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Abstract: Very Long Instruction Word, or VLIW, architectures have received much attention in
specific-purpose applications such as scientific computation, digital signal processing, and even
safety-critical systems. Several compilation techniques for VLIW architectures have been proposed
in order to improve the performance, but there is a lack of research to improve reliability against
soft errors. Instruction duplication techniques have been proposed by exploiting unused instruction
slots (i.e., NOPs) in VLIW architectures. All the instructions cannot be replicated without additional
code lines. Additional code lines are required to increase the number of duplicated instructions in
VLIW architectures. Our experimental results show that 52% performance overhead as compared
to unprotected source code when we duplicate all the instructions. This considerable performance
overhead can be inapplicable for resource-constrained embedded systems so that we can limit
the number of additional NOP instructions for selective protection. However, the previous static
scheme duplicates instructions just in sequential order. In this work, we propose packing-oriented
duplication to maximize the number of duplicated instructions within the same peroformance
overhead bounds. Our packing-oriented approach can duplicate up to 18% more instructions within
the same performance overheads compared to the previous static duplication techniques.

Keywords: soft error; reliability; VLIW; fault-tolerance

1. Introduction

With technological advances, soft errors are becoming increasingly critical concerns in
computing systems at the early design phase, especially in modern-embedded systems [1,2]
and safety-critical systems such as aerospace computing [3,4]. Soft errors are transient bit
flips in semiconductor devices caused by electrical noise, external electronic interferences,
cross-talk, alpha particles, neutron, cosmic ray, etc. [5]. The soft error rate is exponentially
increasing as the critical charge decreases. Critical charge, which is the minimum charge
causing soft errors, and soft error rate have an inversely exponential relationship. Critical
charges are decreasing due to a shrinking feature chip size and decreasing supply volt-
age [6]. Thus, the reliability of embedded systems against soft errors is threatened due to
the small form factor intensive low-power computing [7].

Protection techniques for safety-critical embedded systems have been proposed even
though soft errors are temporary and non-destructive [8]. Information redundancy tech-
niques, such as error detection and correction codes, can protect memory systems with the
simple design complexity based on coding theory [9]. Modular redundancy methodologies
also have been proposed for protecting sequential elements and combination logic [10].
Modular redundancy techniques duplicate or triplicate modules, and they can detect or
correct soft errors by validating results between the original module result and copied one.
However, hardware-based protection techniques incur significant overheads in terms of
performance, energy consumption, and hardware area since they require additional hard-
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ware components such as coding bits (for information redundancy), redundant modules
(for modular redundancy), and validation logic elements (e.g., comparator and voter).

Very Long Instruction Word (VLIW) architectures are parallel processors that max-
imize instruction-level parallelism [11] to improve performance. Furthermore, VLIW
architectures allow system designers to manage multiple parameters such as power and
performance since they can provide complete control on instruction scheduling at compile
time. VLIW architectures have been exploited in state-of-the-art embedded systems such as
the Xtensa Processor and Accelerated Processing Unit (APU) [12-14]. VLIW architectures
can be used as co-processors [15] that accelerate kernel parts of a program or customized
for IP cores for next-generation mobile devices, home entertainment products, and stream
processors [16].

Several instructions can be executed in VLIW processors simultaneously, concurrently,
in parallel, while conventional processors can execute instructions in sequence. Thus,
compilers for VLIW architectures should prepare a fully scheduled set of instructions, and
the VLIW architecture itself does not have to do additional dependency checks between
instructions during execution. However, there are many unused instruction slots (No
OPerations or NOPs) if there is insufficient instruction-level parallelism in applications.
According to our preliminary experimental results, almost half of the instructions are NOPs
among several benchmarks in our VLIW architectures.

Several compilation techniques for VLIW architectures have been proposed in or-
der to improve the performance or solve the dependency problems, e.g., reducing the
number of NOPs or improving the scheduling algorithm [17]. However, the reliability of
VLIW architectures has received much attention since VLIW architectures are commonly
employed in “safety-critical” embedded systems such as aerospace, automotive, and rail
transport applications [18]. In order to improve the reliability of VLIW architectures,
several compiler-assisted instruction duplication [19,20] have been proposed by using
NOPs and additional code lines. However, all the instructions in applications cannot be
duplicated without performance overhead even though the complication techniques use
the existing NOPs.

