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Abstract: Frequency estimation of a single sinusoid in colored noise has received a considerable
amount of attention in the research community. Taking into account the recent emergence and
advances in compressive covariance sensing (CCS), the aim of this work is to combine the two
disciplines by studying the effects of compressed measurements of a single sinusoid in moving-
average colored noise on its frequency estimation accuracy. CCS techniques can recover the second-
order statistics of the original uncompressed signal from the compressed measurements, thereby
enabling correlation-based frequency estimation of single tones in colored noise using higher order
lags. Acceptable accuracy is achieved for moderate compression ratios and for a sufficiently large
number of available compressed signal samples. It is expected that the proposed method would be
advantageous in applications involving resource-limited systems such as wireless sensor networks.

Keywords: frequency estimation; compressive covariance sensing; linear sparse ruler; least squares;
colored noise

1. Introduction

Frequency estimation of a sinusoid in noise is one of the major problems in signal
processing and communications with various applications in radar, sonar, carrier synchro-
nization and signal detection, among many others. Many frequency estimation methods
have been devised for the white noise case such as the maximum likelihood (ML) esti-
mation method, which involves locating the peak of the periodogram [1]. This efficient
method attains the Cramer–Rao lower bound (CRLB) asymptotically but is computationally
complex even when the fast Fourier transform (FFT) is used. In addition, a number of fast
and accurate frequency estimators of a sinusoid in white noise have been developed as
linear prediction estimators, also achieving the CRLB on variance asymptotically [2]. A
more computationally efficient method than the ML method is the correlation method [3,4]
in which an estimate of the frequency is obtained from knowledge of one or more values of
the sinusoid-plus-noise autocorrelation sequence. Improved-performance frequency esti-
mators have been obtained using multiple autocorrelation lags, such as the P-estimator [5]
and the modified Pisarenko harmonic decomposer (MPHD) [6]. However, they involve
phase unwrapping to overcome the resulting frequency ambiguities, thereby increasing
complexity. Digital phase locked loops (DPLL) offer low-complexity, sample-by-sample
frequency estimation for real-time applications in contrast to the above-mentioned batch es-
timators [7–9]. Disadvantages of DPLL estimators are overshoot and long settling times [10].
In [11], unbiased estimation of a sinusoid in colored noise is achieved via adapted notch
filters. Colored noise is practically more relevant and appears in many applications [12]. A
more realistic description of noise in electronic devices and systems for instance is given by
correlated or colored noise. White noise is rarely an appropriate model to represent noise
sources in such systems as electronic sinusoidal oscillators [13].

The purpose of the present work is to perform single-tone frequency estimation in
colored noise using correlation-based methods, as they allow frequency estimation from
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compressed measurements using compressive covariance sensing (CCS). CCS is akin to
compressive sensing (CS) [14]. As asserted in [15], CS has great potential for energy-efficient
data processing and communication in the wireless sensor networks (WSN) that have
become commonplace due to their major role is various applications, such as industrial
monitoring, healthcare monitoring environmental sensing etc. CS compresses data by
sampling randomly at a sub-Nyquist rate to gain numerous compression advantages,
such as limitation of sensing, storage and communication costs, thereby making CS ideal
for resource-limited systems such as WSNs. The original uncompressed signal can be
recovered from its compressed version on the condition that the signal is sparse in a certain
transform domain. In contrast, CCS techniques [16] can recover the second-order statistics
of an original signal that has been compressed rather than the signal itself without the
exertion of the sparsity condition and, at the same time, retaining all of the above-mentioned
advantages of compression. CCS relies on certain structural forms of the covariance matrix
to be captured during compression, enabling the recovery of covariance (or correlation)
information of wide sense stationary (WSS) signals and, even more recently, nonstationary
signals via online CCS [17]. One of the major applications of CCS is correlation-based
frequency estimation from compressed measurements. Other applications of CCS include
power spectrum estimation [18,19] and direction-of-arrival estimation in array signal
processing [20].

