
electronics

Article

Evolutionary Convolutional Neural Network Optimization
with Cross-Tasks Transfer Strategy

Zhao Wang 1,2 , Di Lu 2 , Huabing Wang 1, Tongfei Liu 2 and Peng Li 2,*

����������
�������

Citation: Wang, Z.; Lu, D.; Wang, H.;

Liu, T.; Li, P. Evolutionary

Convolutional Neural Network

Optimization with Cross-Tasks

Transfer Strategy. Electronics 2021, 10,

1857. https://doi.org/10.3390/

electronics10151857

Academic Editor: Amir Mosavi

Received: 24 June 2021

Accepted: 29 July 2021

Published: 2 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information
System (CEMEE), Luoyang 471003, China; wangzhao@xidian.edu.cn (Z.W.); xueshan@ustc.edu (H.W.)

2 Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of
Education, Xidian University, No. 2 South TaiBai Road, Xi’an 710071, China; Di_Lu@stu.xidian.edu.cn (D.L.);
liutongfei_home@hotmail.com (T.L.)

* Correspondence: li_peng001@163.com; Tel.: +86-137-0919-3246

Abstract: Convolutional neural networks (CNNs) have shown great success in a variety of real-world
applications and the outstanding performance of the state-of-the-art CNNs is primarily driven by the
elaborate architecture. Evolutionary convolutional neural network (ECNN) is a promising approach
to design the optimal CNN architecture automatically. Nevertheless, most of the existing ECNN
methods only focus on improving the performance of the discovered CNN architectures without
considering the relevance between different classification tasks. Transfer learning is a human-like
learning approach and has been introduced to solve complex problems in the domain of evolutionary
algorithms (EAs). In this paper, an effective ECNN optimization method with cross-tasks transfer
strategy (CTS) is proposed to facilitate the evolution process. The proposed method is then evaluated
on benchmark image classification datasets as a case study. The experimental results show that the
proposed method can not only speed up the evolutionary process significantly but also achieve
competitive classification accuracy. To be specific, our proposed method can reach the same accuracy
at least 40 iterations early and an improvement of accuracy for 0.88% and 3.12% on MNIST-FASHION
and CIFAR10 datasets compared with ECNN, respectively.

Keywords: evolutionary algorithm; convolutional neural network; transfer learning; image classifi-
cation

1. Introduction

Machine learning has shown great success in various real-world applications. Among
machine learning approaches, convolutional neural networks (CNNs), which show over-
whelmingly superiority among machine learning approaches, have been widely used
in various real-world applications, such as image processing [1], engineering [2], health
care [3,4], and cognitive science [5], etc. Convolutional neural network commonly consists
of convolution, pooling, and fully-connected layers and are trained on the source dataset
and then applied to the target dataset. As is well-known, the success of CNNs mainly
benefit from the improvement on fundamental CNN architectures, such as increasing
the depth of neural networks, the employment of skip layers, and adding inner network
structures, etc. However, the state-of-the-art CNN architectures with high performance are
manually devised by experienced experts with trial-and-error. As designing efficient CNN
architectures is a challenging process, researchers have developed algorithms to design the
CNN architectures automatically, which aims to enhance the applicability and universality
of CNNs.

Designing the best CNN architecture can be viewed as a neural architecture search
(NAS) process on the given dataset, and the searching parameters include the number
of convolutional layers, the configuration of different layers and the placement of skip
layers, etc. In the domain of machine learning, reinforcement learning (RL) is an early

Electronics 2021, 10, 1857. https://doi.org/10.3390/electronics10151857 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3976-7439
https://orcid.org/0000-0002-1417-9553
https://orcid.org/0000-0003-1394-4724
https://doi.org/10.3390/electronics10151857
https://doi.org/10.3390/electronics10151857
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10151857
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10151857?type=check_update&version=1

Electronics 2021, 10, 1857 2 of 15

method for NAS and is always collocated with recurrent neural network (RNN) to control
the process of hyperparameter tuning [6]. In addition to reinforcement learning, Bayesian
optimization [7] has also been widely used, which achieves global optimization by main-
taining black-box functions that do not assume any specific forms. Some other machine
learning approaches including grid search, random search and gradient search are explored
in [8–10]. Nonetheless, with these methods remains the problem of taking up too much
searching space, thus requiring excessive GPU memory.

Evolutionary algorithms (EAs) are optimization approaches which seek the opti-
mal solution by simulating the natural evolution process inspired by Darwin’s theory
of evolution [11]. Evolutionary algorithm begins with generating individuals that un-
dergo crossover, mutation, and selection to retain strong individuals and eliminate weak
ones. After several generations, it can solve complex optimization problems and gen-
erate high-quality optimization schemes efficiently. Since evolutionary algorithm has
flexible representations and strong searching capacity, it has been widely used to solve
a variety of tasks, especially under the environment with non-convex or non-derivative
functions [12–16]. In recent years, EAs have attracted great interest as they offer alternative
methods to solve NAS problems. With flexible encoding strategy and strong searching
capacity, EAs are becoming a promising approach to optimizing CNN architectures. The
general framework of evolutionary convolutional neural network (ECNN) follows the
evolution procedure, the performance of which mainly depends on the effective design of
network architecture evolution strategy.

However, most of the ECNN methods focus on improving the performance of discov-
ered CNN architectures without considering the relevance between different classification
tasks. The evolution process has to start from scratch if the learning environment changes.
In such a situation, evolutionary transfer learning which utilizes the knowledge from the
previously solved tasks to facilitate solving target task, is promising for NAS problems.
Evolutionary transfer learning is a human-like learning process, it has been frequently
introduced to solve different but related problems for more effective evolutionary algo-
rithms. In [17–22], EAs with transfer capacity are designed to solve extensive optimization
problems like dynamic vehicle routing, heterogeneous and image classification problems,
etc. With the assistance of knowledge from optimized solutions, the performance of
evolutionary algorithms can be enhanced.

