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Abstract: In this paper, we theoretically analyze and design a dual-narrowband terahertz (THz)
absorber based on a hole array drilled into a metallic slab. A very high-quality factor (Q) is achieved
at both of the resonance frequencies. A circuit model-based approach is developed for the analysis
and design of the proposed absorber. The absorption peaks occur at 2.46 and 3.75 THz frequencies
with 98% and 96% absorptions at normal incidence, respectively. The achieved quality factors are 149
and 144, at 50% absorbance for the two absorption bands, respectively.

Keywords: absorber; narrow band; circuit model

1. Introduction

For the first time, high-transmission peaks through arrays of subwavelength apertures
have been investigated using near-field scanning optical microscopy (NSOM) by Betzig
et al. [1], without presenting an analytical explanation on the operation principle. Then,
both theoretical and experimental results for understanding the physics involved in the
Extraordinary Optical Transmission (EOT) in nano-holes arrays have been presented
by Ebbesen et al. [2]. Extraordinary Optical Transmission (EOT) appears as a strong
narrowband peak in the transmission spectrum and has been applied in different optical
devices [3–24]. Surface Plasmon Polaritons (SPPs) were considered as the main reason
for this phenomenon [9]. Metals show negative permittivity at high frequencies, and
therefore can support SPs [10]. However, the observation of this phenomenon at lower
frequencies undermines this hypothesis [11]. The localization of a THz surface wave is
different from the SPPs in the visible region. At THz frequencies, the majority of metals
show almost perfect conductor behavior; thus, the THz surface wave is less localized
close to the metal surface. This resonance-based transmission phenomenon in the holes
array is due to the resonance coupling between the incident electromagnetic wave and
the surface waves on the metal surface through the periodic structure [5]. Based on
circuit models, this was shown to be the result of high-order diffracted modes related to
the inductive or capacitive admittance at the interface between the holes array and the
surrounding homogeneous medium. These modes are evanescent in the subwavelength
regime and store electromagnetic energy near the interface. Capacitive admittance is due to
the electrical energy of TM-polarized diffracted modes, whereas the inductive admittance
is due to the magnetic energy stored in the TE diffracted modes [14–23].

A conventional approach to control the reflections of electromagnetic waves is the
Salisbury screen, which includes a lossy screen placed a quarter wavelength above a con-
ductor surface. These screens have been applied in the design of the absorbers [24–27].
Recently, the absorbers based on metamaterial attracted the interest of researchers. The
majority of the metamaterial absorbers in the literature are made with three layers as a
combination of patterned layers, which act as electric resonators, a dielectric substrate,
and a metallic reflector at the bottom side. Electromagnetic perfect absorbers have been
investigated for various applications including wireless communications, thermal emitters,
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sensors, photodetectors and photovoltaic structures [28–33]. Based on the targeted applica-
tions, narrowband or broadband absorbers were investigated. Designing a narrowband
absorber with a high-quality factor has always been a challenge [28–41]. Narrowband
absorbers can be used to implement microbolometers for terahertz imaging systems [28].
In addition, high-sensitivity narrowband resonance can be used for refractive index sensing
applications [29–33].

Single narrow band absorbers have been reported in [32–34]. The absorber in [32] con-
sists of a GaAs cross-shaped patch deposited on copper and dielectric substrate terminated
by copper, which provides a single absorption band at 2.44 THz with a quality factor of 637.
The structure presented in [33] consisting of a 1D periodical cavity array in the gold plate
and slots on the top of the cavities. A strong resonance occurs at 1.593 THz with nearly
perfect absorption and a quality factor of 1028. A narrowband absorber consisting of two
metallic layers as an array of patches and arrays of meshes separated by a dielectric spacer
placed on a grounded substrate has been realized in [34]. The perfect absorption band
occurs at 0.5 THz with a quality factor of 32. In [35], a dual-band absorber composed of a
metallic cross-shaped structure deposited on the grounded substrate has been investigated.
Two discrete absorption peaks at 1.46 THz and 2.89 THz were implemented with 95.31%
and 92.92% absorption, respectively. The quality factor of the first and second absorption
bands are 7 and 48.2, respectively.