Frequency estimation of a sinusoid from compressed measurements given the additive
white Gaussian noise (AWGN) case has been addressed in the literature [21–24], and
frequency estimation of more than one harmonic in a frequency-sparse signal is dealt
with in [25]. In [21], ML estimation by grid search optimization is proposed such that
the frequency estimate is that which maximizes a cost function. In [22], a Newton-like
algorithm is used to further refine the estimate after grid search, whereas the ML estimator
in [23] requires a course-fine grid search. In [24,26], frequency estimation from compressed
measurements is cast as a linear least squares (LS) problem. The work in [24] is concerned
with frequency estimation of a sinusoid in white noise undergoing compression. The
compression or sampling matrix is taken as a random matrix rather than a sparse matrix of
zeros and ones. Therefore, this matrix colors the white noise during compression. As will be
explained in the forthcoming sections, our approach is different in that the contaminating
noise is itself assumed to be colored, while the sampling matrix is sparse and does not
further color the noise samples upon compression. Another difference is the use of CCS in
the present work due to adopting the correlation-based frequency estimation approach.

Correlation-based frequency estimation of a real-valued single tone in colored noise
has been dealt with in [27] using higher-order lags, thereby restricting the treatment to
moving-average (MA) noise and achieving low complexity. The MA filter is the most
commonly used filter in digital signal processing due to its simplicity and understand-
ability [28]. Therefore, there are undoubtedly many instances in which the frequency
of a noisy sinusoid must be estimated at the outputs of such filters that cause coloring
of the contaminating white noise. We focus on extending the work of [27] to achieve
frequency estimation from compressed sinusoids in MA colored noise using CCS. This
approach in the compressed measurements context has the advantage of reduced compu-
tational complexity in comparison with the ML approaches of [21–24] and even with the
correlation-based approaches of [5,6] since no phase unwrapping is involved, as well as
the applicability to the colored noise case. In brief, the contribution of the present work lies
in applying the existing novel technology of CCS to estimate the frequency of a sinusoid in
MA colored noise from compressed measurements by correlation-based methods, thereby
gaining a computational efficiency advantage over relevant ML approaches [21–24] in
the compressed-measurement context that rely on computationally complex grid search
optimization. Moreover, and to the best of the authors’ knowledge, there are no studies in
this direction in the literature that deal with the MA colored noise case except the work
in [27] that does not consider compressed measurements.
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Recently, the emerging artificial intelligence technique of deep learning (DL) found
application in frequency estimation of noisy sinusoidal signals [29,30] with promising
performance. However, no results were reported for frequency estimation of compressed
sinusoids using DL; this remains a topic for future research.

The remainder of the paper is organized as follows. Section 2 summarizes the fre-
quency estimation method of [27]. CCS is explained in Section 3 relating to the present
frequency estimation problem. Simulation results are given in Section 4, and, finally,
Section 5 concludes the paper.

2. Frequency Estimator of Real-Valued Single Tone in Colored Noise Using Multiple
Autocorrelation Lags

The estimator proposed in [27] can be summarized as follows. A real-valued sine
wave s(n) of amplitude α, frequency ωo and phase ϕ is immersed in colored noise u(n)
resulting in the length-L observed signal samples v(n) given by:

v(n) = s(n) + u(n) = α sin(ωo n + ϕ) + u(n), 1 ≤ n ≤ L (1)

The digital frequency ωo measured in radians is equal to 2π fo/ fs, where fo is the
sinusoid analog frequency in Hz and fs is the sampling frequency in Hz. The colored noise
u(n) is zero-mean, WSS, Gaussian and independent of s(n). It is assumed to be generated
by passing zero-mean AWGN of variance σ2 through an order-Q finite impulse response
(FIR) filter. The normalized noise autocorrelation

ρ(k) = {E[u(n) u(n− k)]}/σ2

is equal to zero for k > Q. The signal to noise ratio (SNR) is taken as α2/2σ2.
The autocorrelation function of v(n) is denoted by r(k) and is given by:

r(k) = [v(n)v(n− k)] =
α2

2
cos(k ωo) + σ2 ρ(k) (2)

where is the expectation operator.
Using trigonometric relations, it is straightforward to show that an estimate of the

frequency ωo, denoted by ω̂o, can be expressed as

ω̂o = cos−1

∑
q
k=p r̂(k) [r̂(k− 1) + r̂(k + 1)]

2 ∑
q
k=p r̂(k)2

 (3)

for any integer q > p > Q + 1, and r̂(k) is the unbiased estimation of autocorrelation
given by

r̂(k) =
1

L− k

L−k

∑
n=1

v(n) v(n− k) (4)

This method of single-tone frequency estimation has been shown in [27] to outperform
the P-estimator and the MPHD methods in terms of computational load and accuracy
and for the colored noise case. We next discuss the application of the CCS method to the
frequency estimator discussed above while considering compressed measurements of the
noisy sinusoid.

