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Abstract: Searching for characteristic patterns in time series is a topic addressed for decades by the
research community. Conventional subsequence matching techniques usually rely on the definition of
a target template pattern and a searching method for detecting similar patterns. However, the intrinsic
variability of time series introduces changes in patterns, either morphologically and temporally,
making such techniques not as accurate as desired. Intending to improve segmentation performances,
in this paper, we proposed a Mask-based Neural Network (NN) which is capable of extracting
desired patterns of interest from long time series, without using any predefined template. The
proposed NN has been validated, alongside a subsequence matching algorithm, in two datasets:
clinical (electrocardiogram) and human activity (inertial sensors). Moreover, the reduced dimension
of the data in the latter dataset led to the application of transfer learning and data augmentation
techniques to reach model convergence. The results have shown the proposed model achieved better
segmentation performances than the baseline one, in both domains, reaching average Precision and
Recall scores of 99.0% and 97.5% (clinical domain), along with 77.0% and 71.4% (human activity
domain), introducing Neural Networks and Transfer Learning as promising alternatives for pattern
searching in time series.

Keywords: time series; pattern segmentation; deep learning; transfer learning; data augmentation;
ECG; human activity

1. Introduction
1.1. Motivation

Over the last two decades, time series analysis became an attractive field to the research
community (as seen by the rise in published studies), mostly due to the increasingly
easier availability and collection of temporal data through several accessible devices (e.g.,
smartphones, wearables) [1]. Within the analysis of time series, the pattern recognition
domain has attracted many researchers [2], since those patterns represent cyclical or
seasonal oscillations that tend to mirror real-world phenomena whose detection cannot
be carried out directly but only through specific acquisition devices. In the biomedical
domain [3], the automatic detection of specific patterns in biosignals provides relevant
indicators which help clinical specialists to better monitor their patients (even in ambulatory
context) or support their diagnostic decisions.

Looking to achieve automatic segmentation of patterns within longer time series,
several techniques have been proposed. As each use-case returns morphologically distinct
patterns, the methods should be well generalized to cover any data domain and scenario.
Conventional techniques usually consist of a defined reference template, characterizing the
pattern desired to match, and a distance metric (e.g., Euclidean Distance—ED, Dynamic
Time Warping—DTW, Time Alignment Measurement—TAM [4], among others) measuring
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the similarity of that template relative to the portion of a signal evaluated [5]. An illustration
of such an approach is displayed in Figure 1, where a template window is slid along with a
longer time series at the same time a distance metric is computed.

Template Time Series

Distance
Time

Threshold

0

0

Time

Figure 1. Illustration of sliding window-based pattern searching method applied to an artificially
generated signal.

Even though the aforementioned strategy might achieve some degree of generalization,
real-world time series are variable (in a way, the morphology and duration of patterns
might have an intrinsic variability) and noisy [6,7]. Thus, a search reliant on a single
template or metric (however flexible it may be) is not a robust approach, since it can lead
to the loss of important patterns [8]. Some examples of types of distortion in temporal
patterns are displayed in Figure 2.
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Figure 2. Illustration of several types of time series variability. Two similar patterns differ due to
(A) noise corruption, (B) size scaling, (C) amplitude scaling, (D) time shifting. Reproduced from [7].

In order to increase the flexibility of pattern segmentation in time series, rendering
the task less sensitive to the latter’s variable components, as well as less domain-oriented
and conditioned to user parameter choices, in this paper, we propose a Deep Learning
(DL) architecture that performs a point-by-point mask-based segmentation of time series.
It associates each point with a confidence level of belonging to the pattern class (higher
granularity than conventional template-based methods). Such mask-based neural network
models are capable of rejecting noise and handling variability by themselves [9], i.e.,
automatically, once fed with an appropriate training set. The proposal was tested with
both univariate and multivariate signals. Regarding the multivariate setting, the lack of
data motivated the implementation of a transfer learning approach and data augmentation,
as well as an adaptation of the univariate architecture in order to handle multivariate
time series.

1.2. Conceptual Background

In the Machine Learning (ML) field, there are two dominant categories of models
(according to their purpose): discriminative and generative. The difference between both is
what each model actually learns. While discriminative models aim to learn the decision
boundary between some desired classes within a dataset (in order of distinguishing them),
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generative techniques focus on modeling the actual manifold distribution of such classes
into a previously known distribution, thus gaining the ability to generate new artificial
instances [10]. Since our goal rests on the segmentation of desired patterns in longer time
series, generative models are out of the scope of this paper.

Discriminative models [11], thus, learn a function which allows the discrimination
between classes/labels. It is traditionally used in pattern recognition tasks [11], and some
of the most popular neural network discriminative architectures include Convolutional
Neural Networks (CNN) [12], Recurrent Neural Networks (RNN) [13] and its Long/short
term memory (LSTM) [14] implementation, among others.

There are many types of Deep Neural Network (DNN) architectures, each one incor-
porating its own unique combination of operations within hidden layers. We will focus on
the definition of CNNs, which are the basis of our proposal.

Convolutional Neural Network (CNN) [12]:

A CNN is a feed-forward neural network, mostly associated with classification and
regression tasks. Typically, in the first layers, several hidden layers compute consecutive
convolutions to the input data, for feature extraction. Each convolutional layer is followed
by a pooling one which shortens the input length. After that, the convolutional product is
flattened into a set of one/few fully-connected layers to perform a decision-making task,
allocating the input to its corresponding class (Figure 3).

Input

1

Flattening

1

N Output 1

Output 2Convolution
(N filters)

Pooling

Classification

Convolutional kernel Pooling window

N

Figure 3. Schematized CNN architecture. Reproduced from [15].

An interesting variant of this CNN is the Convolution/Deconvolution Neural Network
(see Figure 4).

Figure 4. Illustration example of a Convolution/Deconvolution Neural Network. Reproduced
from [16].