Recently, narrow-band absorbers with small dimensions and high-quality factors
based on graphene metamaterials have received great attention [36–39]. The absorber
presented in [36] is made of two stacked graphene disk arrays. The absorption bands
appear at 3 THz and 5 THz with a quality factor of 22 and 41, respectively. In [37], a
layer of graphene disks array has been used to design a dual narrowband absorber at 1.9
and 5 THz frequencies with 16 and 40 quality factors, respectively. However, due to the
challenges associated with tuning the graphene properties and biasing of the graphene
layers, structures based on metallic materials are still prevalent.

The phenomenon of (EOT) through subwavelength holes array perforated inside a
metallic film [40–45] has been crucial for the development of plasmonic devices. Unlike
the apertures inside the zero-thickness screen creating a transmission peak, the apertures
inside the screen with finite thickness lead to two peaks in the transmission spectra because
of the reactive energy stored inside the holes [15]. Therefore, these structures can be
used in applications, where two resonant bands are required, while most of the other
two-dimensional metasurfaces, such as metallic patches over a grounded dielectric slab,
intrinsically create a single resonant band [46–48]. However, a typical disadvantage of
EOT hole arrays compared to other two-dimensional metasurfaces is the relatively large
number of holes necessary to get the resonances with a high peak [43]. In addition, the
stability with respect to the incident angle for transmission spectra of the EOT holes array
is smaller than the metallic patches specifically for the TM polarization [40,43]. Here, we
use the resonance properties of the hole array to realize a very narrow dual-band absorber
at THz frequencies.

In this paper, a very narrowband absorber with dual absorption bands is theoretically
designed and analyzed based on a hole array. The absorption bands occur at 2.46 and
3.75 THz with quality factors of 149 and 144, respectively. An accurate circuit model is
developed to study the resonance behavior of the structure when the holes are drilled into
the perfect electric conducting (PEC) slab. The loss due to the finite conductivity of the
metallic slab can help to achieve near-perfect absorption.

The rest of the paper is organized as follows: Section 2 describes the proposed structure
to realize the very narrow absorption bands. A circuit model-based analytical method is
presented to model the narrowband absorber in this section. Results and discussions are
presented in Section 3. Finally, Section 4 presents the main conclusions.
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2. Design of the Dual-Narrow Band Absorber

The majority of the metamaterial absorbers are made by a combination of patterned
layers, which act as electric resonators and a dielectric substrate that is terminated by a
metallic back reflector. Various multiband absorbers were realized by using resonators
of different sizes and shapes or in multi-layer structures, where the multi-band response
is formed by resonances induced by each individual resonator array. The holes array is
known as EOT structures. According to the circuit model and the mechanism presented
in [23], this structure leads to two resonances. Here, the metallic holes array is employed
on top of a dielectric slab terminated with a back metallic reflector to realize a dual-band
absorber. The loss associated with the dielectric layer and the finite conductivity of metallic
slab at terahertz frequencies produce near-perfect absorption at the resonance frequencies
of the absorber.

2.1. Structure

As shown in Figure 1, the absorber is composed of three layers consisting of a patterned
array of holes drilled into a metallic slab, a dielectric slab of thickness ts, and a metal
reflector. The periodicity in both x- and y-directions is L. The width and depth of holes
are considered as w and tm, respectively. The dielectric spacer is Quartz with a relative
permittivity of 3.8(1 − j0.0015). The metallic layer is made of copper. The absorption
coefficient of the absorber is determined by A(ω) = 1 − R(ω) − T(ω), where T(ω)
and R(ω) represent the frequency-dependent transmission and reflection coefficients,
respectively. In order to inhibit transmission, the metallic ground plane should be much
thicker than the skin depth in the working frequency of the absorber. To achieve perfect
absorption, the reflection coefficient should be near zero, which is realized by the impedance
matching condition.
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Figure 1. (a) Structure of the proposed absorber composed of a hole array drilled into a metallic layer
and a grounded dielectric slab (b) top view of hole arrays.

2.2. The Equivalent Circuit Model

In order to have a better understanding of the structure and its operation principle,
circuit analysis of the proposed absorber is investigated in this section [23,48]. In the
analysis, we suppose that the holes array is drilled into a PEC film. In the circuit-based
analysis, we utilize the circuit model presented in [23], where the holes were perforated into
a semi-infinite conductor. An incident plane wave impinges from the free space into the
holes array. The electromagnetic field in the semi-infinite homogeneous region above the
perforated metallic structure was decomposed in terms of the incident plane wave and all
reflected diffraction orders as a combination of TE and TM modes. The fundamental mode
(TE01) was considered inside the holes. Using the boundary conditions at the interface
between free space and the hole array medium, the zeroth-order reflection coefficients
for the TE and TM waves were driven [23]. There are couplings between the TE and TM
polarizations such that the TM incident wave can generate reflected TE waves and vice
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versa. Thus, in order to introduce a simple circuit model, the focus of our analysis is
only the normal incidence on the structure, where the structure is polarization-insensitive.
Finally, with limiting the analysis to the case, where only the TM normal incident wave is
impinging the structure, the zeroth-order reflected wave coefficient is calculated as:

s11 =
Y0 − (Yh + Y1C + Y1L)