In this paper, an effective evolutionary convolutional neural network optimization
method with cross-tasks transfer strategy (CTS-ECNN) is proposed to take full advantage
of the knowledge extracted from the previously solved tasks when a new classification
task is encountered. The main contributions of the proposed CTS-ECNN method are
summarized as follows:

(1) We propose a simple and effective cross-tasks transfer strategy, which can select the
valuable knowledge from the original task to transfer for improving the performance
of the target task. Especially at the early generations, our method can increase
the optimization speed significantly, which is important when the learning time or
computing resource is limited;

(2) Within the case study of image classification tasks, it is demonstrated that the pro-
posed CTS-ECNN can obtain better results than the ECNN that starts from scratch
and some manually-designed state-of-the-art methods do;

(3) In the framework of the proposed CTS-ECNN, when a new task is encountered, we
can extract knowledge from the optimized tasks. With more knowledge achieved
from related tasks, the proposed method can be applied to more tasks rapidly without
considering the sequence of tasks.

The rest of this paper is organized as follows: In Section 2, the related works are sum-
marized. In Section 3, our method is introduced in detail. Section 4 gives the experimental
settings and the analysis of the experimental results. Finally, the conclusions and future
works are described in Section 5.

Electronics 2021, 10, 1857 3 of 15

2. Related Works
2.1. Evolutionary CNN Optimization

Since the evolutionary algorithm has the advantage of gradient-free and being insensi-
tive to local optimum, evolutionary deep learning has been an interesting domain recently.
Among all of them, the neural network, especially CNN architecture optimization with the
evolutionary algorithm, attracts much attention. The general framework of evolutionary
convolutional neural network is concluded in Algorithm 1. As is shown in Algorithm 1,
the whole process of evolutionary CNN follows the evolution procedure: initialization
(step 1), evaluation (step 2), selection (step 4), mutation and crossover (step 5). Specially,
the fitness evaluation in evolutionary CNN is executed by training the corresponding
CNN architecture. The evaluation process is completed by optimizing the weights in CNN
architecture to reach the maximal classification accuracy. To evaluate each individual’s
fitness accurately, a CNN is trained for several epochs by using the same initialization
method, loss function and optimizer. The performance evaluation of CNN is provided in
Algorithm 2.

Algorithm 1 Evolutionary convolutional neural network.
Input: N: the max number of generations, k: the size of each generation, pm: the

mutation probability, pc: the crossover probability.
Output: Individuals of the last generation with their fitness values.
1: Randomly initialize k individuals and map them to the corresponding CNNs;
2: Compute the classification accuracy of each CNN to obtain the fitness value with

Algorithm 2;
3: for n = 1 : N do
4: Generate a new generation with selecting method on parent individuals based on

the fitness value;
5: Produce offspring through the operator of mutation and crossover with probability

pm and probability pc;
6: Compute the classification accuracy of each individual on offspring;
7: end for

Algorithm 2 Performance evaluation of CNN.
Input: p: the individual, Dtrain: the training dataset, Dvalid: the validation dataset, T: the

epoch number, B: the training batch size, L: the loss function, η: the learning rate.
Output: The classification accuracy.
1: Map p into the corresponding CNN architecture;
2: ω← initialize the weights of CNN with predefined method;
3: for t = 1 : T do
4: η← update η according to t;
5: for each B in Dtrain do
6: ∇ω← compute the gradient by ∂L/∂ω;
7: ω← ω - η∇ω;
8: end for
9: Compute the classification accuracy on Dvalid;

10: end for

In [23], Xie et al. introduced a binary encoding method to represent CNN and use GA
to learn network architectures automatically. Concurrently, Cartesian genetic programming
was used to design deep convolutional neural network architectures with a variable-length
genotype-to-phenotype method in [24]. Real et al. [25] designed an image classifier
named AmoebaNet which applies evolutionary algorithm to neural network topologies.
Sun’s work [26] gave a comprehensive comparison of manually designed and automatically
designed neural networks, and then proposes CNN-GA which is competent for discovering
deep neural networks. Lu and Whalen et al. [27] addressed multi-objective framework

Electronics 2021, 10, 1857 4 of 15

to neural architecture search, and the NSGANetV1 algorithm is demonstrated on new
classification tasks, i.e., corrupted CIFAR-10, ImageNet-V2 and medical X-ray images.

2.2. Transfer Learning

In the domain of machine learning, transfer learning has received significant interest
on solving different but related problems for better effective deep learning performance.
Knowledge transfer of internal representations is an example of transfer learning in [28].
A trained deep convolutional neural network is demonstrated that its components can
be transferred to another network to learn new information with smaller training sets.
Terekhov et al. [29] applied knowledge transfer to deep neural networks by re-using
block-modular architecture to solve new tasks. This architecture can outperform networks
trained from scratch and has fewer weights to learn. Based on the learning features of
each layer in neural networks, Yosinski et al. [30] proposed a method which can quantify
the transferability of layer features. The results show that transferability is affected by
difficulties of splitting network layers and the specificity of higher network layers.

There is also a growing interest in evolutionary transfer algorithms in recent years.
Evolutionary transfer algorithms have been applied to solving different types of problems,
such as multi-task optimization, multi-objective optimization, and complex optimization,
etc. In multi-task environment, [31] transferred knowledge through crossover based on
the theory that the solving of one problem may facilitate the solving of other related
problems. In [32], Y. Ong et al. extended knowledge transfer by designing a explicit
auto-encoder to transfer optimized solutions instead of genetic crossover. In the domain
of multi-objective optimization, Liang et al. [18] devised a one-layer auto-encoder to
enhance the performance of evolutionary algorithm by transferring knowledge across
heterogeneous problems. Iqbal et al. [19] developed the GP-criptor to transfer learning
GP-criptor which can reuse knowledge from past solved classification problems to improve
image classification accuracy.

In this work, we focus on utilizing transfer learning to improve the performance and
efficiency of neural architecture evolution. The proposed method can take full advantage
of knowledge transferred from the previous solved tasks when a new classification task
is encountered.