In order to enlarge the number of duplicated instructions, previous complication
schemes add NOP instructions intentionally. Assume that all the instructions need to be
duplicated for complete protection. Our preliminary experimental results show that the pro-
tection can incur up to 67% performance overhead as compared to unprotected cases when
we duplicate all the instructions. Therefore, it is inappropriate for resource-constrained
embedded systems due to the severe performance overhead. In order to mitigate the
performance overhead, original instructions in VLIW architectures can be duplicated under
the architect-defined performance boundary, e.g., the number of instructions. The result of
the original instruction and duplicated instruction are compared to detect bit flips caused
due to soft errors. The compiler-assisted algorithm can protect VLIW architectures with
minimal hardware modification to store original and duplicated instructions and validate
results between them.

However, previous solutions cannot provide efficient reliability against soft errors
since they have no priority-based code duplication algorithms within a given performance
bound. They duplicate instructions by the sequential order of applications. In this paper,
we propose priority-based instruction duplication techniques for VLIW datapaths. We
define the priority of instructions to duplicate more instructions within the architect-defined
code line overheads. We suggest a packing-oriented duplication to maximize the number
of duplicated instructions compared to previous static schemes. In the packing-oriented
duplication scheme, unduplicated instructions in the same cycle are defined as a single
pack, and our approach selects packs with more instructions. Our experimental results
show that our packing-oriented method can duplicate up to 18% more instructions than
the existing static duplication under the same code line overheads without any additional
hardware overheads.
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The rest of this paper is structured as follows. In Section 2, we have introduced
related research regarding soft error protection techniques for embedded systems and
VLIW architectures. Our approach and algorithm written by pseudo code are described in
Section 3, and experimental setup and observations are summarized in Section 4. Finally,
Section 5 concludes this paper and guides the direction of future research.

2. Related Works

The reliability against soft errors in embedded processors is becoming a paramount
design concern, especially in embedded systems with the development of the technology [1].
Soft errors are temporary bit flips in the semiconductor device by external radiation, alpha
particles, neutrons, and even cosmic ray [21]. The soft error rate is continuously increasing
even with FINFET technology due to the reduction in the critical charge [22,23], and threats
of these rising soft errors cannot be ignored anymore. Moreover, the reliability of embedded
systems is becoming more important [1] since embedded systems can be exploited in crucial
applications such as fiscal applications, mobile healthcare systems, IoT devices, and even
automotive systems in the near future.

Logic elements, such as sequential elements and combinational logic, are one of the
most sensitive parts to soft errors [24]. Spatial redundancy-based techniques, such as
DMR (Dual Modular Redundancy) and Triple Modular Redundancy (TMR), can improve
the reliability against soft errors. DMR exploits one additional module to replicate and
detect soft errors by comparison between outputs of the original module and duplicated
module. DMR can detect soft errors with relatively less overhead, but it cannot correct
soft errors without additional mechanisms, e.g., checkpoint and rollback [25]. TMR has
been proposed to correct soft errors by using additional two modules and a majority
voting mechanism. In TMR systems, original modules are triplicated into three modules
(original and additional two modules) running in parallel, and their results are corrected
by majority voting. In order to minimize area overheads from TMR, optimized TMR has
been proposed for VLIW architectures [26]. However, modular redundancy schemes incur
considerable overheads in terms of hardware area, power, and performance due to the
module duplication/triplication and expensive comparison/voting mechanism.

Temporal redundancy-based techniques have been proposed to protect logic circuits.
The same circuit operates the same data multiple times. Original results are compared
with subsequent results to detect soft errors. In order to correct soft errors, operations
should be executed three times, and a two-out-of-three voting mechanism selects correct
results. Hyman et al. [27] proposed temporal redundancy by using the Latency Slack
Cycle (LSC) of instructions for multi-core processors. LSC is the number of cycles before
the computed result from the instruction becomes the source operand of a subsequent
instruction. Protection techniques based on temporal redundancy can improve reliability
with less hardware area overhead compared with modular redundancy. However, it still
incurs severe overhead in terms of performance and hardware area.