It holds the same theoretical foundation as a simple CNN but has a different purpose
since the input and output have the same length. Here, through the same set of operations,
the input is encoded (first half of layers) to a latent dimension and decoded (second half
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of layers) until reaching the original input size. The only difference is that pooling layers
compress the input in the first half, while unpooling ones are expanding it in the second
half. Yet, depending on the loss function applied, the problem carried out may change.
In autoencoders, the output is forced to be as similar as possible to the input, while, if a
point-by-point classification (segmentation) task is followed, the output comprises a set of
masks, where each time point is assigned to its corresponding class label, with a respective
confidence level.

1.3. Related Work

When dealing with similarity among two sequences, the simplest measure consists of
computing the ED (or any Lp norm) between both series [17]. The higher the distance, the
most dissimilar those sequences are. The main problem of such simple metrics is the lack of
flexibility to find time or amplitude distorted patterns [18], and also to compute the similar-
ity between unequal-sized subsequences. Trying to overcome these drawbacks, DTW has
been proposed [19], being able to align temporally misaligned but morphologically similar
sequences. This flexibility allows conventional techniques (that define pattern templates
and search for matches along with time series) [20] to perform better in real-world problems.
With respect to the Human Activity field, Nguyen-Dinh et al. [21] proposed two template-
matching methods—using LCSS (Longest Common Subsequence Similarity)—applied on
accelerometer data for online gesture recognition and reported accuracy scores 12% greater
than existing template-matching techniques. Moreover, J. Barth et al. [22] implemented
a template-based subsequence DTW technique to execute multi-cycle segmentation in
gyroscope data collected from daily human activities, having achieved a step recognition
rate of 97.7% (ten-meter walk) and 86.7% (daily life activities).

Despite being less sensitive to patterns’ intrinsic variability (shifting, scaling), DTW is
sensitive to noise and computationally expensive, leading to an increased running time for
many pattern-searching algorithms [23]. These issues discourage applying template-based
segmentation techniques, supported by their dependence on predefined parameters and a
single, rigid template.

Feature engineering-based techniques are also a common strategy for extracting
relevant characteristics from time series. There are currently many tools following this type
of analysis [24]. However, to solve segmentation tasks, those features must be combined
with a searching method [18], which is not as common as their application in classification
tasks (e.g., human activity recognition) [25].

More recently, DL models have started to be applied in time series analysis (concretely
concerning classification and anomaly detection tasks) [26–30] after having achieved a
notable success in the computer vision field [31]. DNN models offer many advantages when
compared to classical approaches, since they do not require an elaborate data pre-processing
pipeline, they are capable of efficiently extract relevant feature maps (unlike hand-crafted
methods, which require expert domain knowledge and can be computationally more
expensive to extract [32,33]), and better handle abundant amounts of data. Concerning cycle
segmentation tasks, Perslev et al. [34] implemented a fully convolutional neural network
with U-shape architecture, initially proposed for image segmentation tasks, working on
electroencephalogram (EEG) sleep stages detection, through a mask-based segmentation
model. It has been shown to outperform other neural network architectures, with averaged
global F1-scores of 75.6% over seven different datasets. Another U-shape DNN has been
proposed in [35], by Moskalenko et al., presenting a segmentation model for discriminating
all the different complexes within an ECG cardiac cycle: P, QRS and T oscillations. It
has reported F1-scores of, at least, 97.8%, 99.5%, 99.9% at detecting P, T, and QRS waves
onsets and offsets, respectively. The same task has been introduced in [16], by Sereda et al.,
carried out by a sequential Convolutional/Deconvolutional NN model implementation,
presenting averaged sensitivity and precision scores of 97.5% and 91.9%, corresponding,
regarding ECG waves’ onset and offset detection.
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1.4. Structure Outline

The rest of this paper is organized as follows: Section 2 holds the description, imple-
mentation procedure, and hyperparameter definition of both conventional and DL-based
techniques, besides an introduction of two datasets considered for validation purposes.
The Section 3 presents an overall depiction of both models’ performance concerning each
one of the datasets, and the respective comparative discussion of the obtained visual and
quantitative segmentation results. Finally, Section 4 ends up summarizing the experiments
discussed throughout the paper, the major achievements, and future guidelines for research
follow-up.

2. Methodology

In this paper, the proposed framework aims to study the automatic segmentation
of patterns within time series based on DL. Additionally, a conventional approach has
been implemented as a baseline for comparison with the proposed DL-based approach.
Experiments were performed concerning both univariate and multivariate pattern analysis,
using ECG and inertial sensor-based Human Activity signals, respectively.

2.1. Baseline Model
Subsequence Dynamic Time Warping (sDTW)

The sDTW algorithm is a template-based method for subsequence segmentation on
time series, whose implementation is publicly available in the tslearn Python library [36].
While in several classical DTW techniques (e.g., vanilla DTW [37], SSDTW [38], W-DTW [39],
CDTW [40]), the algorithms look to align both sequences in one single path, here a subse-
quence searching technique is applied to find multiple paths of a given reference pattern.
Moreover, the main reason leading to the choice of sDTW as our baseline was that this
method combines both pattern similarity and subsequence searching properties in one single
approach. Additionally, its implementation is publicly available, which made reproducing
the results easier.

Getting into detail on sDTW, this sub-warping technique uses a reference template
(corresponding to the pattern of interest) which is compared with a longer sequence (con-
taining multiple repetitions of that pattern), through the computation of a cost matrix
measuring a metric distance, point-by-point. The process is, then, based in the cost matrix
analysis, which searches for the alignment warping paths (between the evaluated and
desired sequences) achieving an optimal overall distance/similarity relative to the desired
pattern. The algorithm defines the squared difference score as the metric that generates the
cost matrix (relating the point-to-point local alignment cost) and its subsequent accumu-
lated version (reproducing the total alignment cost between [1, 1] and [n, m] cells). The
user must still set two additional parameters tuning the function that finds the candidate
paths: The minimum peak height, H, and minimum inter-peak distance, D. The function
receives the symmetrical of the cost matrix’s last row, indicating the similarity relative to
the template’s offset point, and finds its local maximum points (minimum in the original
row), which represent the most similar points (with lower distance). The selected offsets
must be separated, at least, by D points (assuming non-negative values) and assigned with
a distance higher than H (values restricted within the [−∞, 0] interval). Following this
reasoning, lower H values lead to more selected candidate offset points, and consequently,
more alignment paths. The same happens for lower D values, and vice versa. Figure 5
helps to illustrate the overall technique.
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Figure 5. Illustration of sDTW multi-path searching method. Darker regions correspond to lower
distances (higher similarity). The optimal alignment paths are represented in white.

