to gearboxes and rolling element bearings [9,43]. The cyclostationarity of the first order
related to the deterministic component associated with rotating elements such as shafts
or gear wheels is in general not interesting from a local damage detection perspective.
A cyclostationarity of second-order perfectly describes the cyclic impulsive disturbance
related to local damage [44–46].

The key issue is to “unravel” or more precisely decompose the signal into a family
of narrow-band subsignals and measure the periodicity in each of the subsignals. The
commonly used way of decomposing the signal into the time–frequency domain is to
use STFT [47] or wavelets [48,49]. The typical example of a measure of periodicity is
the autocovariance function. However, such a measure has some limitations that will be
discussed in the next sections.

1.2. Periodically Correlated Processes and Measures of Dependence

As mentioned, for the identification of hidden cyclostationary components in noisy
signals, one may use as a measure of dependence the autocovariance function. Unfortu-
nately, the autocovariance function is sensitive to outliers present in the non-Gaussian
signal and one may say that for highly impulsive disturbances the autocovariance is not
able to deliver appropriate information about periodicity [50]. To be more precise, different
cases of the signal with a local fault are presented in Figure 1. The vibration signals of
a Gaussian noise with a local fault with carrier frequency 2.5 kHz is visible in Figure 1a
and its spectrogram is presented in Figure 1b. The value of kurtosis of the considered
signal is equal to 3.29. Figure 1c presents the same vibration data but with additional non-
cyclic impulses added with a carrier frequency 6 kHz, which makes the background noise
heavy-tailed distributed—its spectrogram is shown in Figure 1d. The value of kurtosis
of the this signal is equal to 200.86 (large value of the kurtosis is typical for heavy-tailed
data). The last signal, presented in Figure 1e, is a non-Gaussian signal with local failure
where cyclic impulses of fault have a carrier frequency equal to 5 kHz—its time–frequency
representation is visible in Figure 1f. The value of kurtosis of the considered signal is equal
202.16. Basis on the vibration signals in the time domain and time–frequency domain,
see Figure 1, one can clearly see heavy-tailed behaviour of the data. The corresponding
Pearson autocorrelation maps for each of signals with a local fault are presented in Figure 2.
The Pearson autocorrelation map uses a normalized autocovariance function (called auto-
correlation) to investigate the existence of cyclic subsignals in the time–frequency domain
of the tested signal. Figure 2a shows that the Pearson autocorrelation works properly in the
case of the background Gaussian noise and there are strong visible cyclic impulses in the
frequency band 2–3 kHz. In Figure 2b, one can see that the IFB is in a different frequency
band than the wide-band disturbances in the range of 4–10 kHz; however, diagnostic
information is still noticeable (2–3 kHz).



Electronics 2021, 10, 1863 4 of 27

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (secs)

-4

-2

0

2

4

6

A
c
c
 (

m
/s

2
)

Raw signal

(a) Gaussian vibration signal—local fault at 2.5 kHz. (b) Spectrogram—IFB in range 2–3 kHz.
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(c) Non-Gaussian vibration signal—local fault at 2.5 kHz. (d) Spectrogram—IFB in range 2–3 kHz.
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(e) Non-Gaussian vibration signal—local fault at 5 kHz. (f) Spectrogram—IFB in range 4.5–5.5 kHz.

Figure 1. Vibration signal and its spectrogram for Gaussian signal with a local fault (a,b) and a heavy-tailed signal with a
local fault, with a different carrier frequency of fault: 2.5 kHz (c,d) and 5 kHz (e,f), carrier frequency of non-cyclic: 6 kHz.
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(a) (b) (c)
Figure 2. Pearson correlation map for Gaussian signal with a local fault (a,b) and heavy-tailed signal with a local fault, with
a different carrier frequency of fault: 2.5 kHz (a,b) and 5 kHz (c), carrier frequency of non-cyclic: 6 kHz.

In Figure 2b,c, a similar example of the Pearson autocorrelation map for the signal
with a local fault and non-Gaussian noise is presented; however, this time, the informative
frequency band is inside the range of wide-band disturbances. In such a case, the extraction
of diagnostic information is not possible. The autocorrelation response in the information
band is misleading—it does not respond to occurring dependencies [17].

Such a case is the most critical. The purpose of this study is to investigate a simpler
case—informative and non-informative frequency bands do not overlap each other at all or
it may be a limited, partial spectral overlapping [51]. In such a case, the detection of IFB is
possible, but more difficult than for the Gaussian case. This formulation of the problem
will provide a chance to define the criteria of the evaluation of the quality of the map.

Despite the size of spectral overlapping, more robust measures are needed. Zak pro-
posed several solutions for practical applications such as autocovariation, autocodifference,
or FLOC (fractional lower order covariance) [19,52,53].

Recently, Kruczek proposed a deeper theoretical study related to alternative measures
of dependence with application to rolling element bearing [17,18]. Nowicki also analysed
novel measures for IFB detection [54]. As this direction of research is very promising, a
deep study of the literature allowed the collection of a few more possible solutions.

The discussion in this article provides an overview of several dependence measures,
such as Pearson autocorrelation, autocovariation, autocodifference, Spearman autocorrela-
tion, Kendall autocorrelation and Quadrant autocorrelation. These measures are used to
design—by analogy with the dependence map in [19]—an auto-similarity map that allows
the identification of a frequency band with cyclostationary content. Such information is
the basis for further filter design procedures. Moreover, it may be used in the detection
procedure of local fault. In this paper, the focus is on the comparison and evaluation of the
quality of the information provided by a particular method.

