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Abstract: Aging increases the internal resistance of a battery and reduces its capacity; therefore,
energy storage systems (ESSs) require a battery management system (BMS) algorithm that can
manage the state of the battery. This paper proposes a battery efficiency calculation formula to
manage the battery state. The proposed battery efficiency calculation formula uses the charging time,
charging current, and battery capacity. An algorithm that can accurately determine the battery state
is proposed by applying the proposed state of charge (SoC) and state of health (SoH) calculations.
To reduce the initial error of the Coulomb counting method (CCM), the SoC can be calculated
accurately by applying the battery efficiency to the open circuit voltage (OCV). During the charging
and discharging process, the internal resistance of a battery increase and the constant current (CC)
charging time decrease. The SoH can be predicted from the CC charging time of the battery and
the battery efficiency, as proposed in this paper. Furthermore, a safe system is implemented during
charging and discharging by applying a fault diagnosis algorithm to reduce the battery efficiency.
The validity of the proposed BMS algorithm is demonstrated by applying it in a 3-kW ESS.

Keywords: energy storage system (ESS); battery management system (BMS); battery efficiency; state
of charge (SoC); state of health (SoH)

1. Introduction

Energy storage systems (ESSs) store electricity when surplus electricity is generated
or electricity rates are low and supply the stored electricity to the unit when electricity is in
high demand or prices are high; therefore, for the efficient operation of power facilities, the
development of an energy management system (EMS) algorithm is imperative.

Battery characteristics [1–3] and the sizing of ESSs have been extensively investi-
gated [4–6] because the battery accounts for most of the budget when designing ESSs;
therefore, battery selection and management are important, as the aging problems caused
by inappropriate battery management costs account for a large part of the replacement
budget.

Many ESSs use lithium-ion batteries, since they offer a high energy density and high
efficiency [7,8]; however, it is crucial to identify the charging state of batteries because
there is a risk of fire during charge-discharge cycles and because there is a need to predict
the state of health (SoH) and state of charge (SoC) for battery state management [9]. The
ESS consists of cells in series-parallel [10,11] with a large capacity. To solve the safety
problems related to fires and explosions [12], a system that manages the battery status is
required [13].

The purpose of a battery management system (BMS) is to manage the battery [14,15].
To improve the reliability and safety of the battery [16,17], many BMS functions are being
developed [18]. The functions of BMS can be classified as real-time monitoring, calculation
and prediction, protection, and optimization. The battery voltage, current, temperature, SoC,
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SoH, and other factors can be confirmed via monitoring [19–21]. In addition, the SoC, SoH,
and internal impedance can be calculated and predicted [19,22–25]. The protection process
limits overcurrent, overvoltage, and overheating and performs fault diagnosis [26–29]. The
optimization process maintains the optimal state of charge of a battery by considering the
amount of charge between cells [30–32]. As the cycle of a battery increases, the battery ages
and its state changes [33]; therefore, to manage a battery, it is necessary to improve the
performance of BMSs. The performance of a BMS varies according to the estimation accuracy
of the SoC and SoH, indicators of the battery state [10,34,35].

Charge-discharge cycles, temperature, overcharge and overdischarge, and increased
internal resistance cause batteries to age, which reduces their capacity. The calculation of
battery efficiency can be performed based on the current and SoC [36], via aging analy-
sis based on charge-discharge capacities [37], or via charging-discharging power differ-
ences [38,39]; however, it is difficult to accurately estimate the battery state using this
approach, as it does not consider the internal resistance changes arising from the aging
phenomenon.

Since the internal resistance increases along with the aging phenomenon of the battery,
it should be estimated during the operation, therefore, a battery efficiency estimation
method is proposed in this paper. The efficiency of the battery is obtained based on the
charging and discharging power losses. Since the internal resistance varies according to
the battery efficiency, the battery states can be identified using this variation of internal
resistance.