3. The Compressive Covariance Sensing Method and Its Application to
Frequency Estimation

Autocovariance of a signal is equivalent to its autocorrelation when the signal mean is
zero [31], and it will be referred to throughout the remainder of this paper as covariance for
simplicity. CCS recovers the covariance of a signal from a compressed version of it when
the compression is carried out by further sampling the signal using a linear sparse ruler
(LSR) [16]. An LSR with a length of N−1, N = 11, is shown in Figure 1. The M = 6 marks on
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the ruler defined by the set {0,1,3,7,8,10} allow all integer distances between zero and 10 to
be measured, which can be easily verified.
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The compression ratio is M/N. A minimal LSR has the least number of marks M and
hence the best compression ratio. Since all possible lags can be defined, the covariance
sequence of the original signal can be recovered from the compressed signal.

Covariance matrices are symmetrical and Toeplitz (ST) for real signals [16,31,32]. The
covariance sequence constitutes the first column of the recovered covariance matrix.

The relation between a signal vector x ∈ RN and its compressed version y ∈ RM is

y = Φ x (5)

where Φ = RM×N is a sparse sampling matrix that performs the function of the LSR. Each
of the M rows of Φ has at most one non-zero (unity) value.

The theoretical covariance matrix of vector x will be given the symbol Σ for conve-
nience and is described by

Σ =
[
x xT

]
(6)

where the superscript T denotes transpose. The above matrix can be thought of as a linear
combination of ST matrices that are elements of the subspace

= = {Σo, Σ1, . . . , ΣS−1} ⊂ RN×N .

There exist real scalars αs such that

Σ =
S−1

∑
s=0

αs Σs (7)

When the subspace = and therefore the matrices Σs are chosen, knowledge of the αs
leads to knowledge of Σ. The number S of the matrices Σs is restricted to S < 2N − 1 [32].

The covariance matrix of the compressed vector is

Σ =
[
y yT

]
(8)

Substituting Equation (5) and Equation (6) into Equation (8) yields:

Σ = Φ Σ ΦT =
S−1

∑
s=0

αs Σs (9)

where
Σs = Φ Σs ΦT (10)

The matrix Σ is a linear combination of the symmetric matrices that are elements of
the subspace = =

{
Σo, Σ1, . . . , ΣS−1

}
⊂ RM×M. They are not necessarily Toeplitz. If

compression is achieved using an LSR and thereby preserving the second-order statistics,
then the subspace = is linearly independent, and knowing Σ from Equation (8) and Σs
from Equation (10) leads to knowing the αs from Equation (9); finally, Σ is found from
Equation (7).
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The computation of the αs from Equation (9) leads to an overdetermined system
of equations that can be solved by LS [16,32]. We also note that the covariance of the
compressed vector given in Equation (8) must be estimated to solve the CCS problem.
In [33], it was proved that using the unbiased covariance estimation method of Equation (4)
for least squares CCS (LS-CCS) gives the best results.

To apply CCS to our frequency estimation problem, the length-L sequence of noisy
sinusoidal samples of Equation (1) is divided into B blocks of length N. Each block is
compressed by the LSR of compression ratio M/N, and CCS is carried out. The number
S of linearly independent matrices Σs in the subspace = is taken as equal to N, and the
subspace is chosen as

= = {IN} ∪ {T1, T2, . . . . . . , TN−1} (11)

where IN is the identity matrix and Tk is the Toeplitz matrix with ones on the diagonals
k and −k and zeros elsewhere. The final recovered covariance values are the result of
averaging over the B blocks [16,34]. These values are used in Equation (3) to estimate the
frequency. The algorithmic steps of the whole procedure are outlined below.

Algorithm 1: CCS-based frequency estimation of a compressed noisy sinusoid.