As the sDTW algorithm requires the selection of an amplitude threshold (H parameter),
the inherent variability of the raw signals could eventually raise the cost matrix values
in regions where patterns are present, and miss their matching. Aiming at overcoming
that limitation, either the longer sequence and template signals were normalized by the
maximum of its module so that the cost matrix values became constrained. Moreover,
two divergent paths could be associated with the same onset point. In such cases, an
additional rejection criterion has been applied to exclude the path whose length is farther
from the template’s.

2.2. Univariate Analysis
2.2.1. Proposed Model

The proposed DL-based architecture has been named “Hourglass”, since it comprises
two consecutive pairs of parallel paths with convolutional layers each, resulting in a
shape similar to an hourglass (see Figure 6). The difference between both paths is the
convolutional kernel size, larger in one path and shorter in the other. The motivation is
to achieve feature extraction with distinct temporal resolutions (employing simultaneous
global and local feature extraction), followed by a concatenation, helping the model decision
task. In the final layers, the convolutional product passes through a set of three fully-
connected layers, to perform a point-by-point classification. The output is composed of N
binary channels/masks (being N the number of classes), each one containing each point
confidence level relative to that class.

This approach is based on convolutional compression (pooling) and expansion (un-
pooling) and is frequently introduced in image segmentation tasks [41], so an analogous
1D-oriented neural network has been implemented.

INPUT OUTPUT

     2x Conv1D+Max_Pool+Batch_Norm       2x Conv1D+Up_Sampling+Batch_Norm Concatenate Concatenate+Zero_pad Fully-Connected

> kernel size

< kernel size < kernel size

> kernel size

Figure 6. Illustration of the Hourglass CNN architecture.

Convolutional layers are linked with a Pooling/Unpooling layer, to compress/expand
the input data, and a Batch Normalization layer, to enable a faster model training con-
vergence (avoiding overfitting) [42]. One path works with a larger convolutional kernel
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(30 points), whereas the other is reduced (8 points). The number of convolutional filters
varies between 32 and 8 in both paths.

The proposed CNN was compared with other architectures (proposed in [16,35]),
in a similar problem and, regarding preliminary experiments, it has shown competitive
performances, which supports the Hourglass CNN choice. Since the architecture’s choice
is out of the main scope of this work, we refer to a summary of some performance metrics
over the three considered networks in Table A1, in the Appendix A.

2.2.2. LUDB Dataset

The Lobachevsky University Electrocardiography Database (LUDB) [43] is an open-
access dataset, containing ECG records from 200 different individuals. Each recording
represents a 10-s ECG signal, acquired with 12 leads and a sampling rate of 500 Hz, whose
cardiac cycles have their waves (P, QRS, and T) individually annotated by specialists.
Figure 7 illustrates how cardiac cycles were annotated in separate segments.

R

Q

S

QRS complex

P wave T wave

Figure 7. Schematic cardiac cycle and its annotated segments, in LUDB dataset. Reproduced
from [43].

The dataset contains one ECG signal per individual, so the splitting process became
straightforward at ensuring each subject’s cycles are not included in different sets. There-
fore, three subsets of signals were considered: training, validation, and a testing set
(Table 1).

Table 1. Overview of the number of individuals selected for each defined set.

Number of Individuals

Training Set
(64%)

Validation Set
(16%)

Testing Set
(20%)

128 32 40

2.2.3. Pre-Processing

Firstly, the ECG lead II has been defined as the channel of analysis for this uni-
variate pattern segmentation task. In fact, this is the most widely used lead to access
the cardiac rhythm in ECG analysis [44], showing the three main ECG waves (P, QRS,
and T) well amplified and discriminated (the lead’s dipole follows the myocardium’s
depolarization direction).

Secondly, the LUDB dataset exhibits a particular characteristic, where the first and last
cardiac cycles are not annotated. To prevent an increase in false positives, signals were
cropped on both extremes (as performed in [35]), so that the first and last heartbeats were
removed. Moreover, three classical pre-processing steps (see Figure 8) were executed:
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• Baseline wander removal: the application of two consecutive median filters (with 0.2
and 0.6-s sized kernels, in this order) [45], rectified ECG waves and baseline drift was
partially removed;

• Downsampling: signals were downsampled by a factor of two, to reduce the com-
putational cost of the associated segmentation algorithms. The sampling rate was
reduced to 250 Hz;

• Standardization: The final step consisted of constraining the amplitude range of
signals as follows:

Xnorm =
Xraw − µ

σ
, (1)

where µ and σ represent the signal mean and standard deviation, correspondingly.

High-frequency noise has not been removed, in a way to test the model’s robustness
to reject noise components. Furthermore, shorter signals were padded with zeros on both
sides to set a fixed input size for the NN.

Figure 8. Pre-processing steps applied on ECG signals. On top, the signal baseline extracted by both
median filters is highlighted in red. Note both amplitude and time scales have changed, due to
downsampling and standardization.

Finally, regarding the annotation of P, QRS, and T segments, they were merged into a
complete cardiac cycle, accounting for their temporal order within the cycle (it starts with a
P wave and finishes with a T wave), in order to enable the execution of a Beat vs. Background
segmentation which seemed a more suitable task for flexible matching evaluation.

2.2.4. Training Stage

At the training stage, the proposed NN has learned from training data, while valida-
tion samples have guided the learning step, tuning the model hyperparameters, avoiding
overfitting, and maximizing the pattern recognition capabilities within the provided time
series (ECG signals). The hyperparameter settings applied are shown in Table 2.

Table 2. Overview of the Hourglass CNN training hyperparameter settings.

Loss Function
Optimizer

Epochs Activation Functions Batch Size
Type LR a

Categorical
Cross-Entropy Adam 1× 10−2 25 tanH

Softmax 16

a Learning Rate.