It should be stated that damage detection in the presence of non-Gaussian noise is
a dynamically developing area of research. Borghesani [55] studied cyclostationary sig-
nals of order two in the presence of non-Gaussian noise. He proposed a lot of envelope
indicators. Wylomanska et al. [10] proposed an impulsive noise cancellation procedure
based on regime-switching models. Wodecki et al. introduced nonnegative matrix fac-
torisation for impulsive source separation [56]. In the comparative study provided by
Hebda-Sobkowicz et al. [57], several methods have been recently investigated in the con-
text of local damage detection in the presence of impulsive noise. The study included
spectral kurtosis [36], kurtogram [35], stability index (Alpha selector) [58], spectral Gini
selector [39], spectral smoothness index [59], infogram [38] and conditional variance-based
selector [60]. There are also other known approaches such as protrugram and its modified
version [61], which aim to overcome the disadvantages of the known kurtogram. In 2018,
Moshrefzadeh [20] proposed an autogram, which is based on the idea of the kurtogram
and protrugram but utilizes the autocorrelation and the modified definition of kurtosis. In
very recent solutions provided by Schmidt [62], a synchronous averaging procedure has
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been updated by replacing a mean with a median. It is less sensitive to high amplitude
random impulses and the final “averaged” signal is significantly “de-noised”. Interesting
solutions are provided by Luan [63] and Zhao [64]—both related to cyclic correntropy.
In [65], the efficiency of cyclostationary analysis was studied for various levels of non-
Gaussian contribution. The conclusion from this analysis is that for some small level of
non-Gaussian noise, the classical analysis still can be used; even if the results are a bit
noisy, the diagnostic information can be extracted. When the level of non-Gaussian noise
becomes stronger, understanding of bi-frequency map is harder and finally impossible. The
papers mentioned above are a motivation for searching for more robust techniques. The
main novelty of the paper and the authors’ contribution are related to two topics. First, we
propose new methods for local damage detection for signals with non-Gaussian noise. The
second issue is much more general and it corresponds to the problem of cyclic behavior
identification for processes with heavy-tailed distribution.

The rest of the paper is organized as follows: In Section 2, the problem is formulated
in detail. Next, in Section 3, the used measures of dependence are recalled with the step-by-
step methodology of the autocorrelation map calculation. The criteria of the assessment of
the quality of a map are formulated. In Section 4, the effectiveness of the proposed approach
is presented for the simulated signal as well as for the real signal from the crushing machine
operating in a real environment. Section 5 concludes the paper.

2. Problem Formulation

The main aim of this paper is to develop a robust method for cyclic behvaior identifi-
cation in the signal with impulsive noise. As mentioned, a classical measure of dependence
used in the cyclostationary analysis, namely, the Pearson autocorrelation, is not providing
clear diagnostic information as it is sensitive to outliers (impulsive noise). Thus, alternative
measures of dependence will be recalled (usually used for testing the cross-dependence in
the data), reformulated to auto-similarity measures, and used for the design of the auto-
similarity map. The definition of the auto-similarity map proposed by the authors, which
consist of an automatic and universal procedure, enables to apply different measures of
dependence also those that were not included in the paper. An example of the application
of this universal procedure is the Spearman and Kendall correlation measures, which so
far have not been used as self-dependence measures, and the Quadrant measure—so far
unknown in machine diagnostics. Finally, one will be able to apply the auto-similarity
map to the vibration signal from the machine with local damage. There are several issues
to address:

• The procedure for general auto-similarity map calculation is needed;
• The procedure for auto-similarity measures to be used in auto-similarity map is needed;
• The procedure of map quality evaluation is needed.

The novelty of the paper is related to a novel measure of dependence: quadrant
correlation, new, automatic procedure for auto-similarity map calculation, detailed analysis
of the performance of the considered measures of dependence and proposed criteria for
their comparison. The main assumption regarding the quality of the maps is very intuitive:
one should expect higher dependence for informative frequency bands and much smaller
dependence for the background noise elsewhere. The presence of impulsive noise should
not affect the dependence related to the informative frequency band and should not provide
any dependence outside that band. Finally, we will define the criteria that one may use for
the selection of the optimal dependence measure for the considered problem.

3. Methodology

In this section, the proposed methodology is described. Firstly, the input signal
is transformed into the time–frequency domain. Using the STFT [66], a spectrogram is
obtained as the time–frequency map:

S(t, f ) = |STFT(t, f )|2, (1)
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where the formula of the STFT is defined as follows:

STFT(t, f ) =
N

∑
k=1

X(k)w(t− k)e
−2jπ f k

N , (2)

w(t− k) is the shift window , X = X(1), . . . , X(N) is the input signal of length N, t ∈ T is
the time point, f ∈ F is a frequency, and j is an imaginary unit; see [66] for more details.

Each sub-signal Yi = S(·, fi) of the time–frequency map S(t, f ) contains the energy
flow of the signal X associated with the given frequency bin fi and time interval t and
it is investigated towards auto-similarity in time. Consequently, the auto-similarity map
map(i, k) = automeasure(Yi(1 : n), k− 1) for k = 1, . . . , n is created, see Algorithm 1, where
automeasure(·, ·) is substituted by the given measure of dependence of the six tested. The
measures of dependence used for the investigation of auto-similarity are presented in the
next subsection. The proposed measures are tested for performance but using the given
methodology one can apply any other measure of dependence.