Y0 + (Yh + Y1C + Y1L)
, (1)

This is equivalent to the reflection coefficient at the interface between two transmission
lines with characteristic admittances of Y0 and Yh combined with a surface admittance
as two shunt admittances (YC, and YL) at the interface between the two transmission
lines. The inductive or capacitive admittance at the interface between the holes array
and the surrounding homogeneous medium results from the high-order diffracted modes,
which are evanescent in the subwavelength regime, and store electric and magnetic energy
near the interface. Capacitive admittance is due to the electrical energy of TM-polarized
diffracted modes, whereas inductive admittance results from the magnetic energy stored in
TE diffracted modes. Supposing that the holes array has a finite thickness, the transmission-
line model shown in Figure 2 can be used for modeling. In Figure 2, the surface shunt
admittances are obtained as:

YiC = ∑
(m,n)−(0,0)

k2
xm

k2
xm+k2

yn
ξTM

i,mn
A2

mn
A2

00
,

YiL = ∑
(m,n)−(0,0)

k2
yn

k2
xm+k2

yn
ξTE

i,mn
A2

mn
A2

00
,

(2)

where

ξTE
i,mn =

ki,zmn

ωµ0
, ξTM

i,mn =
ωε0εj

ki,zmn
, (3)

are the partial wave admittances in free space and substrate homogeneous regions for the
TE and TM polarizations, respectively with i =1,2.

kxm = kx +
2mπ

L , kyn = ky +
2nπ

L ,

ki,zmn =
√

k2
0εi − k2

xm − k2
yn,

(4)

where ε1 = 1 and ε2 = 3.8(1 −j0.0015) are the relative permittivities of the free space and
the quartz (substrate slab). For the normal incident, kx = ky = 0.
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In subwavelength regime, since the period of the structure is assumed to be much
smaller than the incident wavelength, only the first diffraction order propagates, while the
higher orders are evanescent, so that kzmn is imaginary for these orders. The quantity

Amn =
1

w2

∫ w/2

−w/2

∫ w/2

−w/2
cos
(πy

w

)
ejkxmx+jknyydxdy, (5)
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is the overlap integral between the diffraction order specified by m and n according to (1),
and the dominant mode inside the holes.

In the equivalent circuit model (Figure 2), βs = k0
√
ε2 and Ys =

√
ε2/η0 are the

propagation constant and the admittance of transmission line corresponding to the sub-
strate layer, respectively, where η0 = 120π is the free-space impedance and k0 = ω/c (c
is the speed of light in vacuum) is the free space wave number. A sufficiently thick layer
of metal is required for the bottom ground plane such that a perfect electric conductor
(PEC) approximation is true. Therefore, the metallic back reflector can be approximately
considered as a short circuit. The propagation constant and characteristic admittance of the
transmission line corresponding to holes array can be calculated as:

Yh = 1
2A2

00

L2

w2 ξTE
h ,

βh =
√

k2
0 − π2/w2,

(6)

where βh and ξTE
h = βh/ωµ0 are the propagation constant and admittance of the fun-

damental mode (TE01) inside the holes, respectively. A00 can be calculated by replacing
m = 0, n = 0 in (5).

The input admittance of the proposed structure is obtained as:

Yin = Y1L + Y1C +
(

Yh
Y2+jYh tan(βhtm)
Yh+jY2 tan(βhtm)

)
,

Y2 = Y2L + Y2C − jYs cot(βsts).
(7)

According to the discussions and explanations presented in [23], for the hole arrays
with very thin depth, the resonance frequency can be estimated by neglecting the effect
of the intermediate transmission line equivalent to the holes array. The resonance occurs,
where the imaginary part of the surface admittance modeled as shunt admittances in the
circuit model are zero. In the case of holes with finite depth, the inductive effect of the
intermediate transmission line equivalent to the hole must be considered, which results in
two resonances [23].