The Cross-entropy error function has been used as the network’s loss due to its
differentiability and common applicability in classification tasks. The number of selected
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epochs is explained in Section 3.1. The hyperbolic tangent (tanH) function has been defined
as the main activation of the network layers since it can handle both positive and negative
values, which is precisely the range of values of the input signals. Relative to the batch
size, it is arbitrary but not too small to enable (along with the aforementioned Batch
Normalization layers) the use of a higher learning rate.

2.2.5. Baseline Model Parameters

For establishing a comparison with the proposed DL model, the sDTW technique has
been introduced. Although it does not involve a training step, it requires the definition of a
reference template and other two additional parameters (tuning the function that finds the
offset points). The two parameters were set as indicated in Table 3.

Table 3. Overview of sDTW hyperparameters, regarding LUDB dataset ECG heartbeats. Both
presented parameters were defined using an adaptive approach based on relative thresholds (and
not on absolute ones).

Minimum Peak Height (H) Minimum Inter-Peak Distance (D)

−Cn,[1,m][P30] 0.65× L
Cn,[1,m]—Cost matrix last row; P30—30th percentile; L—Length of the reference template.

2.3. Multivariate Analysis

The following experiment introduces an adaptation of the previously described Hour-
glass CNN in order to handle multi-channel time series, as well as the application of
Transfer Learning to improve training.

2.3.1. Proposed Model

Some datasets do not have a sufficient data volume or diversity for training DNNs
efficiently, especially multivariate datasets. Several techniques can be applied to overcome
such issues, one of which concerns a Transfer Learning approach [46]. The idea behind it is
based on training some network layers with data from other domains (with more available
data), whose general knowledge (in the form of weights) will be extracted and transferred
to a similar architecture to train the target dataset.

During the new training steps, the pre-trained layers can have their weights frozen
(no update), reducing the number of trainable parameters and possibly preventing the
network from overfitting. After some learning steps, those weights can be unfrozen and
carefully optimized towards the desired target domain (fine-tuning). In this case, the
Hourglass CNN was used as a base model for the pre-trained model (Figure 9). The first
convolutional pair of branches compose the pre-trained portion of the network since the
first layers are assumed to be responsible for extracting the most general features from
the data [46], common across different domains. A subsequent decision-making set of
fully-connected layers was included, returning, in the end, N equal-sized output masks.

In order to provide a multivariate signal analysis, a new architecture has been imple-
mented, adapted from the univariate version (Figure 10).

As the pre-trained network was trained with univariate data, each individual channel
is passed through a pre-trained block and then through a shared trainable convolutional
block (also present in the univariate version). Finally, each channel diverges into its own
set of decision-making layers, whose outcome is concatenated and mapped to the final
output mask.

According to the type of problem at hand, one can add/remove as many channels as
needed. Nonetheless, one must note that adding more channels will increase the variance
of the data and the complexity of the whole network.
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INPUT OUTPUT

2x Conv1D+Max_Pool Concatenate Fully-ConnectedConcatenate+Zero_pad

Pre-trained layers
Trainable 

Convolutional block

2x Conv1D+Up_Sampling

Trainable 
Decision block

Figure 9. Illustration of the Hourglass Neural Network architecture, for univariate signals, used to
define the first training stage performed on ECG signals and to fine-tune on new domains.

CH 1

Pre-trained model Fully-Connected

Trainable layers

Pre-trained

Pre-trained

...CH n

Pre-trained

CH 2 OUTPUT

Input channels

...

Concatenate

Convolutional
Block

Convolutional block

...

Figure 10. Illustration of the Hourglass Neural Network architecture, for multivariate signals. The
number of added channels (CH) has no restrictions.

2.3.2. Human Activity Dataset

This dataset contains human activity data extracted from several subjects working
in an industrial environment [47]. In large manufacturing sites, predetermined motions
are defined for each task. The ideal method to perform such tasks aims to achieve the
best performance: increase productivity ratios and reduce ergonomic risk. The operators
execute, continually, during their work shift, iterations of the same task using repetitive
movements. A work cycle is an individual iteration of a given task. Several types of data
were collected, including electromyography, video, and inertial measurement unit (IMU)
data, while each worker executed distinct activities, associated with different workstations
of a given industrial assembly line. In each acquisition, four IMUs were positioned in
different anatomical segments: hand, wrist, elbow (of the dominant arm), and chest
(see Figure 11). Each IMU contains three sensors: an accelerometer, a gyroscope, and
a magnetometer. Each sensor collected data at 100 Hz, in three orthogonal directions,
conventionally called X, Y, and Z. Summing up, each individual data acquisition has
4× 3× 3 = 36 channels.

This study did not comprise any data collection stage. All the concerns about the
collection stage proceedings and participants informed consent should be consulted in [47].
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Figure 11. IMU sensors placement over the worker’s arm. For each subject, four sensors are placed
on their hand, wrist, elbow and chest. Reproduced from [47].

Regarding the workstation tasks, two key activities were considered: Liftgate, Fender.
Signals were collected from ten different subjects/workers. Yet, due to some signal quality
issues (noticed during the acquisition and after observing the raw signals), only five
subjects (from the total ten) and specific sensor positions (which captured amplitude-
relevant patterns during the task execution) were selected for the analysis:

• Workers: A, B, C, D, E;
• Workstations: Fender, Liftgate;
• Sensors: Elbow, Wrist, Chest.

Signals were additionally cropped into smaller temporal windows to increase the
number of training samples. So, each worker can have more than one associated sample.
Table 4 shows the total number of samples per activity and worker, available to perform
both training and validation steps.

Finally, three out of nine available channels of each IMU were considered (correspond-
ing to the three axes of the accelerometer sensor), to limit the computational cost of this
segmentation task and reduce overfitting of the network (adding more channels increases
the network complexity).

Table 4. Overview of the number of obtained samples of each Worker executing each selected activity.

