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Abstract: For connected vehicles, as well as generally for the transportation sector, data are now seen
as a precious resource. They can be used to make right decisions, improve road safety, reduce CO2

emissions, or optimize processes. However, analyzing these data is not so much a question of which
technologies to use, but rather about where these data are analyzed. Thereby, the emerging vehicle
architecture has to become a data-oriented architecture based on embedded computing platforms and
take into account new applications, artificial intelligence elements, advanced analytics, and operating
systems. Accordingly, in this paper, we introduce the concept of data management to the vehicle by
proposing an on-board data management layer, so that the vehicle can play the role of data platform
capable of storing, processing, and diffusing data. Our proposed layer supports analytics and data
science to deliver additional value from the connected vehicle data and stimulate the development of
new services. In addition, our data platform can also form or contribute to shaping the backbone
of data-driven transport. An on-board platform was built where the dataset size was reduced 80%
and a rate of 99% accuracy was achieved in a 5 min traffic flow prediction using artificial neural
networks (ANNs).

Keywords: intelligent transportation systems; intelligent vehicle; on-board computing; data manage-
ment; connected vehicle; artificial neural network; transport data

1. Introduction

The United Nations has projected that more than 66% of the world’s population will be
urban by 2050—or an increase of 2.5 billion to current urban communities—creating many
challenges related to urban living (World Urbanization Prospects, UN-Habitat, 2018). As an
obvious consequence, big cities holding more than 10 million inhabitants will be faced with
a set of deficits related to the urban mobility, notably with the increased car ownership. For
instance, road traffic congestion can be expected to become more intricate, further exacerbat-
ing already high negative environmental, social, and economic impacts. As reported by the
U.S, ‘2019 Urban Mobility Report’, the trends from 1982 to 2017 show that congestion is a
persistently growing problem [1]. Nevertheless, the intelligent transportation system (ITS),
which is one such promising technology, has attracted the interest of many researchers
from around the world since it aims at introducing improvements regarding the efficiency
and safety level of the roads and transportation system via the adoption of different new
information and communication technologies (NICT) on sundry levels, including sensing,
communication, application, and computing. Some initiatives are illustrated in [2–8]. Auto
manufacturers, stakeholders, transportation agencies, and researchers are working together
to make vehicles more intelligent and autonomous, adding new sensing and connectivity
solutions coupled with high-performance embedded computing. Today’s cars hold about
40 microprocessors, dozens of sensors, and about 20,000 components [9]. In addition,
wireless technologies and automotive safety have witnessed unprecedented developments
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over the past 30 years as a variety of vehicle communication networks have been developed
under a common term known as vehicle to everything (V2X). With diligent work to move
the emerging 5G technology from the labs to real life, cellular vehicle to everything (C-V2X)
technology will provide superior performance to support vehicles communicating with
transport infrastructure [10,11]. This high capability of communication and progresses in
vehicular sensing technologies have paved the way for one of the most heavily researched
ITS technologies, known as connected vehicle technology (CV) [12,13]. The Connected
Vehicle Research project, supported by the United States Department of Transport, ITS
Japan, and Co-Operative Networks for Intelligent Road Safety (COOPERS) in Europe, can
be considered a successful research-and-development initiative which aims to tackle some
of the biggest ITS challenges in the areas of safety, mobility, and environment [14]. It is
evident that, in the connected vehicle scenario, applications are the cornerstone of ITS in
supporting sustainable urban development by improving road traffic efficiency, safety, and
mobility [15]. The development of new applications and services for sustainable ITS closely
rely on data that play a central role in developing new solutions, tools, and businesses.

On the one hand, there is no doubt that the different types of datasets generated by
today’s vehicles feed a variety of multi-modal transportation applications, to expeditiously
supply not only motorists, but all transportation users with appropriate information as
they can serve as the source for many use cases and services [16]. Nevertheless, how do we
harness the power of those data to connect with road users, turn insights into action, and
feed more applications and third-party service providers?

On the other hand, analyzing these data is not so much a question of which technolo-
gies to use, but rather about where these data are analyzed. At the present time, technology
makers are proposing real models to meet the on-board computing demands. It is possible
now to integrate industrial-grade computers into modern cars. Hence, for more flexibility
in meeting the daily challenges of autonomous and connected vehicle applications, ITS has
to adopt on-board computing technology as an emerging paradigm.