A battery efficiency calculation formula is used to predict the SoC and SoH of the
battery. The conventional methods used for estimating battery SoC for BMS performance
improvements include deep neural network-based methods for error rating reduction [40],
extended Kalman filter (EKF)-based methods with the Thevenin model [41], particle swarm
optimization (PSO) [42], and hysteresis voltage of the open circuit voltage (OCV) [43].
Additionally, SoC and internal resistance estimation methods based on an unscented
Kalman filter (UKF) with analysis of model parameters [44] and estimation based on the
adaptive cubature Kalman filter (ACKF) with neural networks are proposed in [45]. In
addition, there are other related studies on SoC estimation, such as equivalent circuit model
(ECM)-based estimation with noise compensation [46], OCV error compensation based on
DNN [47], the open circuit voltage–charge amount (OCV-Q) curve fitting method using a
convolutional neural network (CNN) [48], the event-driven Coulomb counting method
(CCM) algorithm for unbalanced SoCs [49], and CCM based on modified parameters [50];
however, DNN- and KF-based methods require high computational power and an addi-
tional learning process. The OCV and CCM are primarily used to indicate the charging
state of a battery [51,52]; however, because OCV is used when the internal battery state
is stabilized, it is not sufficiently stable for a nonlinear battery [9]. Furthermore, because
another CCM calculates the SoC by accumulating the charge current, the CCM has the
disadvantage of increasing the SoC if an error occurs in the initial current measurement
value [53].

In this paper, an SoC estimation method combining OCV with CCM is proposed to
improve upon the drawbacks of both OCV and CCM. This estimation algorithm does not
require excessive computational power and can improve the estimation accuracy. The
proposed algorithm uses the OCV equation with the internal resistance and efficiency of
the battery. Additionally, the equation can calculate the charge-discharge of the battery by
accurately considering the initial value of the CCM by applying OCV while considering
the state of the battery.

Based on the battery efficiency formula, a formula that predicts the SoH of a battery
based on the charging time required to safely operate the battery is also applied to the BMS
algorithm to improve the reliability.

Research related to SoH estimation to improve BMS performance includes the multi-
layer perceptron (MLP)-based method [54], the self-adaptive weight particle swarm opti-
mization (SWPSO)-based estimation method using a dynamic recurrent neural network
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(DRNN) with the ability to conduct dynamic mapping [55], and the XGBoost-based estima-
tion method [56]. Additionally, a state estimation method combining the battery model
with a data-based method [57] and a voltage–power-curve-based estimation method [58]
has been researched. In [59], a more accurate SoH estimation method was proposed by
considering the charging time of the battery, although it did not consider the internal
resistance variation and showed estimation error; however, as the SoH estimated with-
out considering the internal resistance is incorrect, some researchers have considered it a
constant value [60,61]. Although the SoH is also predicted based on its constant current
(CC) charging time [62–64], the internal resistance and temperature [65] of a battery are
considered when a system is operated for a long time, while the accurate characteristics of
a battery cannot be numerically represented; however, this research used the battery effi-
ciency equation, allowing for a more accurate estimation of the battery state by numerically
defining the capacity reduction and the internal resistance of a battery.

The BMS measures the battery’s initial SoH and stores the value. The BMS stores the
current SoH by comparing the current values with the initial SoH based on the changing
values as the battery is used. According to the battery status, the temperature of the
battery arises and internal resistance increases along with it. Because of the increase in
the internal resistance, the SoH of a battery decreases and it takes less time to charge-
discharge the battery; therefore, the CC time period decreases. Based on this time period
difference among the charge-discharge cycles, the SoH estimation method is proposed in
this paper. The proposed SoH estimation method uses the integral value of the CC time
period difference among the charge-discharge cycles for more accurate SoH estimation. In
this paper, the battery efficiency equation is used to predict the SoH of a battery considering
the decrease in the CC charging time of the SoH due to the increase in the internal resistance
of the battery and the fact that the capacity of a battery decreases when it heats up.