Activity Sensor Location
Number of Samples

Total
Worker A Worker B Worker C Worker D Worker E

Fender
Wrist

3 3 3 - - 9
Chest

Liftgate
Elbow

3 - 2 5 2 12
Wrist

Regarding evaluation, a leave-one-worker-out evaluation strategy was chosen, since
it is an unbiased technique and not too computational expensive given the small amount
of data [48]. It consists of assigning a single worker, at a time, to the validation set (instead
of a particular sample) and the remaining workers on the training set.
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2.3.3. Pre-Processing

All the transformations applied to the raw input signals and their target classification
masks before they are fed to the segmentation model, will be described in this subsection.
The following figures display some inertial sensor signals where a different amplitude
offset factor has been applied to each channel, simplifying their visualization.

Filtering

The application of a Butterworth Lowpass filter (3rd order, with 0.05 Hz cutoff fre-
quency) successfully attenuated non-desired high-frequency content, and enhanced human
activity signal components, as depicted in Figure 12. As the amount of data available
to perform the defined task was not as large as desired to train a neural network, it was
decided to filter not only the high-frequency content (above human gestures range) but
also the linear acceleration component (from accelerometer sensor), since it would in-
duce additional variability and, eventually, noise that could be hard to handle given the
aforementioned low amount of samples. This way, an indirect association of the sensor’s
orientation (gravitational component) over time with the subject’s movements during the
task execution has been made, which seemed to be a legitimate approach.

5
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5

5
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5
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Acc-x
Acc-y
Acc-z
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  100   300    500    700    900
Time (s)

  100   300   500   700    900

Worker A Worker C

Worker D Worker E

Figure 12. Data filtered through a butterworth lowpass filter (0.05 Hz cut-off). The lightest color
corresponds to the raw signal, and the darkest to the filtered one. Work cycle transitions are
represented with a red vertical line. Signals refer to Liftgate activity, monitored with the Elbow sensor.

Normalization

In a way of constraining the signals in a similar amplitude scale, standardization has
been employed per channel, following Equation (1).

Downsampling

Human activity work cycles reveal much longer patterns (e.g., compared with ECG
cardiac cycles), and thus, the computational cost for training a DNN might rapidly increase
if the input size is not kept within reasonable limits. In this context, signals have been
downsampled, maintaining an equivalent morphology but fewer points (Figure 13). The
scaling factor has been defined as the ratio between the average work cycle and cardiac
cycle duration (due to the transfer learning approach).
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Figure 13. Example of the downsampling transformation applied to human activity signals. Red
vertical lines represent work cycles transitions. No distortion has been induced on work cycles shapes.

Ground truth definition

The provided ground truth is only defined by single timestamps (annotated by a
team of researchers relying on the video recordings of the acquisitions) corresponding to
the transition points between work cycles. Since the proposed architecture comprises a
point-by-point binary classification model, it became unreasonable having two extremely
imbalanced classes (one defined by cycle transition points and the other by all remaining
samples). This way, class imbalance has been mitigated by defining a window surrounding
each cycle transition timestamp, depicted in Figure 14. The window length was manually
defined to contain the most amplitude-relevant and repeating content of work cycles.
Nevertheless, regarding further acquisitions (with more available data), that fixed length
must be switched by other annotation options since work cycles might possess a different
duration than the standard defined (e.g., 7th work cycle, Figure 14).
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Figure 14. Definition of the ground truth masks. Work cycle transition points are highlighted with
red vertical lines and their corresponding patterns with green windows. Non-highlighted regions
represent the signal background component.

This latter fact will make longer cycles not to be totally encompassed by the ground
truth window, while shorter cycles will become over-involved, which will impair both
model’s performances: it affects the learning process of the DL-based model, as well as the
evaluation scores of both models. Thus, an ideal annotation scenario consists of a balanced
ground truth between work cycle windows and background content, and not only their
transition timestamps.

From this step, two balanced classes emerge: a Pattern class, associated with times-
tamps where the targeted activity is present, and a Background class, representing any
oscillation which is not generated by the activity execution.
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Concerning the duration of the considered patterns, it has been fixed for each activity
(Fender and Liftgate), as follows:

• Liftgate pattern: 72.85 s
• Fender pattern: 46.36 s

In further acquisitions, each cycle should be annotated with its corresponding onset
and offset timestamps as a way of avoiding this stage (and its issues), resulting in a more
reliable ground truth.

Data Augmentation

The limited number of training samples (Table 4) was expectedly insufficient to
achieve a desired model training convergence, possibly causing overfitting. Hence, the
generation of new artificial samples by adding a degree of variability to the real ones
seemed a reasonable option for handling that issue. Since intrinsic variability exists in
human motion, their duration may vary within and between workers. Thus, work cycle
patterns can show a variable duration. Using the intuitive and simple tools provided by
the tsaug [49] library, the criteria was, then, employing time contraction and dilation to the
real samples, coupled with the addition of Gaussian noise. An example of this generative
step is displayed in Figure 15.
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Figure 15. Example of augmentation techniques applied to activity signals. Timeline contraction
and dilation, and the addition of Gaussian noise were the parameters changed to generate new
artificial samples.

After some tests, the number of newly generated artificial samples has been set to
seven, increasing, thus, the number of training samples eight times, from n to (7 + 1)n.

2.3.4. Training Stage

The purpose of using transfer learning focused on extracting the general knowledge
of pattern recognition in ECG signals (cardiac cycles) and transfer that knowledge (e.g.,
high-level features) into IMU-based Human Activity tasks. That said, the training stage
has been divided into three steps:

1. Train the Hourglass-shape CNN with clinical signals (ECG): this step is similar to
that presented in the previous experiment, where the same architecture was trained
with ECG signals from LUDB dataset;

2. Train the new architecture, adapted to multivariate data: in this step, the new net-
work has been trained with the new target dataset (IMU data), with a frozen pre-
trained block and both convolutional and decision-making trainable blocks;



Electronics 2021, 10, 1805 15 of 27

3. Fine-tuning: all the network weights were unfrozen and training was applied in the
same set but with a much lower learning rate during a small number of epochs.

Table 5 displays the hyperparameter settings employed on these three training steps.

Table 5. Hyperparameter settings of each training step. Some parameters (patience and batch size) have been defined after
preliminary experiments and considering the total number of training samples.