In this paper, to meet the needs of road users and third-party service providers, we
introduce the concept of data management to the vehicle by proposing an on-board data
management layer, so that vehicle can play the role of data platform capable of storing,
processing, and diffusing data. Our proposed layer support analytics and data science
to deliver additional value from connected vehicle data, and stimulate the development
of new services. In addition, our data layer can also form or contribute to shaping the
backbone of data-driven transport.

The main novelty of our data management layer is that it relies on the on-board
computing paradigm, which reduces the data processing costs that would be conducted
near the source of data generation. Further, it saves massive bandwidth costs by moving
workloads to the vehicle. Streamed and generated datasets will locally by stored, analyzed
for anomalies, filtered for redundant data points, and reshaped in different forms. Then,
only the necessary data are delivered.

2. Background
2.1. Academia

The rapid advancement in the Internet of Vehicles (IoV), along with the ever-increasing
data consumption, clearly reflects the importance of data for connected vehicles. If the latter
form the center of future intelligent transportation systems, one of the most interesting
fields that presents many challenges as we progress is transport data. Certainly, data
have great potential and power, and data are the blood that will run through the veins
of connected vehicles. In this regard, the increasing focus of the ITS research community
towards the subject of data has led to a lot of works and research. The assessment and
review of some of the most recent relevant academic studies has led to the conclusion that
most of them have treated transport data from three perspectives: (i) data collection; (ii)
data sharing; (iii) data analytics.
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From the data collection perspective, the authors of [17] proposed the recruitment of
high reputation users to perform urban sensing for a desired coverage, given a limited
budget. Similarly, data collection based on the recruitment of connected vehicles was
studied by Author18 [18], which required an optimal set of vehicles to be identified and
recruited to carry out urban data collection in favor of a service provider to facilitate
users on city streets. In other study, Author19 [19] focused on how to maximize message
coverage in urban vehicular networks by the optimal deployment of roadside units. They
considered traffic stream and delay constraints of applications to attentively identify the
appropriate site for RSUs. Recently, Author20 [20] suggested a solution to collect real-time
floating car data using dedicated short-range communication (DSRC).

Some other studies have been conducted on connected vehicles data from the data
sharing perspective. Accordingly, the authors of [21] dealt with connected vehicles-related
data distribution tasks, where they designed an infrastructure to enable large-scale message
delivery by labeling and customizing unstructured data into topics to serve a wide range
of consumers. Author22 [22] discussed the possibility of substituting RSU by city buses
widely distributed in the city area to improve intra-cluster BSM dissemination. The authors
of [23] introduced a unicast backbone-based data distribution technique to decrease data
distribution overhead and latency. In mitigating the issues of frequently changing topol-
ogy, a proposed solution is to construct a vehicular backbone and establish the vehicles’
forwarding tables in view of realizing unicast data delivery and data aggregation.

In view of the data analytics perspective, the authors of [24] came up with a big
data analytics architecture on autonomous vehicles. The proposed architecture comprises
distributed data storage mechanism for a streaming process for real-time analysis and
the vehicular cloud server tool for batch processing the offline data. In [25], the authors
presented a data management approach for a dynamic highway toll pricing application.
In [26], the authors relied on a Hadoop tool to examine large amounts of traffic data. Par-
ticularly, they used MapReduce framework in Hadoop to divide large scale traffic event
data into sub-events. Next to that, they applied parallel processing on sub-events to derive
anomalous traffic events. The authors of [27] conducted a case study where machine learn-
ing schemes were applied to analyze vehicular measurement data for efficiently detecting
negative communication conditions. In [28], several technical challenges that appear when
applying data analytics in the context of cooperative intelligent transport systems (C-ITS).
The authors also conducted simulation tests to demonstrate how data analytics can help
C-ITS applications. In view of meeting the rapidly evolving and increasing data traffic
volume in vehicular networks in general, AI-based solutions have shown promising ad-
vantages when used to address the various VANET challenges through real-time analysis
and decision making with intelligent resource management [29].