3. Materials and Method

As mentioned before, the key problem of transfer learning in EAs is how to utilize
the knowledge from the source tasks efficiently. Which information to be transferred and
how to transfer the knowledge determine whether the transfer process can facilitate the
evolution of target task better than random initialization. In this section, we will introduce
the CTS-ECNN method which constructs the suitable individuals for transference based
on the multi-population framework [33]. Meanwhile, considering the high computation
cost of evaluating the performance of a CNN architecture, we also use a clustering method
to accelerate the transfer process. Figure 1 shows the workflow of the CTS, as well as the
associated ECNN.

As shown in Figure 1, the proposed CTS-ECNN method is composed of three modules,
i.e., classification tasks, evolutionary algorithm of CNN, and cross-tasks transfer. First,
a set of individuals representing different CNN architectures are evolved on the first
classification task with their performances (shown in Section 3.1). After evolution, the
CNN architectures with top fitness values are encoded for clustering similar individuals
with affinity propagation (AP) method (shown in Section 3.2). With clustered individuals,
exemplars of each cluster are evaluated on the target classification task, and then their
performances are used as the ranking index prepared for constructing the subpopulation
(shown in Section 3.3). When the mixed subpopulation is constructed, we can transfer the
useful knowledge to the target classification task through applying the selected individuals
as the initial generation. To clarify the proposed method, we give a general framework
of CTS-ECNN in Algorithm 3. Noting that our proposed method provides a sequential

Electronics 2021, 10, 1857 5 of 15

transfer framework applicable to different classification tasks. If we have discovered CNN
architectures on the preceding (M-1) tasks, the M-th task can be facilitated by utilizing the
knowledge obtained from the previously solved (M-1) tasks.

Dataset-1 Dataset-2 Dataset-n

...

Classification Tasks

Neural Architecture Evolution

Performance Evaluation Performance Evaluation

...

Performance Evaluation

Evolutionary Algorithm of CNN

Initialization

...Input: Best K Individuals from Evolution

Encoding

1

1
Code

2

1
Code

...

k

n
Code

1-

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

-´
-´-´-´

-´

-´

)(

)()()(

)(

)(

...

............

...

...

1nk

1nk

2

1nk

1

1nk

1nk

2

2

2

1

2

1nk

1

2

1

1

1

SSS

SSS

SSS

Cross-Tasks Transfer

Output: Current Best K Individuals

Similarity Matrix

Feature Extraction

Clustering

Construction of Subpopulation

Performance
Evaluation

on
Target Task

Subpopulation
Clustered

Population
Ranked

Population

Neural Architecture Evolution Neural Architecture Evolution

Source Task Target Task

Figure 1. The workflow of the CTS-ECNN.

Algorithm 3 The pseudocode of CTS-ECNN.
Input: N: the max number of generation, k: the size of each generations, DM: the target

dataset.
Output: The best CNN architecture for DM.
1: for m = 1 : M do
2: if m = 1 then
3: {OP}k ← Randomly initialize k individuals;
4: else
5: {OP}k ← Transfer k individuals based on Algorithm 4;
6: end if
7: Set n← 0;
8: while n ≤ N do
9: Obtain offspring {OC}k with crossover and mutation operators;

10: {OR}2k ← {OP}k ∪ {OC}k;
11: Evaluate each individual in {OR}2k;
12: {OP}k ← Select the next generation;
13: n← n + 1;
14: end while
15: while m < M do
16: {Oc

r}← collect individuals with top fitness values for CTS in Algorithm 4;
17: end while
18: end for

3.1. Neural Architecture Evolution

Generally, the whole process of ECNN follows the procedure in Algorithm 3 (steps
1–14). The first step is to design a proper genotype-to-phenotype mapping strategy. We
provide a variable-length string representation to describe the CNN architecture. In our
method, we prepare two types of convolutional and pooling operators for building a CNN
architecture, i.e., the standard and residual convolutional operators, the max and average
pooling operators. The max number of convolutional operators Nc and pooling operators

Electronics 2021, 10, 1857 6 of 15

Np are predefined. It is noted that the proposed method focuses on the optimization
of neural network structure, so we select these building blocks as functional nodes to
realize flexible genotype-to-phenotype mapping. For the first classification task, a set of
individuals with predefined population size is randomly initialized based on the string
representation. Accordingly, subsequent classification tasks use the assigned subpopulation
from cross-tasks transfer as the initial generation (steps 2–6).

During evolution, mutation and crossover operator are implemented on each genera-
tion. When {OR}2k is obtained, each produced individual is evaluated on the corresponding
dataset to compute its classification accuracy by training the CNN architecture it represents
through several epochs, and then these accuracies serve as fitness values to produce a
new generation. When the max number of generations is reached, we not only obtain the
optimized CNN architecture for the current classification task but also utilize individuals
with top fitness values as the learning resource to facilitate posterior classification tasks.

3.2. Encoding and Extraction of Feature

The encoding operator acts on the optimized CNN architectures which have been
evolved on previous classification tasks. To extract the features of each CNN architecture,
these architectures have to be encoded into fixed-length strings which are suitable for
similarity computation. Each convolutional operator is encoded into a quaternion as (type,
channel, filter, in), where type for the standard and residual convolutional operator is set
to 0 and 1, respectively. As for pooling operators, each of them is encoded into a pair as
(type, in), type of the max and average pooling operators is denoted by 0 and 1. There is
no need to encode the parameter of out because it can be deduced by the in of subsequent
operator. When the number of convolutional operator is smaller than Nc or the number
of pooling operators is smaller than Np, the blank position will be set to zeros to keep the
coding length invariable.