3. Discussions and Results

In this section, we design the parameters of the structure to realize a dual-narrowband
absorber. In order to achieve a narrowband absorber, the structure parameters are selected
as: L = 40 µm, w = 20 µm, ts = 30 µm and tm = 2 µm. The metallic films are modeled
with a Drude function, which models them as a complex permittivity obtained from the
Drude model calculated by:

εm(ω) = ε∞ε0 −
ε0ω

2
p

ω2 + jωγ
(8)

where ε∞ is the permittivity at infinite frequency, ω is angular frequency, ωp is plasma
frequency of the free electron gas, and γ is characteristic collision frequency. For copper, the
Drude model is developed using ε∞ = 4.6, ωp = 1.12 × 1016 rad/s,
γ = 1.38× 1013 rad/s [49]. The dielectric spacer is Quartz with a relative permittivity of
3.8(1 − j0.0015).

High-Frequency Structure Simulator (HFSS) software-based finite element method
(FEM) solver is used to simulate the absorber. The unit cell is surrounded by a periodic
boundary condition (Master and Slave boundary conditions) along x- and y-directions, and
the Floquet port at the z-direction. Tetrahedral mesh has been considered for full-wave
simulations. The initial mesh is generated by default. HFSS then uses auto adaptive
meshing to generate the final mesh. In each pass, HFSS selects smaller meshes to achieve
convergence. Iterative algorithm solves fields and refines mesh until user-defined conver-
gence threshold value is reached. The maximum number of passes is selected to be 10.
The maximum number of passes is the maximum number of mesh refinement cycles. This
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value is a stopping criterion for the adaptive solution. At the first step, we compare the
result obtained from the full-wave simulations to the ones obtained from the circuit model
as plotted in Figure 3. In the circuit model, the holes are supposed to be drilled out of the
PEC slab. As seen, two absorption bands can be achieved using this structure. The results
are in good agreement. The loss due to the finite conductivity of the metallic layer can
enhance the absorption values, especially at the second band. Figure 4a shows the results
after using copper as a top and bottom metallic layer.
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Figure 4a shows that two absorption bands with over 96% absorption can be identified
at 2.46 THz and 3.75 THz after using copper as the metallization layer. The resonance bands
are obtained due to the resonant coupling of the incident electromagnetic wave with the
surface waves excited on the metallic surface through the periodic structure. In addition,
the loss contribution from the dielectric spacer in the proposed absorber is studied as
shown in Figure 4b. As illustrated, there is no obvious difference in lower frequency region
by having a lossy or loss-free dielectric spacer. However, in the higher frequency region,
the absorption peak of the structure with lossy dielectric has slightly higher absorption
level compared with the one with loss-free dielectric.



Electronics 2021, 10, 1860 7 of 12

Random surface roughness and surface distortions occur inevitably because of various
material processing and fabrication techniques which might affect the absorption peak
[50,51]. Based on our previous experiences [34], these factors would not have a significant
effect on the performance if an accurate fabrication process is used. The normalized input
impedance for the proposed structure is plotted in Figure 5. As observed, there are two
resonance frequencies, where the imaginary part of the normalized impedance is near zero
and its real part is close to 1. Therefore, the impedance matching condition leading to high
absorption is achieved at two bands.
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Figure 6 shows the distribution of the electric and magnetic fields at the first and
second bands for a TM incident wave. Based on Figure 6a,b, there is a strong concentration
of electric field in the right and left edge areas of holes implementing the capacitive
nature of the surface admittance. Moreover, according to Figure 6c,d, there is a dense
distribution of the magnetic field in the top and bottom edge areas of the holes, which
verifies the existence of inductive properties at the interface. Now, we investigate the effect
of geometrical parameters on absorption spectra.

Figure 7a,b show the absorption spectra for various widths of holes and thickness
of dielectric substrate, respectively. As shown in Figure 7a, increasing the width of holes
reduces the value of the absorption and shifts the resonance frequencies downwards. In
addition, by changing the thickness of the dielectric substrate, the absorption bands can be
tuned to different frequencies as plotted in Figure 7b, where there is a significant shift in
the first resonance, while the shift of the second resonance is negligible.