An algorithm for predicting battery-related system safety and accurate SoC and SoH
by determining a battery fault using the battery efficiency equation is proposed.

The literature on the fault diagnosis of batteries shows that the estimated SoH method
is typically used. Many studies on battery fault diagnosis have focused on SoH estimation,
since it is a major part of fault diagnosis. For example, in [66], the fault diagnosis method
is based on the estimated SoH using the surface temperature of the battery, while fault
detection is performed using the SoH estimated based on a multilayer neural network
(MNN) in [67].

In this paper, a novel fault diagnosis algorithm that detects the fault state based on the
SoH and the efficiency of the battery is proposed for more accurate fault detection. With
the proposed method, the battery can be managed more safely because battery faults can
be detected beforehand, since the battery efficiency plummets in the fault state before the
SoH reaches its fault range.

In this study, we implement the SoC calculation combined with the OCV and CCM,
SoH based on the charging time, as well as a fault diagnosis algorithm in a 3 kW ESS.
Furthermore, the validity of the proposed BMS algorithm is investigated.

2. Battery Efficiency for Predicting Battery State

Figure 1 illustrates the factors affecting the performance of a battery.
As the number of charge-discharge cycles increases, a chemical reaction occurs in the

battery, causing aging, which reduces the SoH of the battery. Aging increases the internal
resistance of a battery and decreases its charge-discharge capacity. As the capacity of a
battery decreases, its charge voltage reaches the maximum value.

Identifying the occurrence of aging during the charge-discharge operation of a battery
requires determination of the magnitude by which its capacity decreases by calculating its
internal resistance or efficiency.

Although accurate modeling of a battery is required to understand its state, it is diffi-
cult to perform accurate modeling because of the nonlinear characteristics. Furthermore,
given the various factors for batteries, the system costs increase because the roles of the
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BMS managing the battery vary and the number of computations increases. This paper
proposes a battery efficiency calculation formula that considers the internal resistance,
which significantly affects the performance of a battery, as well as a system that considers
the nonlinear characteristics.

Figure 1. Factors affecting the state of a battery.

Figure 2 shows an ESS system, in which the proposed algorithm was implemented.
The ESS consisted of a battery system and a power conversion system (PCS). The battery
system consisted of a battery and a BMS. The ac-dc of the PCS comprised a two-level
converter that was easy to control with high efficiency, while the dc-dc comprised a full-
bridge converter [68].

Figure 2. Proposed ESS configuration diagram.

Figure 3 illustrates the BMS configuration of the battery system. The BMS received
data regarding the battery voltage, current, and temperature and predicted the SoC and
SoH. Furthermore, the data were transmitted using controller area network (CAN) com-
munication. When any abnormalities occurred in the battery voltage, current, or state,
the charge-discharge state of the battery was cut off to protect it. Furthermore, the BMS
provided a protection function to secure the battery safety when an abnormality in the
battery temperature occurred [69]. By applying the proposed algorithm, the BMS sensed
the battery voltage, current, and temperature; accumulated data; calculated the battery
efficiency; and predicted the SoC and SoH. In addition, battery’s efficiency protected it in
from faults.
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Figure 3. Proposed BMS configuration diagram.

3. ESS Considering Battery Efficiency

Figure 4 illustrates the proposed EMS algorithm and shows a day-ahead EMS algo-
rithm based on the proposed battery management algorithm.

Figure 4. EMS charge-discharge algorithm according to time.

The ESS supported the grid by discharging during the daytime (when there are many
power users) and charging at night. During the charge-discharge process, the proposed
algorithm could sense the battery state through CAN communication using the BMS
algorithm and proceeded with charging. If the SoC of the ESS battery was below 80%, the
battery was charged, while if it was above 80%, charging was terminated. The minimum
and maximum values of the battery SoC could be redefined by the user, and this paper
defines the operational SoC as that defined between 20% and 80%. After charging, if the
power required by the grid increased, the ESS proceeded with discharging. Furthermore,
the ESS used an algorithm that terminated the discharging of the battery when the SoC
dropped below 20%.