Algorithm 1: Auto-similarity maps calculation
Data:
Input signal X(t) for t = 1, 2, . . . , N
Calculate spectrogram: S(t, f ) = |STFT(X, window, n f f t, noverlap, f s)|2,
where window is a Hann window, n f f t is a number of frequency points, noverlap
is a size of the overlapping and f s is a sample rate,
Calculate automeasure:
m - number of rows in matrix S
n - number of columns in matrix S
automeasure(Yi, k) - function to calculate the value of measure for sub-signals Yi
and lag time k

for i← 1 to m do
for k← 1 to n do

map(i, k) = automeasure(Yi(1 : n), k− 1).

3.1. Definition of Dependence Measures

In this section, we recall the definition of six different measures of dependence, that
is, Pearson autocorrelation, autocodifference, autocovariation, Spearman, Kendall and
Quadrant autocorrelation measures.

Let {Z(t)}, t ∈ Z be the time-series with variance σ2
Z and mean µZ.

3.2. Pearson Autocorrelation

The Pearson autocorrelation, often called simply “autocorrelation”, is defined as
follows [67]:

r (k) =
cov(Z(t), Z(t + k))

σ2
Z

, (3)

where cov(·, ·) is the covariance function. The estimator of the Pearson autocorrelation for
the data vector z = z(1), . . . , z(n) is defined as follows [68]:

r̂ (k) =
∑n−k

t=1 (z(t)− z)(z(t + k)− z)
∑n

t=1(z(t)− z)2 , (4)

where z is a sample mean. The Pearson autocorrelation is the function of delay with the lag
operator k of the correlation of a signal with a delayed copy of itself. In other words, it is
the similarity between observations as a function of the time lag between them.

The analysis of Pearson autocorrelation enables finding repeating patterns, such as
the presence of a periodic signal disturbed by noise, as the autocorrelation of a periodic
function is also a periodic function with the same period. The values of the Pearson



Electronics 2021, 10, 1863 8 of 27

autocorrelation are in the range of [−1, 1]. Values close to 1 or -1 indicate a strong linear
relationship (positive and negative, respectively). If the process {Z(t)} constitutes a
sequence of independent random variables, then the value of autocorrelation takes 0.
However, zero autocorrelation does not imply independence [69]; there can still exist some
(nonlinear) dependence.

Thanks to the simple definition and interpretation, the Pearson autocorrelation is a
standard tool for testing linear dependence in statistical data [70]. However, for stochastic
processes with heavy-tailed distributions, this tool can be insufficient [54]. Then, more
general measures of dependence are recommended.

3.3. Autocodifference

The autocodifference is a measure that enables searching the cyclic behavior in heavy-
tailed data. It is well-defined, which means that it exists for a wide class of distributions.
The properties of the autocodifference are thoroughly described in [71,72]. The autocodif-
ference for the time lag k for time-series {Z(t)} is given by [71]:

CD(k) = log
(
E
[
ej(Z(t)−Z(t−k))

])
− log

(
E
[
ejZ(t)

])
− log

(
E
[
e−jZ(t−k)

])
. (5)

The estimator of the autocodifference can be defined as follows [53]:

ĈD (k) =

√
n− k

n
[log φ (0,−1; k) + log φ (1, 0; k)− log φ (1,−1; k)], (6)

where φ is a empirical characteristic function for the considered sample with the following
definition [53]:

φ (p, q; k) =
1

n− k

n−k

∑
t=1

exp (j(pz(t + k) + qz(t))), k ≥ 0, (7)

for the points p and q from {−1, 0, 1}, and the imaginary unit j, where z = z(1), . . . , z(n) is
the set of observation corresponding to {Z(t)}.

The autocodifference is an appropriate tool for measuring the relationship between
random variables from a more general class of distributions (infinitely divisible). For
Gaussian processes, the autocodifference is reduced to negative-sign autocovariance.

3.4. Autocovariation

The autocovariation as a function of time lag is defined as follows for time-series
{Z(t)}, [58]:

CV(k) =
E[Z(t)sign(Z(t− k))]

E|Z(t− k)|. (8)

The estimator of the autocovariation for z = z(1), . . . , z(n) is given by [53]:

ĈV (k) =
∑n

t=1+k z(t) sign(z(t− k))
∑n

t=1|z(t)|.
, (9)

where l = max(1, 1 + k) and r = min(n, n + k).
Covariation was originally defined for α-stable distributions belonging to the class of

heavy-tailed distributions [71]. The presented definition is a special case of the FLOC (Frac-
tional Lower Order Covariance) measure [73] and is used for any heavy-tailed distribution
for which the theoretical mean exists. More properties of covariation can be found in [71].

3.5. Spearman Autocorrelation

The usage of the Spearman correlation in the cyclic behavior detection during the
diagnostic procedure has been already presented in [51,54]. Nowicki et al. [54] presents
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that well-known Spearman correlation coefficient allows the distinguishing of cyclic (infor-
mative) and noncyclic (non-informative) impulses.

The Spearman autocorrelation for time series {Z(t)} and time lag k is given by:

ρ (k) =
cov(R(t), R(t + k))

σ2
R

, (10)

where {R(t)} is the rank vector corresponding to the time-series {Z(t)} and σR is a standard
deviation of variable R.

The estimator of the Spearman autocorrelation is given by [74]:

ρ̂(k) =
∑n−k

t=1 (r(t)− r)(r(t + k)− r)
∑n

t=1(r(t)− r)2 , (11)

where r(1), . . . , r(n) is the rank of observation of the sample z(1), z(2), . . . , z(n) and r is
sample means of rank vector. The Spearman autocorrelation takes values between [−1, 1]
and tests a monotonic relationship in the data vector according to the changing time lag k.