In the following, the dependence of the proposed structure to the incidence angle is
investigated. As illustrated in Figure 8a, the absorption bands with absorption above 90%
can be observed while the incident angle up to 30 degrees for the TE polarization. Small
shifts can be absorbed at both the resonant frequencies via incident angle changes for the
TE polarization. Therefore, the stability with respect to TE polarization up to 30◦ can be
observed similar to the previous experimental works for aperture arrays [40]. In addition,
more than 90% absorption is achieved at the first resonant band for various incident angles
in TM polarization. However, other resonant bands are observed for TM polarization at
higher incidence angles. The excitation of higher order modes for TM polarization by
increasing incident angle has been experimentally reported in EOT structures too [45].
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Table 1. Comparison of the proposed narrowband absorber with other reported THz
narrowband absorbers.

Ref. Central Frequency
(THz)

Quality
Factor Structure

[36] 3 THz
5 THz

22
41

Two stacked
graphene layers of

disks array

[37] 1.9 THz
5 THz

16
40

One layer of
graphene disks array

[35] 1.46 THz
2.89 THz

7
48.2

Array of metallic
cross structures

This work 2.4 THz
3.7 THz

149
144 Array of holes
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A comparison of the proposed narrow band absorber with some of the recently
reported narrowband absorbers at THz frequencies is summarized in Table 1. As seen in
the table, the proposed absorber results in the most impressive quality factor in comparison
with the rest of the designs [35–37]. The quality factor (Q) is defined as Q = f 0/FWHM
[32–34], where FWHM is the full width at half maximum and f 0 is the central frequency
of each band. Furthermore, comparison between the proposed dual-band absorber to the
structure presented in [35], which is based on metallic patterned layers shows that the
structure presented in this paper has a smaller unit cell size. For the structure proposed
in [35], the size of the unit cell and the thickness are 0.86λ× 0.86λ and 0.1λ, respectively.
The unit cell size and the thickness of the presented design are 0.5λ × 0.5λ and 0.37λ,
respectively. Although the structures presented in [36,37] have smaller unit cell sizes, these
structures are based on graphene layers and the fabrication of graphenelayers, and their
bias is very challenging.

Effect of Gaussian Beam

Here we study the influence of Gaussian distribution of the terahertz incident beam.
Although lenses and mirrors are used in majority of the terahertz measurement setups
to generate collimated beams, in many cases, there is some residual divergence that is
not negligible in real measurements [40–43]. In fact, Gaussian beams can be modeled
by an infinite number of plane waves with different angular wave vectors. Thus, it is
expected that for small sizes of Gaussian beams, the absorption response diverges from
response under normally incident plane wave. This happens since even on a normally
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incident Gaussian beam, a significant part of the beam obliquely impinges on the absorber
surface [43]. In order to study this effect, we follow the procedure explained in [43]. A unit
cell of absorber is simulated under plane-wave excitation (the absorber is infinite along x
and y), where the incidence angle is swept within 0–5◦ for taking into account the obliquely
incident portion of the Gaussian beam. The results are presented in Figure 9 for both of the
TE and TM polarizations. Based on the results in Figure 9, it is expected that a frequency
splitting happens for the second absorption band in the TM polarization with a decrease in
the absorption peak.
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Based on the findings in [43–45], the leaky wave would be excited on the surface of
the metallic hole array, especially if the excitation is not a plane wave. This leaky surface
wave travels a high number of unit cells before its power becomes negligible. In fact,
the minimum number of unit cells required to achieve optimum performance (similar to
an infinite array) depends on the spot area of the excitation electromagnetic beam (πv0

2,
v0 is the beam waist). Investigations in [43] on the hole arrays proved that an array
with at least 10 times larger area than the beam spot offers maximum transmission at the
resonance frequency.

4. Conclusions

In this paper, we investigated a dual-narrowband absorber based on the holes ar-
ray drilled into a metallic slab deposited on a grounded dielectric spacer. We used an
equivalent circuit model to analyze the structure and verified the results using a circuit
model analysis. Based on the equivalent circuit model, the resonance modes are due to the
shunt inductive and capacitive admittances at the interface between the hole array and
the surrounding homogeneous medium associated with high-order diffracted modes, and
the inductive effect of the intermediate transmission corresponding to the fundamental
mode (TE01) inside the holes. The diffracted modes are evanescent in the subwavelength
regime, and store electric and magnetic energy near the interface corresponding to the
TM and TE-polarized diffracted modes, respectively. The proposed dual narrowband
absorber offers higher quality factor absorption in comparison with the state-of-art dual
narrowband absorbers.
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