The EMS algorithm is an algorithm for the charge-discharge process of a battery, which
ensures high safety when connected with the BMS. The paper did not separately consider
the system fault diagnosis performed by the EMS because the EMS algorithm was proposed
considering the battery state; however, further studies are necessary to investigate the fault
diagnosis and response in EMS, which are critical factors affecting the charge-discharge
process required for the grid.
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3.1. Proposed BMS Algorithm

The ESS, which charges and discharges energy from a battery, is directly affected by
battery performance; thus, a BMS that manages and protects the battery and communicates
with the outside is critical.

One of the problems in nonlinear batteries is that their internal characteristics change
based on the number of charge-discharge cycles; thus, the primary goal of a BMS is to
accurately follow these changes.

This paper proposes a method to improve battery safety and performance based on
the reduction in its efficiency (which occurs during battery use), derive a battery efficiency
equation, and apply it to calculate and predict the SoC and SoH of the battery. Furthermore,
based on the battery efficiency calculation, this paper proposes an algorithm for terminating
the use of the battery and diagnosing faults.

Figure 5 illustrates the proposed BMS algorithm. The proposed BMS algorithm can
sense the battery voltage, current, and temperature and calculate its efficiency. When the
efficiency of a battery is calculated, its charge-discharge current is measured to determine
whether the ESS is in the charge-discharge state. When the ESS is charged or discharged,
the SoC is calculated using the combination of the OCV and CCM.

Figure 5. BMS algorithm that considers the battery efficiency.

When the ESS is not in the charge-discharge state, the SoC of the battery is reset to
increase the accuracy of the initial value of the SoC.

At the end of the charging and discharging operation of the battery, the charging
power Pcharging or discharging power Pdischarging is measured to estimate battery loss and
internal resistance for the next cycle. As a day-ahead EMS was used in this paper, one cycle
represents a day of operation; therefore, the internal resistance of the battery was estimated
based on the difference between the charging and discharging energies for a day.
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After the charge-discharge process, the SoH, to which the battery efficiency was
applied, was calculated and predicted to improve the battery safety and performance.

Battery Efficiency

Battery efficiency can be used as an indicator of the current usage time compared to
the initial time. A battery efficiency equation was proposed to express the relationship
between the capacity and voltage of the battery model. Because the internal resistance of
a battery affects the battery output, the battery’s internal resistance must be accurately
calculated.

The internal resistance of a battery is the key indicator of its state. The internal
resistance of a battery increases with an increase in the heat generated during the charge-
discharge of the battery.

Figure 6 illustrates the current capacity of the ESS with aging.

Figure 6. The current capacity of a battery during aging.

As the battery aged, its internal resistance increased and the current capacity decreased,
which significantly affected the performance of the ESS when the capacity was large.
Furthermore, the use of a battery with reduced performance causes overcharging and
overdischarging, which limits battery safety.

The current battery capacity is the amount of current that a fully charged battery can
discharge for one hour. Compared to a battery in the birth of life (BOL) state, an aging
battery, upon discharge, reaches the terminal voltage limit faster because of its reduced
current capacity.

The efficiency of a battery decreases when it is used. As a battery shows the maximum
efficiency at the initial state, its efficiency can only decrease when it is in operation.

Equation (1) defines the efficiency of a battery. The efficiency of a battery ηbat can be
expressed by subtracting the battery loss ηloss from the initial battery efficiency, 100%.

As the decrease in the efficiency can be expressed as the increase in the internal
resistance, ηloss can be calculated based on the charging and discharging powers, as shown
in Equation (2).

Ibat is the charge-discharge current, R is the battery’s internal resistance, and Vbat is
the battery voltage.