Input: A length-L noisy sinusoid divided into B blocks of length N. Each of the B blocks
undergoes compression by an LSR with compression ratio M/N. Denoting the corresponding
sampling matrix performing the function of the LSR by Φ, we have y = Φ x, where y is the
length-M compression of the length-N block represented by x.

a. For each compressed block, perform the following:

1. Choose S linearly independent ST N × N matrices Σs using the subspace of Equation
(11).

2. For each Σs, find an M×M matrix Σs from Equation (10): Σs = Φ Σs ΦT .
3. Compute an unbiased estimate of the ST M×M compressed signal covariance

matrix Σ using the following equation that yields the first row of Σ whose elements
are denoted by r̂y(k):

r̂y(k) =
1

M− k ∑M−k
n=1 y(n) y(n− k), k = 0, 1, . . . , M− 1

.
4. Find the αs by LS from Equation (9): Σ = ∑S−1

s=0 αs Σs.
5. Find Σ̂LS, which is the LS estimate of the ST covariance matrix Σ of the original

length-N block from Equation (7): Σ̂LS = ∑S−1
s=0 αs Σs.

b. Repeat for all B blocks and average the estimated covariance over all blocks. Denote the
first row of the estimated covariance matrix by r̂(k), k = 0, 1, . . . , N − 1.

c. Find the estimated frequency by applying Equation (3):

ω̂o = cos−1

∑
q
k=p r̂(k) [r̂(k− 1) + r̂(k + 1)]

2 ∑
q
k=p r̂(k)2

,

where q > p > Q + 1 and Q is the order of the FIR filter generating the colored noise.

Output: Frequency estimate ω̂o of the length-L noisy sinusoid.

4. Simulation Results

Simulations are carried out in MATLAB. The frequency estimator of [27] is first
simulated. The length L of the real-valued noisy sinusoid is first chosen to be L = 110
samples. In Equation (1), we set α = 5, ωo = π/8, and ϕ = 0 without loss of generality. The
noise variance σ2 is found from the SNR equation in dBs:

SNR(dB) = 10 log10 (
α2

2σ2 ) (12)
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Zero-mean AWGN of variance σ2 is passed through a FIR filter of order Q = 2, having
a system transfer function H(z) = (1/3)(1 + z−1 + z−2) to form the MA noise component
u(n) in Equation (1). Equations (3) and (4) are applied to obtain the frequency estimate
denoted by ω̂o, taking p = 5 and q = 10. The estimation means square error (MSE) is given
in dBs by

MSE = 10 log10

[{
(ωo − ω̂o)

2
}]

. (13)

To make a meaningful plot of estimation of MSE in dB vs. SNR (dB), we need to plot
the CRLB as well. The CRLB provides the minimum variance of the unbiased estimator as
SNR increases. For the problem of frequency estimation of a single sine in white noise, the
CRLB was found in [35] to be:

CRLB =
12 σ2

α2 L (L2 − 1)
(14)

where L is the number of signal samples. To take into account MA colored noise [36], we
take into account the noise spectral density at the sinusoidal position ωo. The expression becomes

CRLB =
12 σ2

∣∣H(ej ωo
)∣∣2

α2 L (L2 − 1)
(15)

where H
(
ejωo

)
= H(z)|z=ejωo .

The above holds provided that the noise spectrum is relatively smooth over frequency
intervals corresponding to 2π times the reciprocal of the number of signal samples [36],
which is the case in the present settings. The approximation improves as the number of
samples increases.

Next, a compressed version of the length—110 noisy sinusoid is considered by first
dividing the signal vector into 10 blocks (B = 10), each with a length of N = 11. Each block
is compressed using an LSR with a compression ratio M/N = 6/11 as in Figure 1. CCS is
then applied as explained in Algorithm 1 of Section 3 to the compressed vector to recover
the correlation values to be substituted in Equation (3). The process is repeated using
M/N = 9/11 for which the LSR is {0,1,3,4,6,7,8,9,10}.