As the encoding of CNN architectures has been finished, the codes containing struc-
ture information can be used directly by similarity computation. Algorithm 4 shows the
framework of our proposed CTS, and steps 2–7 give a general process of constructing a
similarity matrix. We use Euclidean distance as the similarity of CNN architectures:

s(i, j) = −‖xi − xj‖2 (1)

where xi and xj are two different codes, and the setting of a negative squared error is for
convenient calculation. Each code of its corresponding CNN architecture is compared
with all the other codes string-to-string to work out the similarity s(i, j), and then the
similarity s(i, i) for each code is set to a shared value, for which we choose the median of
the input similarity.

Considering the demand of reducing transfer computation and utilizing knowledge
from previous tasks efficiently, clustering is a necessary preprocessing for the construction
of subpopulation. Of all the clustering methods, AP has the advantages of good robustness
and accuracy over other clustering methods [34]. It does not need to determine the number
of clusters before running the algorithm and is based on the concept of “message passing”
between data points, which updates two matrices:

r(i, j)← s(i, j)−max
j′ 6=j

{
a(i, j′) + s(i, j′)

}
(2)

a(i, j)← min
{

0, r(j, j) + ∑
i′ 6∈{i,j}

max{0, r(i′, j)}
}

(3)

where r(i,j) is the value of responsibility matrix and reflects the fitness that j serves as the
exemplar for i on account of the other potential exemplars. a(i,j) is the value of availability
matrix and reflects the appropriateness that i chooses j as its exemplar on account of the
other potential exemplars. To be specific, a(i,j’) represents the belongingness of other points
to i except j. s(i,j’) represents the attraction of other points to i except j. If the value of r(i,j)

Electronics 2021, 10, 1857 7 of 15

is greater than 0, it means that j has better chance to become the exemplar; r(i,j’) represents
the similarity that j becomes the exemplar of other points except i. Taking all the attraction
values greater than or equal to 0 and the possibility that j is the exemplar into consideration,
a(i,j) represents the cumulative proof that i chooses j as the exemplar.

Both matrices are initialized to all zeroes. Iterations proceed until cluster boundaries
remain unchanged over several iterations. The j with the maximum value of a(i,j) + r(i,j)
will be chosen as the exemplar of its corresponding cluster. When AP terminates, the
number of clusters and the exemplar of each cluster are obtained.

Algorithm 4 Cross-task transfer strategy (CTS).
Input: {Oc

r |r = 1, 2, ..., k, c = 1, 2, ..., M−1}: individuals with top fitness values from the
preceding (M−1) datasets, qm: the mutation probability, TP: the transfer parameter.
Output: The parent PTrans for DM.
1: Et ← encode Oc

r independently;
2: if i 6= j then
3: s(i, j)← compute the similarity between Ei and Ej;
4: end if
5: if i = j then
6: s(i, i)← input the median of the acquired similarities;
7: end if
8: Cluster CNN architectures with AP algorithm;
9: p← the number of clusters;

10: {M}p ← choose the exemplar of each cluster;
11: Approximate the classification accuracies of {M}p;
12: Popt ← choose the optimal cluster;
13: Nsub ← determine the size of suboptimal subpopulation with TP;
14: Psub ← randomly choose Nsub individuals from the suboptimal cluster;
15: if Nopt + Nsub < k then
16: Pext ← perform mutation operator with probability qm on Popt;
17: PTrans ← Popt ∪ Psub ∪ Pext;
18: else if Nopt + Nsub > k then
19: Popt ← choose (k - Nsub) individuals from Popt randomly;
20: PTrans ← Popt ∪ Psub;
21: else
22: PTrans ← Popt ∪ Psub;
23: end if

3.3. Construction of Subpopulation

In original transfer learning strategies, the entire knowledge extracted from previous
tasks is evaluated on the target task to sort out the best solution. However, considering
the high computational cost of evaluating the performance of a CNN architecture, it
is computationally cumbersome to evaluate each individual especially when we have
numerous source tasks for transfer learning. In our method, we only evaluate the exemplar
of each cluster on the target task to represent its corresponding cluster. The proposed CTS is
a straightforward way to utilize the ranked clusters of alternative CNN architectures based
on exemplars’ performance. To enable efficient transfer, we construct the subpopulation by
exploiting high-quality individuals and exploring new individuals.

The efficacy of the proposed CTS-ECNN depends on how the subpopulation of each
target task is constructed. On account of the complementarity of individuals, we adopt the
multi-population framework to construct subpopulation which includes the optimal cluster
Popt and the suboptimal cluster Psub. Specifically, Popt can be viewed as the individuals
which carry most problem-solving knowledge and thus can be viewed as the individuals
belonging to target task, Psub can be viewed as the extra individuals selected from related
tasks accordingly. When the mixed subpopulation is constructed, it can collect inter-
task knowledge and inner-task knowledge to generate offspring for the target task. Nsub

Electronics 2021, 10, 1857 8 of 15

is determined by the cross-task transfer parameter TP, thus the number of suboptimal
individuals Nsub is denoted by

Nsub = min{[TP× k], Nsub,max} (4)

where k represents the size of each generation and Nsub,max is the size of suboptimal cluster
which guarantees that cross-task knowledge will not overflow. TP is the transfer parameter
which controls the degree of inter-task knowledge transfer thus maintaining the balance of
subpopulation.

It is an important issue to set the transfer parameter TP thoughtfully as it controls
the amount of inner-task and inter-task knowledge transferred into the target task. To be
specific, if TP is large, the more extra individuals from related tasks are collected, therefore
the more inter-task knowledge can be transferred to target task. Correspondingly, if TP is
small, the more inner-task knowledge will be extracted. To conclude, a large TP is suitable
for a compact searching space where individuals have small divergence, while a small TP
is suitable for individuals with significantly different performances.

With Nsub determined by TP, we randomly choose Nsub individuals in the suboptimal
cluster as a part of subpopulation. In Algorithm 4, the construction of subpopulation is
executed in step 15–23. As shown in Algorithm 4, the rest part of the subpopulation are
produced by the optimal cluster. When Nopt is insufficient, some extra individuals are
produced by operating mutation on the individuals of optimal cluster with probability qm
to keep the size of generation invariable. On the contrary, if (Nopt + Nsub) exceeds the size
of generation, we randomly choose (k − Nsub) individuals from the optimal cluster for the
same purpose.