Summing up, in the transport data domain, the most important ability is the instant
and efficient processing of data. However, as illustrated in Table 1, not all previous works
have considered the storage and processing tasks; even those that considered it have relied
on out-vehicle storage and processing resources, such as cloud and edge resources.
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Table 1. Summary of related works.

Citations Perspective Data Source
Data Management

Hardware Resources
Tasks Study Case

[17] Data Collection Trajectory data Not Considered Not Considered

[18] Data Collection Trajectory data Not Considered Not Considered

[19] Data Collection Trajectory data Not Considered Not Considered

[20] Data Collection Trajectory data Not Considered Not Considered

[22] Data Sharing BSMs Not Considered Not Considered

[23] Data Sharing Not specified Not Considered Not Considered

[28] Data Analytics RSU data Not Considered Not Considered

[21] Data Sharing
Traffic-related and
non-traffic-related

data

Storage,
Processing

Message delivery
platform

Two computing
platforms

(Out of vehicle)

[24] Data Analytics KITTI vision
Benchmark Dataset

Storage,
Processing

Big Data
Classification

External server
(Out of vehicle)

[25] Data Analytics Highway traffic data Storage,
Processing

Traffic prediction
services Worker node

[26] Data Analytics Large-scale
traffic data

Storage,
Processing

Driver behavior
analyzing

Hardware cluster
of 4 nodes

(Out of vehicle)

[27] Data Analytics OBU data Storage,
Processing

Detecting negative
communicationconditions Cloud

2.2. Automotive Industry

From the industry side, autonomous driving is the biggest innovation in the auto-
motive industry. Industry experts such as The Society of Automotive Engineers (SAE)
International defined six levels of driving automation ranging from 0 (no driving automa-
tion) to 5 (full driving automation) [30].

Today, the industry has achieved Level 4 autonomous driving. While autonomous
driving innovators work toward achieving fully automated driving, different industries
are defining new business models to use the advancement in autonomous driving. Vehicle
innovation encompasses the progress in autonomous driving to innovate new services and
capabilities that span across industries. Vehicle innovation’s services include the in-vehicle
experience and more.

Fully autonomous vehicles do not require human attention, and will not even have
steering wheels or acceleration/braking pedals. However, as illustrated in Figure 1, data
are its primary driver and therefore should be considered as an essential vehicle part in the
engineering and design of Level 5 vehicles.
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Figure 1. Levels of autonomy and data platform.

3. On-Board Data Management Layer: Our Proposal

Given our primary goal of how to harness the power of the connected vehicles’ data to
connect with road users, feed more applications, and supply third-party service providers,
the main idea is to introduce the concept of data management to the vehicle by proposing
a new layered data-oriented architecture based on on-board computing.

3.1. Basic Concept

Our data management concept refers to the entire process aimed at storing, processing,
and providing the data created or collected by the vehicle. This concept encompasses a wide
combination of functions aimed at making data accurate, consistent, valuable available,
and accessible.

Figure 2 illustrates the different stages of the data lifecycle in the proposed data
management context. On-board computing, also known as embedded computing, is an
emerging paradigm that aims to meet the need for low latency and real-time interactive
applications by moving a large portion of computing, storage, and networking functions
into the vehicle.
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Figure 2. Basic concept of the proposed data management layer.

3.2. On-Board Data-Oriented Architecture

In our architecture, an on-board computer allows data to be stored and analyzed
in proximity of its source, as well as make them available for further uses. Unlike tradi-
tional architectures, data coming from the sensor layer do not have to waste all that time
getting to the edge or the central data center; this definitely increases speed and reduces
response time.

3.2.1. Data Management Layer

The proposed architecture includes a dedicated data management layer where all
collected and generated data have to be maintained, stored, processed, and analyzed
inside the vehicle to open up new possibilities for an endless reuse of these data. The new
architecture is described below and illustrated graphically in Figure 3.

The sensing layer groups two main categories of data: (1) external data coming from
out-vehicle sources, e.g., surrounding vehicles, road-side units (RSUs), and others; (2)
internal data generated inside the vehicle through local sensor observations.