ηbat = 100 − ηloss (1)

ηloss =
I2
bat × R

Vbat × Ibat
(2)

In this case, the charge-discharge current of the battery can be represented by Equa-
tion (3).

During the charge-discharge of a battery, the current can be calculated as the amount
of charge (battery capacity) and the C-rates at which the battery has been charged or
discharged over time. Qbat is the battery capacity, while t is the charge-discharge time of
the battery. Equation (3) uses the electric charge equation.

Equations (2) and (3) give the total loss in battery efficiency, as represented in Equa-
tion (4). Using Equation (4), the battery loss equation, as well as Equation (1), the battery
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efficiency can be calculated. Equation (4) can be used to determine the internal resistance
of a battery. Equation (5) gives the internal resistance of the battery. In this paper, as the
charge-discharge process progressed, the battery efficiency decreased.

Ibat =
Qbat

t
(3)

ηloss =

(
Qbat

t

)
× R

Vbat
(4)

R =
ηloss × Vbat × t

Qbat
(5)

3.2. Improved SoC and SoH Prediction Method

A battery protection system monitors the battery state and prevents it from overcharg-
ing and overdischarging, improving its safety and performance. The performance of a BMS
is evaluated based on how accurately it predicts the SoC and SoH of the battery [34].

CCM is used to track the SoC with the value calculated by integrating the current
during the charge-discharge of the battery to the initial value of the SoC; however, because
the current is accumulated to the initial value of the CCM, errors are accumulated if the
precise initial value is unknown [70,71]. Because errors gradually increase, the paper
propose following the SoC with an improved method combining the OCV and CCM to
improve the initial value.

Equation (6) expresses the voltage calculated using the open circuit voltage formula of
the battery through Equation (5). The battery state can be more accurately predicted using
the internal resistance obtained through Equation (5) and the OCV of the battery.

The final CCM is depicted in Equation (7). The accuracy of the prediction of the
battery state can be improved by applying the internal resistance value derived from the
battery efficiency equation to the conventional CCM. SoC(t) is the SoC at time t, SoC(t−1)
is the initial SoC, Cn is the battery capacity, and Vocv is the battery voltage in the open
state [72,73].

SoC(t − 1) = Vocv +

(
Ibat ×

ηloss × Vbat × t
Qbat

)
(6)

SoC(t) = SoC(t − 1) +
∫ t

0

I(t)
Cn

dt (7)

SoH, which is an indicator of the battery life time, is essential for managing the battery
charge-discharge process. Various models for predicting SoH have been proposed to
improve the battery safety and performance. The standard method predicts the life time of
a battery by analyzing it according to the chemical principle of the battery and through
mathematical or physical modeling [74–76]; however, these methods do not consider the
internal resistance of a battery, which significantly affects its life time.

Figure 7 illustrates the constant current–constant voltage (CC–CV) charging curve of
a battery.

Figure 7. Voltage and SoH of a battery during charging.
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A battery is typically charged through the CC–CV [77]. Whenever the battery is
charged, its CC charging time decreases, while the CV charging time increases. As the bat-
tery charging proceeds, the battery temperature increases and internal resistance increases,
resulting in a decrease in its SoH.

Figure 8 shows the discharge characteristics of a battery.

Figure 8. Voltage and SoH of a battery during discharging.

As in the charging cycle, the time to reach the cut-off voltage is also reduced during
charging because the SoH decreases as the temperature and internal resistance of the
battery increase, as shown in the charging curve.

This paper considered the internal resistance of a battery, which significantly affects
the SoH, to propose a method for predicting the battery SoH based on the charging time
after the charge-discharge process. Although previous studies [62,64] did not accurately
predict the internal resistance value, they numerically derived and applied the internal
resistance value based on the battery efficiency.