The constructed subpopulation is used as the current best generation for the target
classification task to accelerate the evolution of CNN architectures. Particularly, the more
source tasks we have trained, the more transfer knowledge we can utilize to facilitate
the subsequent tasks. More importantly, as the knowledge from all the previous tasks
participates in our cross-task transfer process, the sequential transfer process can keep
going without deploying specified order of tasks.

3.4. Training and Prediction

Based on conventional settings in machine learning community, stochastic gradient
descent (SGD) with a batch size of 128 is used to train the CNN architectures, whose
weights are initialized by He’s method [35]. For fear of over-fitting, the weight decay is
set to 5 × 10−4. The learning rate is initialized to 10−2 for the first 30 epochs, followed by
10−3 for 120 epochs, 10−4 for 90 epochs, and 10−5 for 30 epochs. Each CNN architecture is
trained for 50 epochs in the phase of fitness evaluation to reduce computation time. All
of the CNN architectures are trained on two NVIDIA 1080TI GPUs. Noting that these
parameter settings are applied in both experimental scenarios.

For the parameter settings of neural architecture evolution, the max number of con-
volutional operators Nc and pooling operators Np are set to 10 and 5, respectively. We set
the mutation probability pm and the crossover probability pc to 0.8 and 0.2, respectively,
to accelerate the evolution of new CNN architectures. The number of generations for the
target classification dataset is set to 50 and each generation contains 20 individuals. Note
that the max generation for the source classification dataset which is prepared for the CTS
is set as 20.

4. Experimental Results and Discussion
4.1. Datasets

In the case study, the proposed CTS-ECNN method, which is based on transfer
learning, is evaluated using two benchmark image classification datasets. Results are
compared with the ECNN that starts from scratch and some state-of-the-art methods.

As mentioned in Section 3, the proposed method is a sequential transfer framework,
so we design two experimental scenarios to test its applicability for different classification

Electronics 2021, 10, 1857 9 of 15

tasks. For the first scenario, our method is tested on the MNIST-FASHION dataset and the
transfer process is based on the MNIST classification task which has been optimized before.
For the second scenario, our method is tested on the CIFAR10 dataset and the transfer
process is based on the MNIST and MNIST-FASHION classification task which have been
optimized before.

The MNIST dataset is a large database of handwritten digits, which consists of 60,000
grayscale images for training and 10,000 grayscale images for testing, and each of them
has the dimension of 28 × 28. There are 10 categories, i.e., digits from 0 to 9, which
have the equal number of samples for both the training and testing set. The MNIST-
FASHION dataset shares the same image size and structure of training and testing splits
with the MNIST dataset. The only difference between them is that there are 10 categories of
commodity in MNIST-FASHION. The CIFAR10 dataset is a subset of 80 million tiny images,
which consists of 50,000 color images for training and 10,000 color images for testing, and
each of them has the dimension of 32 × 32. There are also 10 categories, which have the
equal number of samples for both the training and testing set. As there are no validation
sets in these benchmark datasets, 10% images of the training sets will be randomly selected
as the validation sets to attain the fitness value.

4.2. Results of the First Experimental Scenario

We first compare the classification accuracy of each evolution step for the proposed
CTS-ECNN method and the ECNN that starts from scratch on the MNIST-FASHION test-
ing dataset. The maximum classification accuracy of each evolution process is visualized
in Figure 2. It is obvious that the max classification accuracy is improved significantly in
the first few generations with the transferred knowledge from the MNIST classification
task. As shown in Figure 2, the proposed CTS-ECNN can achieve the same accuracy about
40 iterations early compared with ECNN that starts from scratch. When the evolution
terminates, our method still obtains better classification accuracy than the original ECNN
method does. The above result shows that the proposed CTS-ECNN can achieve the valu-
able knowledge from the MNIST classification task to help the neural network optimization
of MNIST-FASHION classification task.

10 20 30 40 50

Iteration

0.92

0.93

0.94

0.95

M
a

x
im

u
m

 A
c
c
u

ra
c
y

ECNN

CTS-ECNN

Figure 2. The maximum classification accuracy of each evolution step on the MNIST-FASHION
testing dataset.

To make a comprehensive comparison of the two methods, classification performance
of all the individuals in each evolution step are reported in Figure 3. As shown in Figure 3,
the red and blue points represent the individuals in CTS-ECNN method and the original
ECNN method that starts from scratch, respectively. As can be seen in each iteration,
most of the individuals of our method can obtain better performance, which means with
transferred knowledge the excellent parent generation is more likely to generate good

Electronics 2021, 10, 1857 10 of 15

offspring via evolution process. There are also a few red points lying below all the blue
points in the figure, especially at the early iterations of the evolution process. As evolution-
ary algorithm is a heuristic search method that uses crossover and mutation operators to
generate new populations, good individuals may also produce poor offspring. However,
the historically best individuals are always maintained, so the evolutionary process can
keep a steady improvement. With the evolution proceeding, individuals of our method
perform better aggregation index than the original ECNN method does. We argue that
the evolutionary algorithm tends to preserve the useful transferred knowledge, so that the
excellent individuals are more easily to generate.

0 10 20 30 40 50

Iteration

0.82

0.84

0.86

0.88

0.9

0.92

0.94

C
u

rr
e

n
t

A
c
c
u

ra
c
y

ECNN

CTS-ECNN

Figure 3. The current classification accuracy of each evolution step on the MNIST-FASHION test-
ing dataset.