• Storage The on-board storage sublayer is the central repository that allows the vehicle
to store all incoming flow from the sensing layer as-is in its original format, whether it
has been collected from multiple out-vehicle sources or generated inside the vehicle
through different sensors and actuator. The storage sublayer includes two types of
data: raw data and clean data obtained after processing by the tools of the data science
sublayer. The proposed on-board storage allows us the following key features: (1)
build applications, namely helps road users, transport agents, and third parties to
access the transport data and quickly build the views and data-driven applications
they really need; (2) retain data authenticity, namely store and analyze the information
in different formats, retaining data authenticity; (3) speed, i.e., the ability to sift
through immense quantities of data quickly; (4) explore and analyze, i.e., the ability to
explore and analyze data, perform analytics, and derive different values and benefits.

• Virtualization This sublayer represents the area of data science that curates the data
into a more manageable structure to break the complexity of raw data. Multiple data
science tools are performed at this level to reduce, model, shape, and structure the
raw data and perform machine learning to provide useful insights including real-time
and historical data.

• Access The access sub-layer helps data to be accessed in various ways by multiple
front-end tools. Outflow is at the top of this sublayer. Publishing is performed as data
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services that allow road users and third parties to reuse the stored data through a
push/pull mechanism.

Figure 3. Proposed data-driven architecture concept.

3.2.2. On-Board Computing Paradigm: Advantages

From day to day, vehicles are getting better equipped and smarter. Due to the sufficient
storage and computing resources contemporary vehicles hold, they are able to locally
carry out complex operations resulting in network burden and latency reductions. These
resources are a high-tech embedded industrial computer designed to operate in various
harsh conditions of vehicle environment while performing complex tasks, from capturing
the data generated by various sensors and devices to the data storing and analyzing to
meet the ITS applications requirement.

On-board computing can currently play an effective role in supporting and eas-
ing the burdens of classic vehicle cloud computing (VCC) and vehicle edge computing
(VEC) [31,32], but it may become a partial or full replacement for them in the near future.
On-board computing, more than a technology, is a design framework of sorts that would
redefine the way connected vehicle systems are built and the way they function, which can
enhance the whole ITS system.

This emerging paradigm can minimize the latency of the network, i.e., it can minimize
the time for response between client and server devices. Since the storing and computing
tasks are next to where the data are actually gathered or generated, there is no need for data
to travel to and from the distant centralized systems. Additionally, the cost of maintaining
high-capacity, long-range networks will be reduced as bandwidth requirements continue
to diminish.
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4. Study Case: On-Board Data Platform for Machine Learning

In the interest of implementing an on-board data management layer, enabling rapid
storage, real-time data analysis, and publishing rapid replies to end-users, which is a
pivotal characteristic for connected and autonomous vehicle applications, we performed an
implementation of an embedded data platform based on the basic safety message dataset.

4.1. Dataset and Configurations
4.1.1. Data

In the connected vehicle scenario, safety applications are greatly relying on the basic
safety message (BSM), which is one of the messages defined in SAE Standard J2735 [33]. Ex-
ploiting the 5.9 GHz dedicated short-range communications band, vehicles broadcast BSMs
ten times every second. For the purpose of this study, we received the BSM dataset from the
U.S. DOT. The two-month dataset was gathered within the Safety Pilot Model Deployment
Data (SPMD) program, conducted from August 2012 to late 2013 in Ann Arbor [34]. As
such, the BSM dataset is an integral part of our data platform and instrumental in the
implementation of the data management layer.

4.1.2. On-Board Hardware configuration

The hardware side of our data platform was implemented considering a desktop work-
station as an on-board computer. The technical characteristics of the hardware platform are
illustrated in Table 2.

Table 2. Hardware platform features.

CPU Dual Intel Xeon Gold 6258R 2.7 GHz
base frequency 28 cores. (Intel, Santa Clara, California, USA)

Memory 768 GB of 2933 MHz DDR4 ECC Memory

Storage Dual 8 TB NVMe M.2 Solid-State Drive
+ 8 18 TB 7200 RPM SATA 3.5′′ Hard Drive

GPU NVIDIA Quadro RTX A6000 48 GB (NVIDIA, Santa Clara, CA, USA

Network interfaces Intel i350-T4, Quad-Port, 1Gb Ethernet Network Adapter (Intel, Santa Clara, CA, USA)
Intel AX200 Wi-Fi 6 (Intel, Santa Clara, CA, USA) + Bluetooth 5.0 PCIe Card

4.1.3. On-Board Software Configuration

In order to make our data management layer able to meet the multiple needs of
applications and end-users, it is fundamental to choose the appropriate development
environment. The incorrect choice will limit our efficiency and prevent our ability to
properly implement our software solutions.