To calculate a battery’s SoH, the equation should be rearranged by t using the SoC
derived from Equations (6) and (7) after the SoC charge-discharge process, resulting
in Equation (8). By applying the internal resistance equation derived from the battery
efficiency equation, the charge-discharge time is compared based on the charge-discharge
cycle of the battery. Here, tafter is the time after the charge-discharge process, which can
be used to predict the battery SoH using the battery characteristics by comparing the
values after the charge-discharge process (Equations (8) and (9)). SoHafter is the SoH of
the battery compared to the time after charging and discharging. The SoH of the battery
can be predicted using the charge-discharge time of the battery. Here, tbefore is the battery
charge-discharge time before tafter.

ta f ter =
Cn × (SoC(t)− Vocv − ηloss × Vbat)

Ibat
(8)

SoHa f ter =
ta f ter

tbe f ore
× 100% (9)

3.3. Method Used to Diagnose Battery Fault

Figure 9 illustrates the proposed battery fault diagnosis algorithm.
The fault diagnosis algorithm considers two situations. After the battery information

is sensed through the BMS and the battery efficiency is evaluated regarding whether the
value corresponds to the over range, charging proceeds. If the battery efficiency is not
higher than the over range, the charge-discharge process is performed; however, if the
battery efficiency is higher than the over range and the battery SoH is 40% or less, the
charge-discharge process is terminated.

This over range value changes depending on the battery state, battery type, and other
factors, and this value should be set before the operation. In this paper, the fault state was
set when the efficiency was below 80% and the SoH was below 40%.
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Although the battery’s charge-discharge SoC is used correctly at 0–100% for the ESS,
in this paper, the SoC was charged at 20–80%, the optimal operation region for lithium-ion
batteries from a safety viewpoint. Furthermore, the SoH was subjected to charge-discharge
cycles up to the maximum region of the battery. Charging was terminated based on the
experimental requirements and safety considerations—when the SoH reached 40% or
less—to confirm the disposal of the battery through a signal.

Figure 9. Proposed fault diagnosis algorithm.

The BMS senses the final output values of Equations (1) and (9), then a charge-
discharge termination signal is transmitted through CAN communication if the value is
within the over range. The paper predicted the correct battery state through BMS and
diagnosed the fault using the proposed method during the charge-discharge process to
propose a BMS algorithm for an ESS that uses a large battery capacity.

4. Experiments to Verify the Proposed Algorithm

A 3-kW ESS was implemented to verify the BMS algorithm of the ESS considering the
battery efficiency.

The BMS algorithm proposed in this paper was applied to the ESS and the battery
efficiency was tested during the charge-discharge process by charging several battery
modules.

The internal resistance calculated from the battery efficiency was applied to the SoC.
Then, the OCV, CCM, and proposed algorithm were compared and the SoC was confirmed
in the case of a battery fault. The charge-discharge cycle was performed by converting the
SoC calculated from the internal resistance of the battery into the charging-discharging
time. Furthermore, the termination of the charge-discharge cycle was confirmed through
the connection between the ESS and BMS in the case of a fault. In the additional part of the
algorithm, the total efficiency of the ESS was further confirmed to verify its validity.

Figure 10 illustrates the ESS experiment hardware used in this paper, while Table 1
lists the experiment parameters. The PCS of the ESS consists of a two-level inverter, a full
bridge converter, and a master controller. The output side comprised three lithium-ion
battery modules (1 module: 24 cells × 4.2 V) and a BMS. The experiment was conducted
using an oscilloscope and a laptop computer to confirm the operation.
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Figure 10. ESS hardware configuration for the application of the proposed algorithm.

Table 1. ESS experimental parameters for the application of the proposed algorithm.

Parameter Symbols Values Units

Rated power PESS 3 kW
Input voltage Vac_in 220 Vac

DC link voltage Vdc_link 400 V
Output voltage Vdc_out 96 V
Output Current Idc_out 30 A

Switching frequency facdc 40 kHz
Switching frequency fdcdc 100 kHz

For the battery efficiency experiment, battery efficiency was confirmed by the charge-
discharge of a faulty battery module and a normal battery module.