In addition to reporting the overall results of each iteration, we complete quantitative
analysis on these two methods to obtain precise statistics. Results are summarized in
Table 1. With the help of CTS, we can always find better network architectures which can
achieve better classification accuracy. After the 10th generation, classification accuracies of
the two methods keep a similar rate of growth and the accuracy improvement becomes
smaller than the previous generations. To be specific, among the 10th and 50th generation,
the proposed CTS-ECNN and original ECNN attain the improvement of 0.85% and 0.87%
on maximum classification accuracy, respectively. Although during the period of evolution
the average and medium classification accuracy are fluctuating a little, on the whole they
gradually get higher. According to three kinds of difference value, i.e., the maximum, the
average and the medium accuracy difference, the CTS-ECNN method shows significant
advantage over the ECNN algorithm. This is important, because it means the CTS-ECNN
algorithm can guarantee the overall improvement on original ECNN algorithms. After
50 generations, the maximum classification accuracy of the CTS-ECNN method reaches
94.37% and keeps a leading margin of 0.88% over the original ECNN method.

4.3. Results of the Second Experimental Scenario

As mentioned before, we have two optimized classification tasks, i.e., the MNIST and
MNIST-FASHION dataset, which means when a new task is encountered, we can extract
knowledge from the above three tasks. We will first compare the CTS-ECNN method based
on the two classification tasks with the original ECNN method. The maximum classification
accuracy of the two methods on the CIFAR10 testing dataset is shown in Figure 4. As
in the MNIST-FASHION experiment, the maximum classification accuracy grows from
generation to generation. Compared with the first experiment on MNIS-FASHION dataset,
with more knowledge extracted from the previously solved two classification tasks, the
initial generation of CTS-ECNN can outperform even the last generation of the original
ECNN. This means our method can not only skip the process of random initialization but
also generate better individuals. In the end of the evolution process, our proposed method

Electronics 2021, 10, 1857 11 of 15

obtains the improvement of about 3% for the maximum classification accuracy, which can
demonstrate the scalability of our proposed method. As we all know that the iteration of
the neural network optimization is time-consuming, the experiment with 50 generations
can demonstrate that our method has the ability to reduce the computational cost.

Table 1. Classification accuracy on the MNIST-FASHION testing dataset. Diff is the difference of
classification accuracy with ECNN that starts from scratch. Gen represents different evolution steps.

Gen Max % Diff % Avg % Diff % Med % Diff %

01 93.52 2.43 91.49 1.72 91.73 2.13
05 93.52 1.48 91.76 1.26 91.67 0.73
10 93.52 1.00 91.72 1.17 91.95 1.03
15 93.75 1.23 91.93 0.37 91.93 0.38
20 93.81 1.12 92.12 1.06 92.45 1.52
25 93.81 1.03 92.70 1.10 92.89 1.33
30 94.12 1.01 92.58 0.60 92.42 0.30
35 94.15 0.88 92.20 1.61 92.13 0.72
40 94.15 0.67 92.35 1.79 92.50 1.33
45 94.37 0.88 93.38 1.78 93.28 1.73
50 94.37 0.88 93.10 1.22 93.13 1.38

10 20 30 40 50

Iteration

0.8

0.82

0.84

0.86

0.88

0.9

0.92

M
a
x
im

u
m

 A
c
c
u
ra

c
y

ECNN

CTS-ECNN

Figure 4. The maximum classification accuracy of each evolution step on the CIFAR10
validation dataset.

In order to better understand the details of the proposed method on the CIFAR10
classification task, we draw box plots in Figure 5. As is shown in Figure 5, both of the two
methods show increase for the maximum classification accuracy and fluctuation for the
median classification accuracy. However, our proposed method shows smaller fluctuation
and better median classification accuracy. By investigating the height of each box, it can
also be observed that the variation of the classification accuracy during each generation
of our proposed method is much smaller than the original ECNN, which implies the
evolution processes towards a more steady state on the CIFAR10 classification task with
transferred knowledge.

Electronics 2021, 10, 1857 12 of 15

01 05 10 15 20 25 30 35 40 45 50

Iteration

0.70

0.74

0.78

0.82

0.86

0.90

0.94

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

ECNN

CTS-ECNN

Figure 5. The classification accuracy of different evolution steps on the CIFAR10 testing dataset. The
red box represents CTS-ECNN and blue box represents the original ECNN. The max and median
classification accuracy of different evolution steps are connected by a dashed line and solid line.

In addition, our proposed method is compared with some state-of-the-art methods in
Table 2. We group these methods into two different categories, namely manually-designed
methods and automatically-designed methods. For the first category including ResNet
(depth = 1.10), ResNet (depth = 1.202) [36], Maxout [37], Network in Network [38] and
Highway Network [39], we mainly compare the classification accuracy. Among these
manually-designed peer competitors, after the 50th generation, our proposed method can
obtain higher classification accuracy than most of the state-of-the-art CNN architectures
but lower than ResNet (depth = 101). We note that ResNet (depth = 101) is much deeper,
i.e., ResNet (depth = 101) has 101 layers while the proposed CTS-ECNN has less than
15 layers (10 convolutional layers and 5 pooling layers). Even at the 10th generation,
our method can outperform Maxout and Network in Network. It can be demonstrated
that when compared with the state-of-the-art manually designed methods, the proposed
method can design competitive CNN architecture automatically with limit computation
cost. For the second category including hierarchical evolution [40], CGP-CNN [24], genetic
CNN [23], and the proposed CTS-ECNN, we compare the classification accuracy and
the number of iterations that each method costs, which represent the efficiency of each
method. Among these automatically-designed peer competitors, hierarchical evolution and
CGP-CNN obtain 3.96% and 1.6% improvements on the CIFAR10 testing dataset over our
proposed method. However, both of the methods consume much more iterations to obtain
the best classification accuracy and hierarchical evolution focus on convolutional cells,
rather than the entire neural network architecture [40]. It is noted that the classification
accuracy of genetic CNN is slightly higher than CTS-ECNN, but it still requires the manual
tuning based on expertise. It is demonstrated that our method could find competitive CNN
architecture with limited computational resources. It makes sense, as someone with little
knowledge of neural network architecture can design a competent neural network to solve
the certain task easily.