3.6. Kendall Autocorrelation

In Reference [54], the authors present the usage of a Kendall correlation as the IFB
selector in a diagnostic procedure of local fault detection. As they show, the Kendall
correlation-based selector has similar efficiency to the Spearman correlation-based selector.
Kendall autocorrelation for time series {Z(t)} and time lag k is defined as follows [75]:

τ(k) = P[(Z(t)− Z′(t))(Z(t + k)− Z′(t + k) ≥ 0]− P[Z(t)− Z′(t))(Z(t + k)− Z′(t + k) ≤ 0]. (12)

The above definition can also be written as:

τ(k) = cov[sgn(Z′(t)− Z(t)), sgn(Z′(t + k)− Z(t + k)],

where sgn(·, ·) is a signum function. Kendall autocorrelation uses pairs of observations
and determines the strength of the relationship based on the pattern of concordance and
discordance between the pairs. The calculation of the Kendall correlation requires that the
process can be ordered.

The estimator of the Kendall autocorrelation is as follows [69]:

τ̂ (k) =
2

n(n− 1) ∑
t>j

sgn((z(t)− z(j))(z(t + k)− z(j + k))), (13)

where z(1), . . . , z(n) are the observations corresponding to time-series {Z(t)}.
The Kendall autocorrelation usually takes smaller values than the Spearman autocor-

relation [69]. The Kendall and Spearman autocorrelations measure the relation between
rankings. In consequence, they are not affected by any increase between Z(t) and Z(t + k).
Whereas the Pearson autocorrelation indicates only the linear transformations [69].

3.7. Quadrant Autocorrelation

Another measure of dependence discussed in this paper is a Quadrant autocorrelation
(known also as a sign autocorrelation coefficient or Blomquist statistic [76]).

The definition of the Quadrant autocorrelation for the time series {Z(t)} and time lag
k can be written as:

q(k) = E[sign(Z(t)− µZ)(sign(Z(t + k)− µZ)].

The estimator of the Quadrant autocorrelation is [76]:

q̂ (k) =
1

n− k

n

∑
t=1

sign((z(t)−med(z)(z(t + k)−med(z))), (14)
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where med(z) is the median of sample z(1), z(2), . . . , z(n). The Quadrant correlation is
equal 1 for strong positive correlation, −1 for strong negative correlation and 0 for no
correlation [77]. However, the Quadrant correlation may take −1 or 1 without the data
exhibiting a perfect linear relationship.

In our analysis, the above mentioned measures of dependence are applied to the
subsignals Yi from the time–frequency map S(t, f ).

3.8. The Quality of Maps Criterion

It can be assumed that an input signal consists of three main components: Gaussian
noise, non-Gaussian noise, and Signal of the Interest (SOI). Each of them behaves in a
specific way on certain frequency bands. Therefore, the auto-similarity map is divided
into three (or more) parts so that each part corresponds to a different signal component:
noncyclic noise and cyclic signal of fault. In this way, it is possible to investigate how the
considered measures of dependence react to the specific signal components. The result
will be satisfactory when the auto-similarity will be low for subsignals in the Gaussian
and non-Gaussian noise parts and high for subsignals corresponding to the IFB (cyclic
components of local fault).

To facilitate the comparative analysis, the auto-similarity maps corresponding to the
previously highlighted components are extracted creating separated matrices, and each
matrix is integrated into the vector by calculating the median for each time lag. Presenting
all medians on one plot allows comparing how a given measure of dependence reacts to
each signal’s components and what pattern of behavior it creates.

A special focus is on the median vectors for the parts related to non-Gaussian noise
and the IFB. For the deeper analysis of the first one, the boxplot for the vector values is
used, while the analysis of the informative part is described in detail in Section 3.8.

To reduce the complexity of the analysis, a simple aggregated indicator is introduced,
called the Impulsiveness Indicator (IMPI). In this case, normalization determines the
percentage portion of the sum of the Amplitudes of the Information Signal (AIS) - M com-
ponents founded by the local maximum function, in the overall sum of the autocorrelation
(ACORR) function. The considered measure is defined as:

IMPI =
∑M

i=1 AISi

∑m
k=1 ACORRk

, (15)

where M is the number of components to analyse and m is the number of lags used to
calculate the total energy, which corresponds to the last component of M. In our analysis,
the number of components M has been set arbitrarily to ten—this should be good enough
to detect the cyclic behavior [60]. Thus, the total sum of the autocorrelation function is
calculated from the given measure up to the value of lag which corresponds to the last
(10th) peak. The IMPI takes higher values for the signal, where the cyclic impulses appear.
The lack of an impulsive component implies that the IMPI converges to zero. To calculate
the IMPI, one can follow Algorithm 2:

The above procedure, described in Section 3, is supported by the Monte Carlo
simulation—100 iterations of the signal with different signal’s properties—and real vi-
brations from heavy duty machines. More details will be provided in the next section.
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Algorithm 2: IMPI—Impulsiveness Indicator (the quality of map criterion)
Data: auto-similarity map: map(i, k), F - frequency vector,
range of the informative frequency band - [ fmin, fmax],
Calculate:
p1 - sample number of fmin in vector F
p2 - sample number of fmax in vector F
n - number of columns in map(i, k)
Calculate median:
for k← 1 to n do

ACORRk = median(map( fmin : fmax, k))
Calculate: [AIS1, . . . , AIS10] - maxima of the first 10 peaks on the medians’ vector
Calculate ratio:
IMPI = sum([AIS1,...,AIS10])

sum(ACORR)

4. Results

In this section, the effectiveness of the proposed methodology is presented for the
simulated signal as well as for the real signal from the crushing machine operating in a
real environment.