For these reasons, hardware-based protection techniques are not appropriate for
resource-constrained embedded systems due to the additional hardware modification. In
order to minimize hardware modification, various software-based protection techniques
have been proposed. Oh et al. [28] proposed EDDI (Error Detection by Duplicated In-
structions), which duplicates instructions at different registers or variables and inserts a
comparison and validation at store or branch operation during the compile stage. EDDI
can detect most errors in common except control flow check without any hardware modifi-
cation or additional area overhead. However, EDDI induces performance overhead since it
duplicates and compares all the instructions without the priority of instructions.

Compiler-assisted instruction duplication techniques are appropriate for VLIW archi-
tectures since all the instructions in VLIW architectures can be scheduled at the compile
stage. Holm et al. [29] proposed a software-only fault-tolerant technique for VLIW ar-
chitectures by inserting redundant instructions into functional units. Bolchini et al. [30]
presented additional instructions to detect hard and soft errors for a VLIW datapath. How-
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ever, complete duplication of all instructions can incur severe overhead in terms of energy
and performance due to a large number of instructions. In order to reduce the overhead
from software-only protections, Hu et al. [19], Lee et al. [20], and Sartor et al. [31] proposed
a VLIW scheduling algorithm by exploiting unused instruction slots with minimal hard-
ware modules such as register queues and comparator. Their approaches can schedule
the original instructions and its duplicated instructions with considering performance or
energy boundary.

However, existing approaches did not define nor consider the priority of instructions,
so they duplicate instructions by the sequential order of instructions. In this paper, we
define the importance of instructions to duplicate instructions effectively within the same
overhead as compared to previous static schemes.

3. Our Approach
3.1. Enhanced VLIW Architecture for Error Protection

In this paper, we assume that our VLIW datapath is composed of two integer ALUs,
one multiplier, and one load/store unit, and one branch unit as illustrated in Figure 1.
Note that we only use integer operation as the target code of VLIW architecture. Since
our VLIW architecture has no branch predictor, branch instructions in our architecture
work the same way as compared to other integer operations. In order to detect soft errors,
comparator (cmp) and register queues (IRVQ—Integer Register Value Queue and LSAQ—
Load/Store Address Queue) are needed. After the original and its duplicated instructions
are processed, computation results are stored in corresponding register queues. If results
from both original and duplicated instructions are stored in register queues, result values
from register queues are compared by comparators as shown in Figure 1. Soft errors can
be detected if the results of original and duplicated instructions are different. note that
our VLIW architecture consists of the comparator and functional units. If the functional
unit executes the redundant instructions, we compare the results from the original and
duplicated instructions. If they are not identical, it is defined as soft errors on the datapath.
Note that we have modified ISA [20] to recognize whether an instruction is or not. If an
instruction is not duplicated, our architecture skips the comparison process.

Instruction Ly Instruction
Cache Register

£

GPR
Register
File

i\ |} |} |} |}

IALU 0 IALU 1 MULT 0 L/SU0 BRU
L |

|

Load/Store Queue £
IRVQ IRVQ IRVQ LSAQ \l/ /|\
- Data
% Cache
&}

@ @ @ @ IRVQ - integer register value queue

LSAQ - load/store address queue

Exception

Figure 1. Our VLIW architecture needs additional queues to store temporal results from original and redundant instructions
(e.g., IRVQ and LSAQ), and it also needs comparator (cmp) to detect soft errors.
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3.2. Selective Code Duplication with Comparable Fault Coverage

The previous static duplication decides the duplicated instruction according to the
sequential order of scheduled instructions. In order to increase the number of duplicated
instructions, we propose packing-oriented duplication. The more number of instructions
are duplicated, the better we can achieve reliability against soft errors. For instance, the
static duplication can duplicate just 39% out of the total instructions without additional
code lines based on our preliminary experimental results for a benchmark convolution.
Thus, additional cycles are required to duplicate the remaining 61% instructions. In this
case, the static duplication adds additional cycles in order of scheduled instructions without
considering the number of duplicated instructions.

MUL r2, r7, r8
SUB r1, r7, r8
LOAD r8, r2

MUL r7, rl, r3
ADD r4, r2, r3
ADD r5, r2, r6

MO QW e

In order to describe the processes for instruction duplication, we have chosen a set of
code segments including integer ALU operation (ADD and SUB), multiplication (MUL),
and memory (LOAD) operations with considering register dependencies among operations
as shown in Figure 2. In Figure 2, ¥N indicates an N numbered register in register files. The
first operand is the destination, and the second and third operands are the sources. For
example, operation A: MUL 72, r7, r8 executes a multiplication of contents in 7 and r8 and
stores the result in 72. In the case of memory instructions, they use the first and second
operands as the register index and memory address, respectively. For instance, operation C:
LOAD 18, 12 accesses the memory address using 12, and the value in the memory address
writes the value of 78.