Electronics 2021, 10, 1857 13 of 15

Table 2. The comparisons between the proposed method and the state-of-the-art methods in terms of
the classification accuracy (%) on the CIFAR10 testing dataset. Gen represents the evolution steps
each method takes.

Method Acc % Gen

Manually

Designed

ResNet (depth = 101) 93.57 –

ResNet (depth = 1202) 92.07 –

Maxout 90.70 –

Network in Network 91.19 –

Highway Network 92.40 –

Automatically

Designed

Hierarchical Evolution 96.37 7000

CGP-CNN 94.02 300

Genetic CNN 92.90 50

CTS-ECNN (G-10) 91.46 10

CTS-ECNN (G-30) 92.06 30

CTS-ECNN (G-50) 92.42 50

5. Conclusions

In this paper, we apply the transfer learning to facilitate the evolutionary CNN
architecture optimization. We propose an effective ECNN method with cross-task transfer
strategy named CTS-ECNN which constructs the suitable individuals to transfer without
taking up too much computational resource. For the case study, our proposed method
is compared with the original ECNN and some state-of-the-art methods on benchmark
image classification datasets. The results show that our method can not only accelerate the
evolution process significantly but also find competitive CNN architectures.

However, our method still suffers from several drawbacks. First, although we attempt
to reduce the computational cost of transfer strategy, the process of neural architecture
evolution on source tasks also requires computational resource. Second, in this work,
transfer strategy is only applied to the initial generation. It would be interesting to transfer
knowledge among each generation. The above directions are left for future work.

Author Contributions: Conceptualization, Z.W. and D.L.; methodology, Z.W.; validation, Z.W., D.L.,
and H.W.; investigation, T.L.; writing—original draft preparation, Z.W. and D.L.; writing—review
and editing, H.W., T.L., and P.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of Shaanxi Province
(grant no. 2021JQ-210), the Fundamental Research Funds for the Central Universities (Grant no.
XJS200216, JB210202) and the National Natural Science Foundation of China (Grant no. 62036006).

Data Availability Statement: The MNIST dataset can be downloaded from http://yann.lecun.com/
exdb/mnist/ (accessed on 3 July 2021). The MNIST-FASHION dataset can be downloaded from
https://github.com/zalandoresearch/fashion-mnist (accessed on 3 July 2021). The CIFAR10 dataset
can be downloaded from https://www.kaggle.com/c/cifar-10 (accessed on 3 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.kaggle.com/c/cifar-10

Electronics 2021, 10, 1857 14 of 15

Abbreviations
The following abbreviations are used in this manuscript:

CNNs Convolutional neural networks
ECNN Evolutionary convolutional neural network
EAs Evolutionary algorithms
CTS Cross-tasks transfer strategy
NAS Neural architecture search
RL Reinforcement learning
RNN Recurrent neural network
AP Affinity propagation
SGD Stochastic gradient descent

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
2. Jamshidi, M.; Lalbakhsh, A.; Lotfi, S.; Siahkamari, H.; Mohamadzade, B.; Jalilian, J. A neuro-based approach to designing a

wilkinson power divider. Int. J. Microw. Comput. Aided Eng. 2020, 30, e22091. [CrossRef]
3. Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators

using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [CrossRef]
4. Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Roshani, S.; Matousek, V.; Roshani, S.; Mirmozafari, M.; Malek, Z.; Spada,

L.L.; et al. Deep learning techniques and covid-19 drug discovery: Fundamentals, state-of-the-art and future directions. Emerg.
Technol. During Era COVID Pandemic 2021, 348, 9.

5. Jamshidi, M.B.; Alibeigi, N.; Rabbani, N.; Oryani, B.; Lalbakhsh, A. Artificial neural networks: A powerful tool for cognitive
science. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), Vancouver, BC, Canada, 1–3 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 674–679.

6. Bello, I.; Zoph, B.; Vasudevan, V.; Le, Q.V. Neural optimizer search with reinforcement learning. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 459–468.

7. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Proceedings of the
Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.

8. Pontes, F.; Amorim, G.; Balestrassi, P.; Paiva, A.; Ferreira, J. Design of experiments and focused grid search for neural network
parameter optimization. Neurocomputing 2016, 186, 22–34. [CrossRef]

9. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
10. Bengio, Y. Gradient-based optimization of hyperparameters. Neural Comput. 2000, 12, 1889–1900. [CrossRef] [PubMed]
11. Bäck, T.; Schwefel, H.-P. An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1993, 1, 1–23.

[CrossRef]
12. Ramakurthi, V.B.; Manupati, V.; Machado, J.; Varela, L. A hybrid multi-objective evolutionary algorithm-based semantic

foundation for sustainable distributed manufacturing systems. Appl. Sci. 2021, 11, 6314. [CrossRef]
13. Abualigah, L.; Diabat, A.; Sumari, P.; Gandomi, A.H. A novel evolutionary arithmetic optimization algorithm for multilevel

thresholding segmentation of covid-19 ct images. Processes 2021, 9, 1155. [CrossRef]
14. Guerraiche, K.; Dekhici, L.; Chatelet, E.; Zeblah, A. Multi-objective electrical power system design optimization using a modified

bat algorithm. Energies 2021, 14, 3956. [CrossRef]
15. Yılmaz, E.M.; Güntert, P.; Etaner-Uyar, Ş. Evaluation of multi-objective optimization algorithms for nmr chemical shift assignment.

Molecules 2021, 26, 3699. [CrossRef]
16. Ponti, A.; Candelieri, A.; Archetti, F. A new evolutionary approach to optimal sensor placement in water distribution networks.

Water 2021, 13, 1625. [CrossRef]
17. Zhou, L.; Feng, L.; Gupta, A.; Ong, Y.; Liu, K.; Chen, C.; Sha, E.; Yang, B.; Yan, B.W. Solving dynamic vehicle routing problem via

evolutionary search with learning capability. In Proceedings of the IEEE Congress on Evolutionary Computation, San Sebastián,
Spain, 5–8 June 2017; pp. 890–896.