4.1. Analysis of the Simulated Data

The duration of the simulated signal is 1 s and the number of samples is 25,000 Hz.
It consists of three elements: Gaussian noise N(0, 0.2); non-cyclic impulses uniformly
distributed on the whole time interval with amplitudes generated from the uniform distri-
bution U(0, 8.5); cyclic impulses that are generated with a frequency of 30 Hz with fixed
amplitudes of impulses equal to 0.2. The assumed signal length is good enough to perform
the reliable analysis (it includes 30 cycles of the signal of interest and several noncyclic
impulses) and at the same time not extending the calculation time.

The simulated signal is presented in Figure 3a, and its time–frequency decomposition
using STFT is shown in Figure 3b (spectrogram). The following parameters are used to
perform STFT: Hann window [66] of length 256, number of frequency points (n f f t) equal
to 512, number of overlapping elements (noverlap) set to 217 (b85% · 256c) and the sample
rate ( f s) equal to 25 kHz. As one can see in Figure 3b, cyclic impulses are located in the
frequency band 2–3 kHz (carrier frequency is equal to 2.5 kHz), while non-cyclic impulses
appear in the range of 3–10 kHz (carrier frequency is equal to 6 kHz).
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6
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c
c
 (

m
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(a) (b)
Figure 3. (a) Simulated signal s1 with the amplitude of the non-cyclic impulses set to 8.5. (b) Spectrogram of simulated
signal s1.
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The dependence measures described in Section 3.1 are applied in a further step to
create autocorrelation maps, see Figure 4. The common feature of all maps is a proper
indication of cyclic impulses—more or less precisely. However, the considered measures
of dependence react differently to noncyclic impulses. The Pearson autocorrelation map
takes high values in the frequency range of 3–10 kHz (light blue bandwidth), similar to the
autocovariation map, see (Figure 4b). It is a consequence of the sensitivity of these measures
to impulsive noise—high values in the data distort the results. In the autocodifference map
(Figure 4c) one may see increased values in the frequency range of 3–10 kHz, but only for a
small time lapse (0–0.06 s). On the remaining maps, that is, in the Spearman (Figure 4d),
Kendall (Figure 4e) and Quadrant (Figure 4f) auto-similarity maps, the high-amplitude
noncyclic impulses are not visible and values in the range of 3–10 kHz are similar to the
values for Gaussian noise occurring in 0–2 kHz and 10–12 kHz.

To deeper analyze the behavior of each tested measure of dependence, the attention
is focused on four parts of the frequency bands, see Figure 5: A: 0–2 kHz, B: 2–3 kHz,
C: 3–10 kHz, and D: 10–12 kHz. For these highlighted frequency bands i.e, A, B, C, D
for each dependence map, see Figure 4, the medians for each time lag are calculated, see
Figure 6. The results for the Pearson autocorrelation (Figure 6a) and the autocovariation
(Figure 6b) are very similar, that is, the median trajectories for the considered frequency
bands of part B (2–3 kHz) associated with the cyclic impulses (see Figure 6 red lines)
show cyclic peaks with values between 0.4 and 0.6. In the band associated with impulsive
noise (part C (3–10 kHz)) these measures behave similarly (see Figure 6 green line), that
is, they react to non-cyclic impulses (around 0.1, 0.2, 0.25 and 0.3 s) and have values in
the range of 0.2–0.35. Considering the autocodifference map, see Figure 6c, it is worth
mentioning that it indicates cyclic and noncyclic impulses, but only for small-time lags
(0–0.2 s). For the other lags, the median values for each part are approximately constant
and their value is 0.2. The Spearman (Figure 6d), Kendall (Figure 6e) and Quadrant
(Figure 6f) autocorrelation measures do not react to impulsive noise in the frequency
band of part C (3–10 kHz); therefore, the trajectories of medians for this frequency band
(Figure 6, green line) are similar to trajectories of medians corresponding to Gaussian noise
at 0–2 kHz (part A) and 10–12 kHz (part D) (see Figure 6 blue line and magenta line).
The mentioned measures of dependence use ranks (Spearman, Kendall correlation) or
the median (Quadrant correlation), which makes them more resistant to impulse noise
and makes them superior to other considered measures of dependence. However, each of
these three measures (especially Kendall and Quadrant autocorrelations) has peaks with
smaller values than Pearson autocorrelation and autocovariation for the frequency band
corresponding to part B.

As mentioned, the considered measures of dependence have different sensitivity to
outliers. This property can also be seen in the graphs of the main statistics, that is, boxplots,
of the frequency bands of part C associated with noncyclic impulses, see Figure 7. Boxplot
is the graphical representation of the distribution of a statistical feature, which in this case
is created from the trajectories associated with heavy-tailed noise (green line in Figure 6a–f).
The largest IQRs are for Pearson autocorrelation and autocovariation—as they respond to
impulsive noise. The other measures have a much lower IQR. The smallest IQR has the
autocodifference, but as mentioned, its values decrease rapidly (also cyclic peaks).
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Auto-similarity maps for signal s1 for different measures of dependence, i.e., (a) Pearson autocorrelation, (b) auto-
covariation, (c) autocodifference, (d) Spearman autocorrelation, (e) Kendall autocorrelation, (f) Quadrant autocorrelation.
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Figure 5. Pearson autocorrelation maps with the highlighted 4 distinguishable parts of the frequency.
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Figure 6. Comparison of medians for different frequency bands: 0–2 kHZ (Gaussian white noise), 2–3 kHz (informative
frequency band), 3–8.5 kHz (heavy-tailed noise), and 8.5–12 kHz (Gaussian white noise), in the case of different measures of
dependence: (a) Pearson autocorrelation, (b) autocovariation, (c) autocodifference, (d) Spearman autocorrelation, (e) Kendall
autocorrelation, (f) Quadrant autocorrelation.
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Figure 7. Boxplots of medians associated with heavy-tailed noise (part C of the frequency bands)
of the considered auto-dependence maps based on the following measure of dependence: Pearson,
Spearman, Kendall autocorrelation, autocovariation and autocodifference for the simulated signal s1.