Our original compiler schedules the code segment and generates the scheduled instruc-
tion sequences for VLIW architecture as shown in Figure 2a. The scheduled instructions in
Figure 2a present two empty slots in our 4-way VLIW datapath that are unused each cycle,
i.e.,, NOPs. Thus, the compiler can duplicate only one instruction (instruction B) out of six
instructions without the additional code lines as shown in Figure 2b. If the additional one
code line is permitted by system engineers, just one more instruction (instruction A) can be
duplicated at cycle 1 as depicted in Figure 2c. It is because that the static duplication adds
the cycle to duplicate as following the order of instructions. As a result, only one instruc-
tion of the remaining five instructions (20%) is duplicated with one code line overhead in
this scenario.

In our packing-based duplication, the compiler adds the code line to duplicate more
instructions than the previous static duplication. The unduplicated instructions at the same
cycle are packed and considered as a unit. In Figure 2a, only instruction A is in a pack at
cycle 0 since instruction B can be duplicated at the same cycle. In cycle 1, instruction C,
D, E, and F are considered a single pack. In other words, the pack size of cycle 0 is only 1,
while that of cycle 1 is 4. Thus, cycle 1 is selected to be duplicated by our packing-based
duplication, and four instructions out of the remaining five instructions (80%) can be
duplicated within one code line overhead as shown in Figure 2d. In this simple scenario,
our packing-based duplication increases the number of duplicated instructions by 60% as
compared to the existing static duplication. Note that the original scheme duplicates just
20% of the remaining instructions, while our packing-based duplication duplicates 80%
of them.
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Integer ALU 0 Integer ALU 0 Mult Unit 0 Ld/St Unit 0
OlBlSUB|r1|r7|r8| |A|MUL|r2|r7|r8|
llFlADD|r5|r2|r6| |E|ADD|r4|r2|r3| |D|MUL|r7|r1|r3| |C|LOAD|r8|r2| |

(a) Original instructions scheduled on our VLIW architecture.

Integer ALU 0 Integer ALU 0 Mult Unit 0 Ld/St Unit 0
OlBlSUB|r1|r7|r8| |B’|SUB|r1’|r7’|r8’| |A|MUL|r2|r7|r8|
1|F|ADD|r5|r2|r6| |E|ADD|r4|r2|r3| |D|MUL|r7|r1|r3| |C|LOAD|r8|r2| |

(b) Instruction duplication without performance overhead. Only 1 instruction can be
duplicated.

Integer ALU 0 Integer ALU 0 Mult Unit 0 Ld/St Unit 0
0|B|SUB|r1|r7|r8| |B’|SUB|r1’|r7’|r8’| |A|MUL|r2|r7|r8|
1 |A| MUL|r2’|r7’|r8’|
2|F|ADD|r5|r2|r6| |E|ADD|r4|r2|r3| |D|MUL|r7|r1|r3| |C|LOAD|r8|r2| |

(c) Previous static instruction duplication with 1 line overhead. Only 1 instruction
out of the remaining 5 (20%) can be duplicated.

Integer ALU 0 Integer ALU 0 Mult Unit 0 Ld/St Unit 0
OlBlSUB|r1|r7|r8| |B’|SUB |r1’|r7’|r8’| |A|MUL|r2|r7|r8|
1|F|ADD|r5|r2|r6| |E|ADD|r4|r2|r3| |D|MUL|r7|r1|r3| |C|LOAD|r8|r2| |
2 |F’|ADD|r5’|r2’|r6’| |E’|ADD|r4’|r2’|r3’| |D’|MUL|r7’|rl’|r3’| |C’|LOAD|r8’|r2’| |

(d) Our packing-based instruction duplication with 1 line overhead. Out of remaining
5 instructions, 4 instructions (80%) can be duplicated.

Figure 2. Simple scenario to show the efficacy of our packing-based duplication scheme. Within the
same code line overhead (1 line), our packing-oriented scheme can duplicate 60% more instructions.