18. Feng, L.; Ong, Y.; Jiang, S.; Gupta, A. Autoencoding evolutionary search with learning across heterogeneous problems. IEEE
Trans. Evol. Comput. 2017, 21, 760–772. [CrossRef]

19. Iqbal, M.; Xue, B.; Al-Sahaf, H.; Zhang, M. Cross-domain reuse of extracted knowledge in genetic programming for image
classification. IEEE Trans. Evol. Comput. 2017, 21, 569–587. [CrossRef]

20. Xu, Q.; Wang, N.; Wang, L.; Li, W.; Sun, Q. Multi-task optimization and multi-task evolutionary computation in the past five
years: A brief review. Mathematics 2021, 9, 864. [CrossRef]

21. Dumitru, D.; Dios, an, L.; Andreica, A.; Bálint, Z. A transfer learning approach on the optimization of edge detectors for medical
images using particle swarm optimization. Entropy 2021, 23, 414. [CrossRef]

22. Chu, S.-C.; Zhuang, Z.; Li, J.; Pan, J.-S. A novel binary quasi-affine transformation evolutionary (quatre) algorithm. Appl. Sci.
2021, 11, 2251. [CrossRef]

http://doi.org/10.1145/3065386
http://dx.doi.org/10.1002/mmce.22091
http://dx.doi.org/10.1007/s11277-020-07960-5
http://dx.doi.org/10.1016/j.neucom.2015.12.061
http://dx.doi.org/10.1162/089976600300015187
http://www.ncbi.nlm.nih.gov/pubmed/10953243
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.3390/app11146314
http://dx.doi.org/10.3390/pr9071155
http://dx.doi.org/10.3390/en14133956
http://dx.doi.org/10.3390/molecules26123699
http://dx.doi.org/10.3390/w13121625
http://dx.doi.org/10.1109/TEVC.2017.2682274
http://dx.doi.org/10.1109/TEVC.2017.2657556
http://dx.doi.org/10.3390/math9080864
http://dx.doi.org/10.3390/e23040414
http://dx.doi.org/10.3390/app11052251

Electronics 2021, 10, 1857 15 of 15

23. Xie, L.; Yuille, A. Genetic CNN. In Proceedings of the IEEE International Conference on Computer Vision ICCV, Venice, Italy,
22–29 October 2017; pp. 1388–1397.

24. Suganuma, M.; Shirakawa, S.; Nagao, T. A genetic programming approach to designing convolutional neural network architec-
tures. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017; pp. 497–504.

25. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q. Regularized evolution for image classifier architecture search. In Proceedings of the
AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4780–4789.

26. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.; Lv, J. Automatically designing cnn architectures using the genetic algorithm for image
classification. IEEE Trans. Cybern. 2020, 50, 3840–3854. [CrossRef] [PubMed]

27. Lu, Z.; Whalen, I.; Boddeti, V.; Dhebar, Y.; Deb, K.; Goodman, E.; Banzhaf, W. Nsga-net: Neural architecture search using
multi-objective genetic algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference, Prague, Czech
Republic, 13–17 July 2019; pp. 419–427.

28. Gutstein, O.F.S.; Freudenthal, E. Knowledge transfer in deep convolutional neural nets. Int. J. Artif. Intell. Tools 2008, 17, 555–567.
[CrossRef]

29. Terekhov, A.V.; Montone, G.; O’Regan, J. Knowledge transfer in deep block-modular neural networks. arXiv 2015,
arXiv:abs/1908.08017.

30. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? In Advances in Neural
Information Processing Systems 27; Curran Associates, Inc.: New York, NY, USA, 2014; pp. 3320–3328.

31. Gupta, A.; Ong, Y.; Feng, L. Multifactorial evolution: Toward evolutionary multitasking. IEEE Trans. Evol. Comput. 2016,
20, 343–357. [CrossRef]

32. Feng, L.; Zhou, L.; Zhong, J.; Gupta, A.; Ong, Y.; Tan, K.; Qin, A.K. Evolutionary multitasking via explicit autoencoding. IEEE
Trans. Cybern. 2019, 49, 3457–3470. [CrossRef]

33. Gong, M.; Tang, Z.; Li, H.; Zhang, J. Evolutionary multitasking with dynamic resource allocating strategy. IEEE Trans. Evol.
Comput. 2019, 23, 858–869. [CrossRef]

34. Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [CrossRef] [PubMed]
35. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12
June 2015; pp. 1026–1034.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

37. Goodfellow, I.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout networks. In Proceedings of the 30th International
Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1319–1327.

38. Lin, M.; Chen, Q.; Yan, S. Network in network. In Proceedings of the International Conference on Learning Representations,
Banff, AB, Canada, 14–16 April 2014; pp. 1–10.

39. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway networks. In Proceedings of the International Conference on Learning
Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–6.

40. Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; Kavukcuoglu, K. Hierarchical representations for efficient architecture search.
arXiv 2017, arXiv:1711.00436.

http://dx.doi.org/10.1109/TCYB.2020.2983860
http://www.ncbi.nlm.nih.gov/pubmed/32324588
http://dx.doi.org/10.1142/S0218213008004059
http://dx.doi.org/10.1109/TEVC.2015.2458037
http://dx.doi.org/10.1109/TCYB.2018.2845361
http://dx.doi.org/10.1109/TEVC.2019.2893614
http://dx.doi.org/10.1126/science.1136800
http://www.ncbi.nlm.nih.gov/pubmed/17218491

	Introduction
	Related Works
	Evolutionary CNN Optimization
	Transfer Learning

	Materials and Method
	Neural Architecture Evolution
	Encoding and Extraction of Feature
	Construction of Subpopulation
	Training and Prediction

	Experimental Results and Discussion
	Datasets
	Results of the First Experimental Scenario
	Results of the Second Experimental Scenario

	Conclusions
	References