Accordingly, to make the development of this data platform easier and faster, we
adopted the model-view-controller (MVC) design philosophy and made use of many soft-
ware tools to set up the development environment: Eclipse, Springboot, MyBATIS, Apache
Kafka, Maven, MonetDB, Tomcat, Postgres, Anaconda, TenserFlow, and Deeplearning4j.

4.2. Data Management Layer: Functionalities

Focusing on the data management layer in our proposed stratification, we consider
any exploitation of stored data in various cases and scenarios as new reuse of data. Thereby,
our platform provides the following functionalities:

• Data Storage;
• Data Modeling;
• Data Reduction;
• Data Analysis;
• Data Publishing;
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4.2.1. Data Storage

We first store the inflow in a column-oriented storage: MonetDB raw database as
flat files using this rich and real-world connected vehicle dataset available under comma
separated files (.csv). The cleaned and modeled data are then moved to a row-oriented
storage: Postgres clean database. A 10-record sample for the BSM file collected on 11 April
2013 is given in Table 3.

Table 3. Sample records for BSM file.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

09 2 36 −93 80 09 −27 51 0 × F 7 176 70 27 16 11 45 46 0 0 0 0
17 2 12 66 0 42 −28 43 0 × F 7 0 31 27 −1 −1 43 0 0 0 0 0
23 2 10 −40 90 24 −41 40 0 × F 7 81 58 27 30 1 42 9 0 0 0 0
30 2 12 66 10 43 −28 43 0 × F 7 0 31 27 −1 −1 43 0 0 0 0 0
39 2 11 −40 0 79 −40 40 0 × F 7 83 58 27 30 1 42 9 0 0 0 0
47 2 38 −93 0 56 −27 51 0 × F 7 74 70 27 −15 7 45 33 0 0 0 0
55 2 0 66 20 41 −28 43 0 × F 7 0 31 27 −3 −1 43 0 0 0 0 0
64 2 1 66 30 41 −28 43 0 × F 7 0 31 27 −3 −1 43 0 0 0 0 0
74 2 2 66 40 41 −28 43 0 × F 7 0 31 27 −1 −1 43 0 0 0 0 0
83 2 41 −93 00 26 −28 51 0 × F 7 73 70 27 −9 7 45 30 0 0 0 0

(1) BSMID; (2) DSRCMsgId; (3) MsgCount; (4) TemporaryId; (5) Dseconds; (6) latitude; (7) longitude; (8) elevation; (9) positional accuracy;
(10) transmission state; (11) speed; (12) heading; (13) steering wheel angle; (14) longitudinal acceleration; (15) lateral acceleration; (16)
vertical acceleration; (17) yaw rate; (18) break applied status; (19) wheel brakes; (20) traction control state; (21) antilock brake status.

Given that the data items are collected at a frequency of 10 Hz, it is clear that the size
of the data table will increase significantly as a result of redundancy resulting in difficulties
dealing with. For instance, one day of generated data can reach 16,095,310 rows.

4.2.2. Data Modeling

Looking at the basic safety message data structure, we clearly notice that the latter
consists of frames, which in turn contain data elements. As is known, connected vehicle
applications directly depend on data elements; for the latter to be useful, they need to be
location and time specific. Therefore, it may be useful to store the basic safety messages
as data elements since the relation among data for single vehicle can be considered. In
general, the best way to store a BSM is as connected data elements. This will permit any
application or task to get the contents of required data elements. For that reason, we design
the modeling illustrated in Figure 4.