3.3. Profiling-Based Algorithm for Packing-Oriented Duplication

In order to predict the number of duplicable instructions, we have implemented the
profiling-based algorithm as described in Algorithm 1. Assume that the original assembly
code consists of 9 instructions such as Al, B1, A2, B2, D2, A3, D3, A4, B4, C5, and D5, and
its runtime is 5 cycles as shown in Figure 3. In Figure 3a, prefix A and B represent multiply
and subtraction, respectively. The prefix C and D are memory and multiply instructions,
respectively. The number in the postfix is the cycle, so Al represents ALU instruction
which runs on the first cycle.

First off, our algorithm duplicates instructions that do not require additional in-
structions. Line 7 and 8 copies ALU instructions within the same cycle as described in
Algorithm 1, and we also copy instructions in the different cycle using NOP instruction.
Our algorithm counts the number of unduplicated instructions (UnDup) as shown in Line
10, 11, and 14, and we also count the number of duplicated instructions (DupOther) in other
cycles in Line 14. For instance, there are no unduplicated instructions (UnDup: 0) in the first
cycle since Al and B1 are duplicated in the fifth cycle (DupOther: 2). In the case of the third
cycle, UnDup is 1 (D3) instead of 2 since the original instruction (A3) is duplicated at the
same cycle. Without performance overheads, 7 shaded instructions cannot be duplicated
as shown in Figure 3b.
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Algorithm 1 Profiling-based algorithm to predict the number of duplicable instructions

1: procedure PROFILING-BASED ALGORITHM(#, C)
> Parmeters n: number of total instructions, c: number of additional instructions
UnDup[n] = {0}
DupOther[n] = {0}
Sum|[n] = {0}
fori=1tocdo
forj=1tondo
if (unit[0] != NOP) OR ((unit[1] == NOP) then
> Both unit[0] and unit[1] execute ALU instrutions

8: duplicate unit[0] to unit[1]
9: end if
10: UnDupl[j] = (number of instructions)
11: UnDuplj] -= (duplicated instructions at the same cycle)
12: fork=itondo
13: UnDuplj] -= (duplicated instructions at the kth cycle)
14: DupOther][j] += (duplicated instructions at the kth cycle)
15: end for
16: Suml[j] = UnDupl[j] + DupOther]j]
17: end for
18: Target = Select the index which has the largest number from Sum array
19: Add NOP cycle after line target
20: Copy instructions by using additional NOP cycle
21: end for

22: end procedure

ALUO ALU1T MultO0 Ld/StO ALUO ALU1T Mult0 Ld/St0 UnDup DupOther Sum
1[ A1 ] B1 [ Nop [ NoP | 1[ A1 ] BT [ NOP]NOP] oo 2 2
2[ A2 ] B2 [ Nop ] D2 ] 2[ A2 ] B2 [ NoP | D2 ] =2 1 3
3[ A3 [ NoP [ Nop | D3 ] 3[ A3 J A3 I NoP ] D3 | 1 0 0
4 A4 T B4 [ NOP | NOP | 4 A4 ] B4 INOP]T D2 ] 2 0 2
s NoP [ NoP [ ¢5 | D5 | s A [ B ] ¢85 [ b5 | 2 0 2
(a) Original instructions (b) Instruction duplication without
without duplication. performance overheads.
ALUO ALU1 Mult0 Ld/StO ALUO ALU1 Mult0 Ld/StO UnDup DupOther Sum
1[ A1 ] B1 [ Nop [ NoP | 1[ A1 ] BT [ NOPNOP ] oo 2 2
1"[ AT ] B1" [ Nop | NoP | 2[ A2 ] B2 [ Nop ] D2 ]
2[ A2 ] B2 [ Norp | D2 | 2[ A1 ] B [ Nop | D2 ]
3[ A3 ] A3 [ Nop | D3 | 3[ A3 ] A3 ITNoP] D3 ] 1 0 1
4 A4 ] B4 [ Nop [ D2 ] 4 A4 ] B4 I NOP] D3] 2 0 2
5[ A2 | B2 | ¢5 [ D5 | s A2 [ B2 [ s [ b5 ] = 0 2
(c) Instruction duplication based (d) Instruction duplication based
on the sequential order of instructions. on our profiling-based algorithm.