Step Loss Function
Optimizer

Epochs Early-Stopping Patience Activation Function Batch Size
Type LR a

1
Categorical

Cross-Entropy Adam

1× 10−2 25 -
tanH

Softmax

16

2 1× 10−4 100 5 epochs 4

3 1× 10−5 20 3 epochs 8
a Learning Rate.

After training, the model was capable of processing new activity signals. As the output
consisted of a point-by-point output mask, it might not always be composed of well-defined
windows (output smoothness). Hence, as a post-processing step, gaps were closed and
short windows rejected if their length was lower than K and M points, respectively. In our
case, K and M were both set to 10 points (representing 15 s with the chosen sampling rate).

2.3.5. Baseline Model Parameters

In this case, the multivariate version of sDTW has been employed to evaluate the
multivariate IMU signals. As done in the previous experiment (with univariate time
series), Table 6 presents the hyperparameters set out, regarding these Human Activity
work cycle patterns.

Table 6. Overview of sDTW pre-defined parameters, regarding Human Activity IMU signals. The
two presented parameters were shaped based on the target data domain.

Minimum Peak Height (H) Minimum Inter-Peak Distance (D)

−Cn,[1,m][P40] 0.65× L
Cn,[1,m]—Cost matrix last row; P40—40th percentile; L—Length of the reference template.

2.4. Evaluation

Since the developed segmentation model is a point-by-point classifier, a standard
evaluation might lead to a misinterpretation of the output, since point-by-point metrics
(e.g., accuracy) might return high scores even when the segmentation performance is poor
(misalignments and a few wrongly predicted cycles might not be enough to influence
such scores). Instead, a cycle-by-cycle evaluation has been idealized as an adequate choice.
Thus, a novel set of metrics is proposed and summarized in Figure 16, based on some time
series and image segmentation concepts [50]. Each metric is, then, described in more detail,
downstream:

1. Intersection-over-Union (IoU): also known as the Jaccard coefficient [51], it computes
the ratio between the number of matching points of both true and predicted cycles
(Intersection) and the number of points both cycles fill in the whole signal (Union).
Cycle patterns achieving an IoU greater than 0.44 (chosen empirically in preliminary
experiments) are classified as True Positives (TP);

IoU =
Intersectedpoints

Ground truthpoints + Predictedpoints − Intersectedpoints
(2)

2. False Positive Detection (FPD): The intersection of each predicted cycle with the
Background mask (normalized by the cycle length) is performed. Those having an
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FPD above 0.80 (chosen empirically in preliminary experiments) are labeled as False
Positives (FP);

FPD =
Predictedmask · Backgroundmask

|Predictedmask|
(3)

3. Precision and Recall: from the two previous scores, Precision and Recall metrics are
easily calculated. As IoU and FPD scores return the number of TP and FP cycles,
respectively, these metrics are computed as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

Expectedcycles
(5)

4. Mismatch Rate (MR): it represents the percentage of wrongly annotated points within
each true cycle;

MR =
Mismatchpoints

Ground truthpoints
× 100% (6)

5. Onset/Offset error: it measures the temporal distance between predicted and real
cycles onset and offset points (error), a good indicator to confirm the quality of
the alignment;

6. Number of cycles: it compares the number of predicted and real cycles, being an
additional high-level evaluation, as it is a metric of interest in such applications
(e.g., for productivity measures).

Prediction

Groundtruth

Pattern

IoU 

Intersection
Union

True size

Mismatch
 size

Mismatch
 rate

Perfect match

FPDOnset
 Error

Intersection 
with

BackgroundError

Figure 16. Illustration of the proposed segmentation evaluation metrics on an artificially generated
signal. The metrics depicted are the Mismatch Rate (MR), Onset error, False Positive Detection (FPD),
and Intersection over Union (IoU).

3. Experimental Results

This section presents the obtained results concerning both univariate and multivariate
described applications.

3.1. Univariate Analysis

The proposed conventional approach (sDTW model) required a reference template to
perform the subsequence matching alignment. In this case, the template (Figure 17) has
been chosen (by hand) as a proper representative of a normal cardiac cycle in ECG lead II.
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Figure 17. Illustration of the defined representative template of lead II ECG signals.

The sDTW technique does not involve a training stage (as the proposed DL network),
relying on subsequence matching, so it becomes a lot easier to obtain reproducible results.
An example of the resulting paths in an ECG signal subsequence matching is shown in
Figure 18.

ECG signal

Template

Figure 18. Illustration of the set of paths obtained after applying the sDTW algorithm to an ECG
signal. Darker and lighter pixels represent lower and higher distances, respectively. White paths
correspond to optimal subsequence alignments.

Regarding the DL-based proposal, the training stage has stopped after 25 epochs,
when validation loss started to stabilize and training loss kept decreasing (Figure 19).
Following the loss progression trend, it suggests that training with even more epochs
would increase the discrepancy between validation and training losses, which could induce
model overfitting.

Regarding the segmentation performance of both approaches, visual examples of ECG
signal segmentation from two different testing individuals are presented in Figure 20.

With reference to Figure 20a,b, the proposed DL approach shows it is capable of fitting
adequately its predictions to the expected windows, likely because it undergoes a learning
process (unlike sDTW) based on recognizing patterns in long sequences, making it skilled
to handle signal variability better. The proposed NN was idealized to be learning the most
general behavior of an ECG signal, such as the cardiac cycle general shape, its acceptable
variability (including noise level), its recurrent periodicity, the typical types of background,
among other attributes (extracted from the first convolutional layers). These insights might
have been automatically acquired by the network layers (without the need of defining a
reference template), revealing to be, at least in this case, more relevant than distance-based
techniques (sDTW).
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Figure 19. Hourglass CNN training and validation loss progression, during training.
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(a) ECG signal segmentation of subject no. 176.

2

0

2

4

6

8

Am
pl

itu
de

Groundtruth
DL
sDTW

  1   2   3    4    5    6    7    8
Time (s)

(b) ECG signal segmentation of subject no. 183.

Figure 20. Segmentation performance comparison between Houglass CNN (DL) and sDTW, regard-
ing ECG signals of two different subjects present in the testing set.