Each of the considered measures of dependence indicates cyclic impulses, more or less
precisely, see Figure 8. To compare the results not only visually but also numerically, the
IMPI is calculated (according to the Equation (15)) for median trajectories of the considered
frequency bands of part B (2–3 kHz). For the considered measures, the results are as follows
(see Figure 8): Pearson autocorrelation—0.10951, Spearman autocorrelation—0.091236,
autocovariation—0.09085, Kendall autocorrelation—0.084551, autocodifference—0.073151,
and Quadrant autocorrelation—0.070546. These results mean that the best selection of cyclic
impulses is made by Pearson autocorrelation. Spearman also indicates cyclic impulses with
a similar precision. The autocodifference and Quadrant autocorrelation have the lowest
IMPI values.

However, taking into account the responses of the measures to the heavy-tailed noise
(see Figure 9) the most robust measure of dependence is the Kendall autocorrelation (takes
the smallest value of autocorrelation in the area of impulsive disturbance—the same as for
the area of Gaussian noise, and its values are regular on the whole time interval). Right
behind the Kendall autocorrelation, there are the Spearman and Quadrant autocorrelations—
they take higher values of autocorrelation in the area of impulsive disturbance, but their
values are also regular on the whole time interval.

The worst results for the heavy-tailed noise have autocovariation, Pearson autocorre-
lation, and autocodifference.



Electronics 2021, 10, 1863 16 of 27

0.1 0.2 0.3

Time lapse [s]

(a)

0

0.2

0.4

0.6

V
a

lu
e

 o
f 

IM
P

I Pearson - 0.10951

0.1 0.2 0.3

Time lapse [s]

(d)

0

0.2

0.4

0.6

V
a

lu
e

 o
f 

IM
P

I Spearman - 0.091236

0.1 0.2 0.3

Time lapse [s]

(e)

0

0.2

0.4

0.6

V
a

lu
e

 o
f 

IM
P

I Kendall - 0.084551

0.1 0.2 0.3

Time lapse [s]

(b)

0

0.2

0.4

0.6

V
a

lu
e

 o
f 

IM
P

I Covariation - 0.09085

0.1 0.2 0.3

Time lapse [s]

(f)

0

0.2

0.4

0.6

V
a

lu
e

 o
f 

IM
P

I Quadrant - 0.070546

0.1 0.2 0.3

Time lapse [s]

(c)

0

0.2

0.4

0.6

V
a

lu
e

 o
f 

IM
P

I Codifference - 0.073151

Figure 8. The results of IMPI calculated from auto-similarity maps only for IFB (2.5 kHz), in the case of different measures of
dependence: (a) Pearson autocorrelation, (b) autocovariation, (c) autocodifference, (d) Spearman autocorrelation, (e) Kendall
autocorrelation, (f) Quadrant autocorrelation—simulated signal.
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Figure 9. Medians for the frequency band at 3–8.5 kHz.

Based on the above presented results, one may conclude that the most reasonable
choice between the considered auto-dependency maps is the Spearman and Kendall auto-
dependency maps as those which properly indicate the cyclic component and suppress the
information about the impulsive noise.
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4.2. Monte Carlo Simulations

To validate the results obtained in Section 4.1, Monte Carlo simulations are carried out.
The basic boxplot’s statistics, that is, the median and IQR, are calculated for the median
vectors of the frequency band associated with noncyclic impulses (to obtain the reference
information presented in Figure 7) for a different number of noncyclic impulses and their
amplitudes. Additionally, the quality of the selection of cyclic impulses by each measure is
analyzed by counting the ratio given by the IMP indicator, defined in Equation (15).

As mentioned above, the given statistics are calculated for different values of two
parameters: the number of noncyclic impulses and their amplitudes. The first parameter
belongs to the set [15 : 6 : 45], the second one is taken from the set [3 : 0.5 : 8.5]. For
each case, 100 iterations are performed. To be more precise, the number of noncyclic
impulses equal to 15 means that, in the signal, there are 15 noncyclic impulses in one
second, two times less than the number of cyclic impulses, which is fixed—30 in one second
(30 Hz). Whereas the amplitude of noncyclic impulses equal to 3 denotes that they are
around 15 times larger than the background Gaussian noise generated from the distribution
N(0, 0.2).

Based on the Monte Carlo simulations, one can conclude that the medians are constant
and the change of parameters does not affect them, see Figure 10. The smallest values
are for the Kendall autocorrelation (approximately 0.13), while the largest values are for
autocovariation (approximately 0.26). For other measures, the median values are very
similar and they are between 0.18 and 0.2.

Figure 10. Medians—calculated for part C of auto-dependence maps from Monte Carlo simulation
based on the following measures of dependence: (a) Pearson autocorrelation, (b) autocovariation ,
(c) autocodifference, (d) Spearman autocorrelations, (e) Kendall autocorrelation and (f) Quadrant
autocorrelation.