Figure 3. Our profiling-based algorithm can predict the number of duplicable instructions based on
the number of unduplicated instructions and duplicated instructions at different cycles.

In order to maximize the number of duplicated instructions with the performance
overhead, we choose the instruction which has the largest sum of UnDup and DupOther
instead of the sequential order of instructions. Figure 3c shows the static scheme which
duplicates instructions by the sequential order of instructions. Since the NOP cycle is
added after the first cycle, we mark the additional cycle as 1" as depicted in Figure 3c. And,
it duplicates 2 more instructions, which is the sum of UnDup and DupOther at the first cycle,
as compared to Figure 3b. Based on the profiling-based approach, we select the second
cycle as the duplication target since it has the largest sum of UnDup and DupOther as shown
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in Figure 3d. In this case, it duplicates 3 more instructions as compared to the base case
(Figure 3b) since the sum of UnDup and DupOther at the second cycle is 3. Assume that
we add 1 more instruction based on Figure 3d. We select the first cycle as the duplication
target since it has the largest sum among the remaining cycles.

Without a profiling-based algorithm to predict the number of duplicable instructions,
we have to analyze all the possible cases. If we add 1 cycle based on Figure 3b, we need to
analyze 5 cases. This is because that we can add an instruction through the first cycle to the
fifth cycle. Assume that we add n cycles of NOP cycles, and its runtime is c cycles. In this
case, :C,, cases are possible since we can select c instructions as the copy target out of total
n instructions. For instance, the benchmark convolution consisted of 46 instructions. If we
add 10 cycles into this benchmark, we need to analyze 45C1g (=4,076,350,421) cases. On the
other hand, our profiling-based algorithm needs to check just 10 cases since it just counts
the number of duplicated instructions as described in Algorithm 1.

4. Experiments
4.1. Experimental Setup

Figure 4 shows our experimental framework in order to present the efficacy of our
packing-based duplication. All the benchmarks in this paper are code segments from
DSPstone [32], digital signal processing-oriented applications. Note that code segments are
selected in the loop since VLIW architecture is used to accelerate the loop iteration. This
is because compilation techniques suppose 10 times of execution for instructions in the
loop [33]. Thus, it can improve the overall performance when we accelerate instructions in
a loop rather than other instructions since the loop takes up the majority of execution time.
The high-level code from these benchmarks is translated to common low-level language
via GCC (Version 4.1) at the front-end phase.

________________________ FeEETEEEEEEEEEEEEEEES _I
Benchmarks Compiler o Simulator 1
= |
(DSPstone) Front-end Back-end ‘E% Synopsys Processor Designer |
2,5
L GCC 4.1 | SoarGen e\ /fm-—-—-—--—-—-—-—_-—_-——-—} - === !
me— Tt g% A4
< I Profiling- | o 5 :
Architectural Common | rl(:als;gg 1 | Instruction | L Architectural I
description low-level code I aloorithm 11 scheduler | cls specification E)(Zegustlif)?{
(SoarDL) ol 1 FETI i I < (LISA 2.0) e

Figure 4. Our compiler-simulator framework to present the efficacy of our approach.

At the back-end phase of the complication, the standard low-level code is trans-
lated to architecture-specific low-level code using the architecture description language,
SoarDL [34]. During the back-end phase, we have modified a retargetable compiler
platform, SoarGen [34], to implement our packing-based duplication as described in
Algorithm 1. After two-level compilation, the high-level source code can be executed by
our VLIW architecture. In order to show the efficacy of our packing-based duplication
compared to the static duplication, we have also implemented the instruction duplication
in sequential order.

The low-level code is executed on the simulator to estimate the code size and execution
time. We have used the Synopsys Processor Designer [35] to generate a software-level
simulator to imitate the proposed VLIW architecture. Note that we use 90 nm technology to
simulate our VLIW architecture. We selected 4-way VLIW architecture which is described
by hardware description language LISA 2.0 [35]. The baseline architecture behind VLIW
architecture exploits a standard RISC-style ISA such as MIPS [36]. Our 4-way VLIW
architecture is composed of 4-issue slots such as two Integer ALUs (IALU), one Multiplier
(MULT), one Load/Store Unit (L/SU), and one Branch Unit (BRU). We estimated the cell
area of our VLIW architecture by using the Synopsys Processor Designer [35] to detect soft
errors as shown in Table 1. Even though our VLIW architecture needs the comparator to
detect erroneous data, it incurs just 3.2% overhead in terms of hardware overhead.
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Table 1. Cell area of our VLIW architectures which is modified to detect soft errors.
Type Original Packing-Oriented Duplication
Combinational area 426,636 um? 437,481 um?
Non-combinational area 136,998 pm? 144,327 um?
Total 563,633 um? 581,808 um?