4.2.3. Data Reduction

Analyzing the available BSM dataset, we noticed that most vehicles maintain the
same speed and direction for a significant amount of time. Therefore, if we consider the
broadcasting of the basic safety message is at 10 Hz, during normal traffic flow, the majority
of data elements maintain a single value. For instance, as shown in Table 4, 20 sample
messages were analyzed for a 2 s time period. For the majority of messages, the only
considered change was the position (latitude and longitude). Often times, Messages 2–19
do not hold any useful content.
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Figure 4. Data modeling.

Table 4. Summary values of the data elements of the Part 1 dataset.

Data Element
Every Ten Seconds

1 2 . . . 19 20

Position (Lat, Long, Elev) N N . . . N N

TemporaryID N No change N

Positional Accuracy N No change N

TrasmissionState N No change N

Brake System Status N No change N

VehicleSize N No change N

Speed N Slight change N

Heading N Slight change N

SteeringWheelAngle N Slight change N

AccelerationSet4Way N Slight change N
N, new data.

Table 3 clearly shows the worthy opportunity to compress the message data and
reduce the storage and bandwidth requirements. In such cases, data compression methods
such as run-length encoding (RLE) illustrated in Figure 5 have been shown to be significant;
nevertheless, run-length is not widely compatible with traditional row-oriented databases.
Conversely, applying run-length to a column-oriented database may increases the chances
of data compression [35]. Using our raw database, we discovered that the column store
system is an appealing method to perform the RLE-based data compression.
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Figure 5. Data reduction.

In our study, we applied a compression on a single data element: speed. The speed
column was first sorted so that the same values are grouped together. Then, the average
number of iterations was measured. The larger is the number of iterations, the best are the
RLE results. We applied run-length encoding on the available dataset (.csv) stored in our
raw database. The original size was about 220 GB, and the results are excellent as the new
size was reduced to about 44 GB, which represents 20% of the original size. This means that
the ratio of decreasing the BSM bandwidth and storage amount requirement successfully
reached 80%.

4.2.4. Data Analysis

As a feature that our proposed layer can provide, we aimed to apply machine learning
as a data science tool to analyze the BSM dataset to predict road traffic flow (TF). To do so,
we adopted the artificial neural network (ANN) technique following the steps shown in
the Figure 6.

Figure 6. Data analysis flowchart.

Our data analysis platform was built using TensorFlow, Python, Jupyter Notebooks,
and Java, as well as Springnoot for the prediction serving part.

• Preparing data: Exploiting the vehicle type data element, vehicles that have been
included in the prediction process were classified into the following categories: com-
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mercial vehicles, traveler car, and busses. The analyzed dataset included the traffic
amount of the first 3 h in the morning, during the period from 7:00 a.m. to 10:00 a.m.
over an entire week across 13.4 miles, as illustrated in Figure 7.
Traffic flow is usually defined as the count of vehicles that pass through a particular
road, path, or intersection during a period of time, usually expressed as vehicles per
hour. Using the position data frame, we were able to know how many vehicles have
passed through the fragment illustrated in Figure 7 and extract the amount of traffic
flow. We also draw attention to the fact that we considered both directions of the road.
The 5 min data extraction is shown in Table 5.

• Developing best model: We used the multilayer perceptron (MLP) ANN to fulfill the
traffic flow prediction. As a class of feedforward ANN, an MLP consists of at least
three layers of nodes: input layer, hidden layer, and output layer. MLP utilizes the
backpropagation technique for training.
Table 6 includes the set of the analyzed dataset characteristics: date; time; number of
traveler cars, buses, and commercial vehicles; median speed of traveler cars, buses,
and commercial vehicles; and traffic density, which is indicated by the number of
vehicles occupying a road segment. Table 6 also includes the sensibility, which is a
mathematical expectation of how the neural network’s output will be affected by the
expected deviation of its input.
To develop the most suitable model, we took the following steps:

1. Random arrangement of the dataset.
2. Dividing the dataset into subgroups: The training subgroup represents 10% of

the dataset; the cross-validation subgroup represents 10%; the test subgroup
represents the remaining 80% of the dataset.

3. Developing of different ANN models and then training them using the training
subgroup; determining the performance of each model using cross-validation
subgroup.

4. Using different parameters indicated at the top of Table 7 to evaluate different
predicted results’ performance.

Based on Table 7, the best ANN model has three hidden neurons.