As for IQR, the results are different depending on the measures of dependence. For
Pearson autocorrelation and autocovariation, IQR increases significantly with an incre-
ment in the number of noncyclic impulses and with an increase in their amplitude, see
Figure 11a,b. This is an intuitive result as these measures are sensitive to impulse noise,
therefore increasing the energy of the noncyclic impulses and their quantity make the result
worse. A similar trend is noticeable for the Spearman autocorrelation, but the increase is
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very weak (a difference of 0.01), see Figure 11d. The IQRs of other measures (autocodiffer-
ence, Kendall, Quadrant autocorrelation measures) become approximately constant (see
Figure 11c,e,f) and do not significantly change values along with changing the number of
noncyclic impulses and changing amplitudes of non-cyclic impulses. Thus, one can say
that they are most resistant to noncyclic impulses.

Figure 11. IQRs—calculated for part C of auto-dependence maps from Monte Carlo simulation
based on the following measure of dependence: (a) Pearson autocorrelation, (b) autocovariation ,
(c) autocodifference, (d) Spearman autocorrelations, (e) Kendall autocorrelation and (f) Quadrant
autocorrelation.

As mentioned, the IMPI (see Equation (15)) is also calculated during Monte Carlo
simulations. The best result is achieved by the Pearson autocorrelation, see Figure 12a.
The IMPI values are between 0.11 and 0.13. Its value slightly decreases with an increasing
number of noncyclic impulses and their amplitude. The IMPI value for autocovariation
follows a similar trend, but its values are in the range of 0.09–0.1 (Figure 12b). The values
of IMPI for other measures of dependence are approximately as follows (considering them
in descending order): Spearman (Figure 12d)—0.095, Kendall (Figure 12e)—0.085, and
Quadrant (Figure 12f)—0.075 autocorrelations, autocodifference (Figure 12c)—0.07.

As can be seen, considering the quality of the indicator (the higher the indicator,
the more unambiguous the diagnostic information) in the band of occurrence of cyclical
impulses, the Pearson autocorrelation is the best measure of dependence. However, if the
influence of noncyclic, high-energy impulses is taken into account, then other measures,
such as Spearman, Kendall, Quadrant autocorrelation and autocodifference, come up much
better than the Pearson autocorrelation.
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Figure 12. IMPI—impulsiveness indicator calculated for tested IFB at 2–3 kHz in the case of different
measures of dependence: (a) Pearson autocorrelation, (b) autocovariation, (c) autocodifference,
(d) Spearman autocorrelation, (e) Kendall autocorrelation, (f) Quadrant autocorrelation.

4.3. Analysis of the Real Vibration Data

In this section, the real vibration signal coming from a copper ore crusher is analyzed.
The Hammer crusher is presented in Figure 13, whereas bearing and sensor location
are marked in red and green, respectively. The signal duration is 10 s and the number
of samples is 250, 000, so the sampling frequency is 25,000 Hz. The vibration signals
were collected using Endevco accelerometers, while a shaft speed was measured with
a BruelKjaer laser probe. The collected data were recorded on the NI DAQ card using
Labview Signal Express Software.

Figure 13. Hammer crusher with bearing and sensor location marked.
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The signal is presented in Figure 14a, and its representation in the time–frequency
domain is shown in Figure 14b, the spectrogram parameters are the same as presented in
Section 4.1. The informative frequency band (cyclic impulses) is located between 3 and
4 kHz, while impulsive noise is in the range of 4–12 kHz.
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Figure 14. (a) Real signal r1, (b) spectrogram of real signal r1.

Using the considered measures of dependence, auto-similarity maps are created, see
Figure 15. As one can see, cyclic impulses are visible on each map. The main difference is the
identification of noncyclic impulses. As for the simulated signal, auto-similarity maps for
the Pearson autocorrelation (Figure 15a) and autocovariation (Figure 15b) show impulsive
noise. The auto-similarity map for the autocodifference (Figure 15c) also indicates these
noncyclic impulses, but only for small time lags. The auto-similarity maps for Spearman,
Kendall, and Quadrant autocorrelations (see Figure 15d–f) are the most homogeneous in
the frequency band of 4–12 kHz than the other maps.

One could distinguish 3 specific bandwidth on the auto-similarity map, which rep-
resents a different source of vibration: Gaussian noise at 0–3 kHz (part A1), signal of the
interest at 3–4 kHz (part B1), and non-Gaussian (impulsive) noise at 4–12 (part C1) kHz.
For all these sets, the medians of the values of auto-similarity map for each time lag are cal-
culated, see Figure 16. The Pearson autocorrelation and autocovariation (see Figure 16a,b)
medians have the highest peaks associated with cyclic impulses bandwidth, but they also
have distorted median values for the bandwidth corresponding to the impulsive noise
(part C1). The other measures indicate much less disturbance in the noncyclic impulses
band (see Figure 16c–f) and the median values are similar to the values for the bandwidth
corresponding to the Gaussian noise. Thus, one could expect that these measures will
be more appropriate for impulsive signals, especially when the carrier frequencies of the
noncyclic and cyclic impulses will overlap.