In Figure 20b, the high-frequency noise component seems to have little or no influence
on the Hourglass CNN segmentation performance, meaning it is capable of ignoring that
irrelevant element. In contrast, paths predicted by sDTW are somewhat dephased (or even
absent), implying it might not perform correctly when dealing with noisy ECG sequences.
In noiseless signals (Figure 20a) where complexes are well amplified, both approaches
seem to match cardiac cycle windows adequately, despite the DL model’s predictions are
better aligned with the ground truth windows.

In order to confirm the visual inferences drawn from the previous images, Table 7
presents an objective comparison, through the computation of previously described metrics
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across testing set signals, between the two models. We trained the Hourglass CNN model
15 distinct times (with 15 randomly sampled splits) to achieve a fair evaluation of the
model’s performance with different train/validation/test sets, and averaged the results
over these different training stages.

Table 7. Overview of the segmentation metric scores, computed over DL-based and sDTW ap-
proaches. Scores are presented as the average coupled with the standard deviation over all the
15 distinct training stages. Best scores are shown in bold. Reference optimal scores for each metric
are depicted in the right column.

Metric
Model

Optimal
DL sDTW

P/T ratio a 1.01 ± 0.09 0.70 ± 0.15 1.00
Precision (%) 99.0 ± 6.7 94.3 ± 22.7 100.0

Recall (%) 97.5 ± 10.7 52.0 ± 24.7 100.0
MR b (%) 5.8 ± 12.0 42.4 ± 40.0 0.0

Onset Error (s) 0.03 ± 0.14 0.41 ± 0.50 0.00
Offset Error (s) 0.04 ± 0.15 0.40 ± 0.45 0.00

a Ration between the number of predicted and true cycles; b Mismatch-Rate.

The overall metrics presented in Table 7 help demonstrate the greater performance
of the Hourglass CNN model compared to the sDTW technique. Even though the cycle
counting (P/T ratio) and the presence of false positive cycles (Precision) did not reveal
huge discrepancies across approaches, the remaining metrics, that enhance the quality of
the matching process (i.e., how well predicted windows fit the expected ones), showed a
substantial contrast, quantitatively supporting that the DL-based model outputs/predicts
more reliable cycle windows.

3.2. Multivariate Analysis

At this stage, inertial sensor-based Human Activity has been evaluated by the same
two approaches, which suffered slight changes.

Regarding the sDTW technique, we adopted its multidimensional version, which
enables the input of multivariate time series. This way, 3-dimensional sequences were
evaluated in the context of industrial operators’ work cycles segmentation. Figure 21
presents a visual example of sDTW selected paths, regarding an activity executed by a
single worker. The reference template has been chosen as a representative pattern of each
activity and sensor (usually the less distorted and noisy activity cycle).

Figure 21. Illustration of the obtained paths after the sDTW algorithm application to a Liftgate
activity signal, extracted from Worker A elbow IMU sensor. Note the three axis were averaged and
compressed into a single one to facilitate the paths visual correspondence.

Concerning the multivariate-adapted Hourglass CNN model, the introduction of a
transfer learning approach led to a training stage comprised of three distinct steps.
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The first step involved training the Hourglass-shaped CNN with ECG signals, so that
it learned to extract general temporal pattern features from more abundant cardiac cycles.

Before starting to describe the transfer learning training performance (last two steps),
the impact of the augmentation employment on the model loss progression is shown in
Figure 22. It seems clear that the application of data augmentation led to faster and better
training/validation loss convergence.
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Figure 22. Example of loss progressions of the same proposed NN, trained with (72 samples) and
without (9 samples) augmented samples.

In the second step, the pre-trained block has been frozen (non-trainable weights), while
the convolutional block remained trainable and new decision layers were initialized (for
each time series input channel) with random weights. This allowed reducing the number of
trainable parameters, an important step to avoid overfitting issues. At this step, the number of
trainable and non-trainable parameters were 171,532 and 51,696, respectively. The last training
step consisted of unfreezing the pre-trained block weights so that they could be fine-tuned
(with a much lower learning rate) to the domain of study (Human Activity).

Relative to the loss progressions, since a leave-one-worker-out scheme has been
followed, several complete training stages were required. In this sense, Figure 23 displays
the loss progression together with the variability associated with each epoch.

Observing Figure 23, all the procedures executed to improve the model training
(essentially data augmentation, train early stopping, transfer learning from ECG domain)
led to the desired loss progression, characterized by a validation loss trend which follows
the training one (without rising), even though it does never reach the latter.

In an attempt of evaluating and comparing each method in a multivariate pattern
segmentation context, the following discussion is supported by human activity segmen-
tation images regarding workers with the same sensor placement and performing the
same activity so that intra- and inter-subject pattern variability becomes an element for
describing each model ability to detect new patterns from the learned ones.

In Figure 24, the presented segmentation is shown in two of the three independent
workers’ signals, acquired during Fender activity execution and monitored on their wrist
IMU sensor.

The first visual impressions suggest that the multivariate work cycles contain an
evident morphological variability between these two workers. Although there is a standard
work method, there is also some variability among the operators since slight variations in
the work method might exist. Every so often, searching for cyclic patterns (even visually)
might be complex, making this segmentation task more challenging (in comparison to ECG
patterns). This statement is reflected in Worker B signals (Figure 24a), whose patterns do
not show a relevant amplitude contrast relative to the signal baseline, possibly due to either
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an inappropriate activity execution or signal corruption with another type of movement
(or even acquisition noise). In contrast, Worker C signals (Figure 24b) produce an easier
pattern to recognize visually.

Figure 23. Evolution of the network training and validation losses over the epochs. The darker
line represents the average (µ) loss over all the training stages, while the lighter regions show the
associated standard deviation (σ) surrounding the mean trend (Loss = µ± σ).

Even though both models (DL and sDTW) contain some sporadic misclassified pat-
terns, they present good results at detecting each worker’s activity cycles, effectively
dealing with several variability components. Through visual inference, it seems the DL
network is capable of better adjusting its predicted windows to the expected work cycle
windows than sDTW. Additionally, the conventional approach also fails at detecting some
cycle regions that the DL model fits adequately well (especially in Figure 24b).