The profiling of the battery was carried out in four steps. The data were confirmed in
the order of (1) securing the charge-discharge data, (2) deriving an equation through curve
fitting, (3) performing the charge-discharge cycle, and (4) extracting the target data from
the implemented correlation equation.

An experiment battery was proposed to verify the battery efficiency by configuring
the battery with three modules and assigning modules 1 and 2 as the normal batteries and
module 3 as the battery subjected to repeated charge-discharge cycles.

Figure 11 illustrates the efficiency graph of the battery module.
During battery charging, the difference in the final internal resistance values of the

battery was confirmed, as depicted in Figure 11. If a specific range was set during the
charge-discharge cycle for testing, the change in the state of the battery caused by aging
was detected.

The battery efficiency test revealed a significant change in the efficiency of the battery
after investigating the changes in the efficiency of the faulty or abnormal batteries that
occurred during the charge-discharge cycle of the ESS and those of the normal battery. The
difference between the efficiencies of the faulty (aged) and normal batteries was 38.4%.
The results suggest that the battery efficiency of the proposed algorithm could be applied
for predicting the SoC and SoH, which requires improved accuracy, while the change in
the internal resistance (which has the greatest impact on the battery state) could also be
applied to increase the accuracy of the battery state prediction.
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Figure 11. Battery efficiency difference profile graph according to battery power.

Figure 12 and Table 2 illustrate the SoC profile of the battery to which the proposed
battery efficiency equation was applied.

Figure 12. SoC comparison profile graph.

Table 2. SoC profile of the batteries according to the algorithm.

Algorithm 0 s 1080 s 2160 s 3240 s 4320 s 5400 s 6480 s 7560 s 8460 s 9720 s 10,800 s

OCV 20.3% 30.1% 32.1% 31.5% 43.5% 49.1% 54.1% 60.8% 77.3% 72.1% 80%
CCM 20.3% 25.3% 30.1% 35.8% 40.3% 46.3% 57.2% 64.2% 70.8% 78.2% 80%

Proposed 20.2% 25.1% 30.6% 36.1% 40.7% 46.8% 58.2% 65.1% 70.9% 80.3% 80%

All three normal battery modules were discharged up to 20% and charged up to 80%
of the maximum SoC.

By applying the battery efficiency, the OCV, CCM, and proposed SoC algorithm could
be compared.

The SoC profile was confirmed using the proposed algorithm.
To confirm the SoC calculation, the OCV and CCM were compared with the proposed

SoC calculation algorithm. The CCM was charged after accurately determining the initial
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value. The OCV could not accurately determine the SoC during charging. The CCM and
proposed SoC operation seemed to accurately calculate the SoC; however, when using the
actual CCM, the user could not directly and accurately set the initial value. As such, using
the algorithm proposed in this paper, the SoC can be determined more accurately.

Figure 13 illustrates the SoH profile to which the proposed algorithm was applied,
while Table 3 presents the CC termination time based on the battery state.

Figure 13. SoH profile with CC charging time, to which the battery efficiency was applied.

Table 3. SoH table for three battery modules to which the battery efficiency was applied.

Parameter Charging Time
(Before)

Charging Time
(After) ∆SoC

Module 1 10,740 s 10,610 s 0.02%
Module 2 10,760 s 10,700 s 0.01%
Module 3 10,740 s 7430 s 31%

50 cycles were charged and discharged at 0.3 C-rate, and CC charging time was
compared in the 51st cycle.

The battery was charged by applying the internal resistance to which the battery
efficiency was applied. The results demonstrated that the CC charging time of the module
decreased when the battery failed or had other problems.

Equation (10), which compared the SoH profiles obtained using the three methods
investigated, confirmed that the SoH prediction was possible based on the CC termination
time of the battery. The ∆SoH is the amount of change between SoHbefore and SoHafter, while
SoHbefore is the SOH before SoHafter.