Regarding the impulsive noise, the difference of the results for each measure is also
noticed in the boxplots, which are applied to the vectors of medians of the frequency
band corresponding to the carrier frequency of the heavy-tailed noise, see Figure 17. The
largest IQRs are for autocovariation (greater dispersion) and the Pearson autocorrelation.
The Spearman, Kendall, and Quadrant autocorrelations have around twice lower IQR.
However, the autocodifference has the smallest IQR and, as mentioned above, its values
rapidly decrease. The medians for Pearson, Spearman, and Quadrant autocorrelations
and autocodifference are close to each other and they are around 0.18. The median for the
Kendall autocorrelation is approximately 0.13 and for the autocovariation it is around 0.25.
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Auto-similarity maps for real vibration signal for different measures of dependence, i.e., (a) Pearson au-
tocorrelation, (b) autocovariation, (c) autocodifference, (d) Spearman autocorrelation, (e) Kendall autocorrelation and
(f) Quadrant autocorrelation.
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Figure 16. Comparison of medians for different frequency bands: 0–3 kHZ (Gaussian noise), 3–4 kHz (informative frequency
band), 4–12 kHz (heavy-tailed noise), in the case of different measures of dependence: (a) Pearson autocorrelation, (b) auto-
covariation, (c) autocodifference, (d) Spearman autocorrelation, (e) Kendall autocorrelation, (f) Quadrant autocorrelation.
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Figure 17. Boxplots of medians associated with heavy-tailed noise (part C of the frequency bands)
of the considered auto-similarity maps based on the following measure of dependence: Pearson,
Spearman, Kendal autocorrelations, autocovariation and autocodifference for the real signal r1.

Figure 18 presents the medians of the values of the auto-similarity map for each time
lag calculated from the bandwidth corresponding to the informative frequency band with
peaks marked in red. Based on that, the IMPI defined in Equation (15) for each measure
of dependence is calculated. They are as follows: Pearson autocorrelation—0.085806,
autocovariation—0.083281, autocodifference—0.082679, Spearman autocorrelation—0.075579,
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Kendall autocorrelation—0.074124 and Quadrant autocorrelation—0.070759. The best
selection of cyclic impulses is made by the first three listed measures of dependence that
have the highest IMPI values. Cyclic impulses are also indicated by other measures but
with slightly less precision.
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Figure 18. The results of IMPI calculated from auto-similarity maps only for IFB (2.5 kHz), in the case of different measures of
dependence: (a) Pearson autocorrelation, (b) autocovariation, (c) autocodifference, (d) Spearman autocorrelation, (e) Kendall
autocorrelation, (f) Quadrant autocorrelation—real vibration signal.

However, taking into account the responses of the measures to the heavy-tailed
noise (see Figure 19) the most robust measures of dependence are Kendall, Quadrant
and Spearman autocorrelations (take the smallest values of autocorrelation in the area of
impulsive disturbances and its values are regular on the whole time interval).
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Figure 19. Medians for the frequency band at 4–12 kHz.

5. Conclusions

In this paper, the efficiency of the presented measures of dependence, that is, Pearson,
Spearman, Kendall, Quadrant autocorrelation, autocoddiference, and autocovariation, in
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the presence of non-Gaussian noise has been investigated. The comparison has been made
to realize that there are many dependence measures and, depending on the needs, one can
choose the appropriate one. In the literature, one can find the application of the—considered
in this paper—Pearson, Kendall, and Spearman correlations as well as autocovariation
and autocodifference measures in the bearing diagnosis procedures but the influence of
amplitude and number of impulses on the results has not been investigated. What is more,
the proposed Quadrant autocorrelation is novel in this field. While Spearman and Kendall
correlation were commonly used as the cross-dependency measures, their reformulation
into auto measures is innovative. The general procedure for auto-similarity map calculation
was presented in-depth. This universal procedure allows to apply different—not considered
in the paper—measures of dependence and create auto-similarity maps based on a measure
adapted to the needs of the problem under consideration.

This paper has focused on comparing the results of different autocorrelation measures
used in the auto-similarity map calculation. The auto-similarity map enables to observe
cyclic behavior on separated frequency bands depending on the measure’s responsiveness
to the occurring noncyclic impulses. A detailed analysis of the performance of the auto-
similarity map and the criteria for their comparison was proposed.

The performance of the maps was checked to deal with three different areas of behavior
observed in the time–frequency representation of the heavy-tailed data with a local fault.
The analysis was supported by the Monte Carlo simulation—100 iterations of the signal
with different signal properties—and a real vibration signal from a heavy duty machine.
The results of each of the auto-similarity maps have been checked in the area of Gaussian
noise, Gaussian noise with cyclic impulses of local damage, and in the case of heavy-
tailed noise. In the case of only Gaussian noise, each of the maps work properly and take
small values without any artificial increments. However, if the noise is heavy-tailed, false
increases in the value of measures appear, especially in the case of Pearson autocorrelation
as well as in autocovariation and autocodifference. The most resistant to heavy-tailed noise
turned out to be the Kendall, Spearman, and Quadrant autocorrelations. In the case of the
signal with only Gaussian noise and cyclic impulses of local fault without any high-energy
disturbances, the Pearson autocorrelation, the most efficient, detects damage (takes the
highest value of the IMP indicator).

The proposed dependence maps based on different measures of auto-dependence
show a great improvement in the visibility of IFB against the noisy background. They can
be an intermediate step for many known local fault detection methods. The final automatic
procedure of the selection of the informative frequency band is not considered in this paper.

It is worth emphasizing that the considered simulation signals and real vibration
signals contain cyclic and noncyclic impulses which do not overlap each other. This makes
the analysis possible. Otherwise, if the carrier frequency of local fault and noncyclic
impulses will be the same or largely overlap, then the comparison of considered measures
of dependence for different sources of noise may be impossible. It is this case that we pay
attention to, and we aim to highlight the superiority of the resistance of the highlighted
measures of dependence for non-cyclic impulses—which will be a crucial property in cases
with overlapped carrier frequencies of cyclic/noncyclic impulses.
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5. Hebda-Sobkowicz, J.; Gola, S.; Zimroz, R.; Wyłomańska, A. Identification and statistical analysis of impulse-like patterns of

carbon monoxide variation in deep underground mines associated with the blasting procedure. Sensors 2019, 19, 2757. [CrossRef]
[PubMed]
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