• Results and discussion
Figure 8 shows the linear correlation between the expected and real flow values and
Table 8 summarizes the output of the eligible ANN test stage.
We can clearly see the very small value of errors along with a very good value of the
correlation coefficient.
Accordingly, it could be considered that our developed ANN has succeeded in reusing
the stored data to predict even for a short time the traffic flow in the future. Thus, our
data platform can play a major role in providing a valuable transport dataset that can
be exploited for machine learning.

Table 5. Velocity and traffic Flow measurement for 5 min interval.

Type of Vehicle
Velocity (mph) Flow

SD Max Min Mean SD Max Min Mean

Commercial vehicles 1.07 21.01 19.21 20.22 7.00 34.10 4.10 12.14

Bus 1.08 29.97 27.58 20.85 2.96 21.00 3.01 9.70

Traveler car 2.00 51.56 47.80 49.53 5.17 62.11 40.10 45.40
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Table 6. Input layer parameters.

No. Characteristic Abbreviation Sensibility

1 Date D 2.4198

2 Time T 1.5112

3 Number of Commercial Vehicles NCV 0.7001

4 Number of Bus NB 0.7998

Figure 7. Predicted flow road segment.

Figure 8. Predicted traffic flow vs real traffic flow.
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Table 7. Different developed ANN models.

M HD HN TF E L S/M TR CV TE R (%)

MSE MSE
NMSE

( × 10 2)
MAE

( × 10)

Min
( × 10 3)

Final
( × 10 3)

Min
( × 10 3)

Final
( × 10 3)

M1 1 3 Sigmoid 300 Le − 5.01 5.01 17.11 17.11 197.22 70.02 111.25 85.17

M2 1 4 Sigmoid 400 Mo 1/0.8 4.74 4.74 11.73 11.73 129.45 57.25 85.15 92.01

M3 1 6 Sigmoid 700 Mo 1/0.8 3.01 3.01 4.15 4.15 57.04 16.98 48.75 96.82

M4 1 3 Tanh Axon 400 Le − 0.15 0.16 0.14 0.14 0.72 0.23 5.99 99.79

M5 1 4 Tanh Axon 500 Le − 0.45 0.45 0.5 0.50 2.71 0.71 11 99.63

M6 1 5 Tanh Axon 600 Mo 1/0.8 0.63 0.64 0.82 0.95 2.7 0.78 12.8 99.56

M, model; HD, hidden layer; HN, hidden neurons; TF, transfer function; E, epoch; L, learning; S/M, step size/mom; TR, training; CV, cross
validation; TE, testing; R, coefficient of correlation; Mo, momentum; Le, Levenberg; MSE, mean square error; NMSE, normalized mean
square error; MAE, mean absolute error.

Table 8. Outputs of the best ANN model.

R RMES SD MAE X2 Calculated X2 Tabulated

0.9979 0.8699 0.8682 0.6801 4.9711 139.571

5. Conclusions

In this paper, we introduce the concept of data management inside the vehicle by
proposing an on-board data management layer so that the vehicle can play the role of a
data platform capable of storing, processing and disseminating data. Our proposed layer
was based on three stages. In the first stage, all incoming flow from the sensing layer as-is
in its original format was stored as raw data. In the second stage, a set of treatments was
performed to prepare and clean the raw data. In the third stage, new information and
insights were provided by reusing previously stored data.

In our study case, we were able to create an on-board data platform where we achieved
a considerable lossless data compression. As a matter of fact, we reached the reduction
rate of 80%, which definitely has a good impact on storage and bandwidth requirements.
Through our platform, we also performed a machine learning task on stored data using the
ANN model to predict the traffic flow, where we obtained an accuracy of 0.9979.

However, our work carries some deficiencies that should be acknowledged. First,
we solely relied on the available BSM dataset; upcoming works have to focus on the data
sensing layer. Second, we tested some functionalities of our platform (i.e., data storage,
modeling, reduction and analysis); other functionalities such as data publishing should be
considered in future work. Third, our developed platform was tested inside an isolated
vehicle; forthcoming works are required to take into consideration the real-world traffic
conditions, as well as make our platform publicly available for an accurate testing.
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