∆SoH =

(
1 −

SoHa f ter

SoHbe f ore

)
× 100 (10)

It is difficult to accurately diagnose faulty batteries based on environmental changes,
such as battery aging. Because the characteristics of the battery vary when a cell comprises
modules, the internal resistance and capacity deviation occurs, causing overdischarge; thus,
because the safety and energy efficiency of the battery system is significantly reduced, in
this paper we diagnosed the battery state using two methods, whereby faulty batteries
were diagnosed based on when the (1) battery efficiency and (2) SoH battery efficiency
were reached.

Figure 14a shows the charging voltage and current waveform at the time of a fault
signal, while Figure 14b is the discharge voltage and current waveform at the time of a
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fault signal. Figure 14 illustrates the fault signals when the battery efficiency is reduced
and the SoH is 40% or less. If a fault is detected, the charge–discharge cycle of the battery is
terminated with the general purpose input output (GPIO) signal, which cuts off the battery
MC through the BMS. The main controller then terminates the pulse width modulation
signal, causing the ESS to enter into a stop state.

Figure 14. Waveforms for battery fault diagnosis: (a) charging voltage and charging current waveform; (b) discharging
voltage and discharging current waveform.



Electronics 2021, 10, 1859 15 of 19

Figure 15 illustrates the efficiency waveform of the ESS when the system was imple-
mented by applying the proposed algorithms.

Figure 15. ESS efficiency waveform when the proposed algorithm was implemented.

The efficiency of ESS is caused by the decrease in the difference between the power
consumed by charging and the power generated by discharging; therefore, the operating
cost for using the battery increases. Efficiency was measured when applying the proposed
EMS and BMS algorithms. When the algorithm proposed in this paper was applied, the
maximum efficiency was 97.57%.

This paper proposes a BMS algorithm for an ESS. To apply the BMS algorithm to
the ESS, the experiment was conducted by deriving the internal resistance of the battery
from its efficiency. Moreover, the increase in battery state accuracy was verified through
experiments by applying the battery efficiency to the SoC with the OCV and CCM and the
SoH considering the charging time. Furthermore, increased safety through the diagnosis of
faulty batteries was verified through experiments.

5. Conclusions

In this paper we proposed a BMS algorithm that considers battery efficiency. The
algorithm was applied to an ESS to improve the battery safety and performance. The
algorithm proposed in this paper was divided into three parts.

First, the efficiency of the battery was used to estimate the state of the battery. The in-
ternal resistance of the battery was estimated based on the difference between the charging
and discharging power to obtain the value of the variable internal resistance. The variation
in the internal resistance was confirmed by the experimental results, which showed the
increase in the charging-discharging power difference during the battery’s operation.

Second, the SoC and SoH estimation methods were proposed. For SoC estimation, the
method of combining OCV and CCM with the estimated battery states was proposed to
compensate for both low initial estimation accuracies of CCM and incorrect estimation of
OCV. An SoH estimation algorithm based on the charging time was also proposed. This
proposal was based on the fact that an increase in the temperature of a battery results in an
increase in its internal resistance and a decrease in the CC charging time. This charging time
decrement according to the internal resistance variation was confirmed in the experiment.
Based on the estimated SoH, the battery lifespan estimation method, which observes the
charging-discharging SoH difference for a long period of time, was proposed. Additionally,
the proposed method is more flexible than conventional methods, since it does not require
any additional analysis of different kinds of battery cells for SoH estimation.



Electronics 2021, 10, 1859 16 of 19

Third, this paper proposed a battery fault diagnosis algorithm that aims to improve
battery safety. Using this method, faults are diagnosed through efficiency and SoH, and
this fault diagnosis algorithm was validated through experiments.

In conclusion, accurate SoC and SoH estimations were proposed by applying battery
efficiency to the estimation process. The estimated SoC and SoH were used to improve not
only the performance of BMS but also the battery safety via a fault diagnosis algorithm
with accurate SoH estimation.
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