100% -

4.2. Experimental Results

Figure 5 shows the efficacy of our packing-oriented protection schemes compared to
the static scheme for a benchmark convolution. The vertical axis represents the ratio of
duplicated instructions among the entire instructions. The horizontal axis represents the
allowed performance overheads in terms of execution time. If the number of additional
code lines is zero, we do not allow the performance overhead for duplication. Without
adding code lines, about 39% of the entire instructions can be duplicated by exploiting
unused instruction slots for a benchmark convolution.

‘Sequential vs. Packing-oriented Scheduling (convolution)‘

+Sequential #Packing ‘

=3
=3
°
°©
!

T 40% +

Ratio of Duplicated Instructions

20%

10% 20% 30% 40%
Performance overhead

Figure 5. Our packing-oriented duplication can duplicate 18% more instructions as compared to previous sequen-

tial duplication.

We need to allow more code lines to duplicate the remaining 61% of the entire in-
structions. In order to duplicate all the instructions for the benchmark convolution, almost
half of the execution time is required as shown in Figure 5. If we allow 2% performance
overhead for the benchmark convolution, the previous sequential scheme can duplicate
only 41% of the remaining instructions. On the other hand, our packing-oriented scheme
can duplicate 52% among entire instructions. If 11% of performance overhead is allowed
by system engineers, only 64% of the remaining instructions can be duplicated by the
sequential scheme, while our packing-oriented scheme can duplicate 39%.

Table 2 shows the maximum difference of duplicated instructions between the se-
quential scheme and packing-oriented one within the same performance overhead in
terms of execution time. For example, a packing-oriented scheme can duplicate 4% more
instructions than the previous static approach for a benchmark complex_multiply. Our
packing-oriented scheme can duplicate an additional 9% of remaining instructions as
compared to the static sequential approach on average.
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Table 2. The maximum efficiency of our packing-oriented approach as compared to the sequen-
tial scheme.

Benchmarks Maximum Difference
complex_multiply 4%
complex_update 12%
convolution 18%
dot_product 14%
fir 6%
fir2dim 3%
iir_biquad_one_section 13%
Ims 8%
matrix 3%
Average 9%

This maximum difference between the static sequential approach and the packing-
based one can vary 3% to 18% depending on the characteristics of benchmarks. For
example, only 3% of remaining instructions can be copied by our packing-oriented scheme
as compared to the static scheme for the benchmark matrix. This is because the beginning
sections of this application have a larger number of packed instructions rather than middle
or end sections in the case of the benchmark matrix. On the other hand, in the case of the
benchmark convolution, the middle of the application has a much larger number of packed
instructions than the beginning sections.

5. Conclusions

VLIW architectures are deployed in the many modern-embedded systems in order
to improve performance, and they are also exploited for safety-critical applications such
as healthcare and automotive systems. As the reliability of embedded systems against
soft errors is becoming more critical with technology scaling, several techniques have
been proposed to protect VLIW architectures. Hardware-based techniques such as mod-
ular redundancy incur overheads in terms of area and power consumption because of
additional hardware modification, and software-based methods, such as instruction du-
plication, have a huge performance overhead due to expensive validation. In order to
bridge the gap between them, compiler-assisted instruction duplication techniques have
been proposed for VLIW architecture. However, the previous static approaches duplicate
instructions according to the sequential order of instructions, so they cannot effectively
exploit the instruction-level parallelism in VLIW architectures. In this paper, we present the
packing-oriented duplication in order to maximize the number of duplicated instructions
within the same performance overheads. We define the pack as the number of duplicable
instructions in the same code line, and we select larger packs for instruction duplication.
Our experimental results reveal that the packing-oriented approach can duplicate 18%
more instructions as compared to the static one within the same code line overheads.
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