All simulations are averaged over 500 independent runs. The results of the above
procedure are demonstrated in Figure 2. It is a plot of the MSE versus SNR for the estimator
with no compression corresponding to [27], the estimator of the compressed noisy sinusoid
using CCS with compression ratio 9/11 and finally its 6/11 counterpart. The CRLB is also
shown. Clearly, as compression increases, performance is degraded. Figure 3 demonstrates
the MSE versus SNR for only one compression ratio (9/11) but for different values of the
number of blocks B. The improvement is clear as B increases. Increasing B may appear
to be contradictory to the concept of compression, but in fact, it is not since the average
sampling rate is reduced by compression regardless of the length L (=B·N) of the signal,
and it is the sampling rate that determines hardware complexity and consequently cost-
effectiveness [16]. For the case of compression ratios equal to 8/11 and 9/11, the estimation
is acceptable as can be discerned from Figure 4, which shows the estimated frequency ω̂o
versus SNR, although these LSRs are not minimal. The LSR with a compression ratio of
8/11 was implemented with the set {0, 1, 3, 5, 6, 7, 8, 10}. The compression ratio 8/11 also
results in an estimation bias of 0.038 rad (or 0.006 times the sampling frequency). This is
clear from Figure 4. The advantages of compression may outweigh the disadvantage of
reduced accuracy depending on the application.
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The frequency estimation performance increases with higher compression ratios (less
compression). Figure 5 is a plot of the frequency estimation mean square error versus the
compression ratio M/N for two colored noise scenarios: SNR = 5 dB and SNR = 30 dB.
The compression ratios involved are 6/11, 7/11, 8/11, 9/11 and unity (no compression).
The 6/11 minimal LSR is used as in Figure 1, and then the higher compression ratios are
implemented by adding marks to the ruler at random. This method is used in [18] to
achieve higher compression ratios. Figure 5 clearly shows the increase in mean square
error with stronger compression. It can be seen that for low compression ratios, the effect
of SNR is negligible since the estimation is biased as previously demonstrated in Figure 4,
even for high SNR.
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Figure 5. Frequency estimation mean square error versus compression ratio, the colored noise case,
for SNR = 5 dB and SNR = 30 dB. ωo = π/8 = 0.393 rad, α = 5, B = 10, p = 5, q = 10.

Finally, the frequency estimation MSE as a function of ωo for the white noise case and
the colored noise case is shown in Figures 6 and 7, respectively, and for SNR = 30 dB. In
Figure 6, the values of p and q are taken as 2 and 10, respectively. Increasing the number of
the CCS-recovered autocorrelation lags results in better performance. The no-compression
case clearly approaches the CRLB. Performance is compromised as expected when the
required compression operation is performed. Figure 7 is a repetition of Figure 6 for the
colored noise case. However, here, the value of p is taken as 5 and q as 10, since p must be
greater than Q+1, where Q is the order of the coloring filter previously described. In this
case, the CRLB is a function of ωo as can be verified by Equation (15). This is in contrast
to the constant CRLB in the white noise case. The performance is comparable to that of
Figure 6, but compression slightly degrades the MSE in Figure 7 regarding the colored noise
case. It can be observed that the 9/11 compression results are better (lower MSE) for the
white noise case due to using more CCS-recovered autocorrelation lags in the estimation
process. In both figures, the compression results are perceptibly better in the range of ωo
less than (π/2) rad.

The CCS algorithm itself is not directly related to colored noise, but the work in [27]
on which the present work is based is MA colored noise resilient. The CCS method
has been incorporated in this work to compute the correlation values for the case of
compressed measurements. The work in [27] and, consequently, the present work are
resilient to MA noise because, as stated in Section 2, the autocorrelation of the colored noise
is zero for shifts greater than the order of the MA stochastic process of the colored noise.
Figures 6 and 7 support this argument since the performances in white and colored noise
are comparable, although the white noise case shows a slightly better performance due
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to using more correlation lags than in the colored noise case. The only restriction in the
colored noise case is that the lags must be greater than the MA order; therefore, there are
fewer available lags to take part in the estimation process.
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Figure 7. Frequency estimation mean square error versus ωo for the colored noise case. SNR = 30 dB,
α = 5 and B = 10, using CCS with different compression ratios as well as the estimator without
compression [27], p = 5, q = 10.

5. Conclusions

Compressed measurements of a single sinusoid in MA colored noise are used to
reconstruct the second-order statistics for the purpose of frequency estimation of the
original uncompressed noisy sinusoid using compressive covariance sensing. Estimation
accuracy is acceptable for moderate compression ratios and was found to degrade for
lower (better) compression ratios generally resulting in biased estimates. For a fixed
compression ratio, the mean square estimation error was found to improve (decrease)
as the number of available compressed signal samples increased. The best performance
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results with compression were observed for sinusoid frequencies less than (π/2) radians.
The advantages gained by compression may outweigh the disadvantage of decreased
estimation accuracy such that the performance acceptability is based on a complexity-
accuracy tradeoff that is application-dependent.
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