As done previously, such visual interpretations were further confirmed through
quantitative analysis, performed through the aforementioned set of segmentation metrics.
Such obtained metrics were averaged per each activity/sensor pair and are presented in
Table 8.

Firstly, we note those scores are relatively worse when compared with the experiment
with ECG data, which indicates how complex this problem is. The degree of variability
found in Human Activity IMU-based time series is far greater than in the ECG domain, so
the decrease in performance was somewhat expected.

Regarding the P/T ratio metric, the scores are similar for both models over all the
activity/sensor pairs, although the DL model achieves better scores for the Fender activity
and the sDTW technique for the Liftgate one. Nevertheless, all values are close to 1,
indicating the number of counted cycles does not suffer a considerable deviation from the
real one.

With respect to the Precision metric, again, the DL model performance generally
surpassed that of the sDTW, even though scores are not too discrepant. Overall, precision
scores ranged from 66.67% to 83.08%, in DL, and from 33.15% to 77.20% in sDTW, meaning
the latter possesses a higher proportion of FP cycles over its set of predictions.

In terms of Recall, the DL approach has performed better than sDTW in all four
activities, meaning the proposed technique generates the most suitable windows (with
greater IoU scores), with respect to the expected work cycle windows. Scores ranged from
62.52% to 82.59% in DL, and from 26.24% to 71.97% in sDTW.

Mismatch-Rate scores come in the same reasoning path, confirming the DL technique
predicted cycle windows tend to be less dephased from the truth windows, with greater
IoU values and a lower percentage of missing cycle points (mismatch).
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(a) Human Activity signal segmentation of Worker B.
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(b) Human Activity signal segmentation of Worker C.

Figure 24. Segmentation performance comparison between Houglass CNN (DL) and sDTW of
Fender activity signals collected with the wrist sensor. Accelerometer x, y and z axes are represented
by blue, orange, and green signals, correspondingly.

Observing the temporal errors, the overall scores suggest better performance on the
sDTW side (lower errors) in the majority of the activities, which can be misleading given
the results of the previous metrics. For instance, in Fender-Chest and Liftgate-Wrist signals,
the sDTW technique achieved lower Onset/Offset errors associated with worse Recall
(lower) and MR (higher) scores than the DL model. Although it seems discordant, the DL
predicted cycles can be larger and cover a greater proportion of the cycle but be dephased
(or overflow the true cycle borders), filling also part of the background content, while
sDTW cycles can be shorter and inserted within the true cycle region. In such cases, inner
shorter windows will tend to have a lower IoU (low intersection), a high MR, but lower
errors. Larger dephased windows will return the opposite. The remaining two activities
(Fender-Wrist and Liftgate-Elbow) show better performances from the proposed neural
network model (DL).

In summary, as for the ECG application, the results support a better segmentation
performance by the proposed DL-based approach. The fact the implemented architecture
gained the ability to extract relevant features from each channel has revealed noticeable
benefits when it comes to detecting activity patterns within multivariate signals, even with
low data availability. At the same time, this reasonable performance must not be misled
by the achievement of generalization. In fact, the reduced amount of signals (within each
worker) and the lack of inter-worker variability (few workers for a given task) do not make
the work cycle pattern generalization possible for all the subjects performing that task.
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Furthermore, any judgement under the scope of these results should not be supported by
absolute statements, since they would need further validation (with a greater amount and
other types of data). In any case, the application of transfer learning from ECG signals to
the Human Activity domain has shown great potential even with dataset size concerns and
more complex segmentation tasks.

Table 8. Overview of segmentation metric scores over all the different selected activities. Reference optimal scores for each
metric are depicted in the right column.

Metric Model
Activity (Sensor)

Optimal
Fender (Wrist) Fender (Chest) Liftgate (Elbow) Liftgate (Wrist)

DL 1.23 ± 0.30 1.27 ± 0.28 1.26 ± 0.51 1.26 ± 0.16P/T ratio a
sDTW 1.41 ± 0.21 1.29 ± 0.24 1.18 ± 0.34 1.23 ± 0.17 1.00

DL 76.9 ± 16.0 66.7 ± 2.6 83.1 ± 23.9 77.3 ± 15.1Precision (%) sDTW 33.2 ± 35.6 67.5 ± 8.8 77.2 ± 23.5 56.6 ± 21.5 100.0

DL 75.5 ± 13.2 64.8 ± 22.8 82.6 ± 8.7 62.5 ± 15.2Recall (%) sDTW 26.2 ± 25.7 56.0 ± 21.0 72.0 ± 13.3 52.5 ± 26.1 100.0

DL 33.0 ± 28.7 39.7 ± 32.6 30.6 ± 24.5 34.0 ± 33.8
MR b (%) sDTW 58.8 ± 35.1 45.0 ± 25.5 35.5 ± 33.9 53.1 ± 30.4 0.0

DL 16.21 ± 21.35 22.29 ± 29.83 14.66 ± 15.67 38.70 ± 73.00Onset Error (s) sDTW 29.59 ± 18.08 19.54 ± 12.86 14.26 ± 17.65 26.89 ± 22.13 0.00

DL 15.77 ± 23.22 19.48 ± 31.77 17.70 ± 26.53 43.85 ± 77.83Offset Error (s) sDTW 27.71 ± 18.13 13.15 ± 8.02 25.29 ± 27.36 20.90 ± 15.33 0.00

a Ratio between the number of Predicted and Expected (True) cycles. b Mismatch-Rate.

4. Conclusions

In this paper, a new Deep Learning approach has been proposed to improve the
segmentation of patterns in time series, aiming to increase the robustness of the match-
ing process, flexibly handling natural variability issues of such signals. The application
of the proposed model was shown in two distinct domains. The first is related to the
segmentation of cardiac cycles in ECG time series data, where training data is abundant,
whereas the second application concerned IMU-based Human Activity signals, where data
was much scarcer. Nonetheless, we proposed to follow a Transfer Learning approach to
achieve domain adaptation, shown to be successful, even with minimal data samples in
the target domain.

The proposed architecture was a Convolution/Deconvolution NN (named Hourglass
CNN), idealized to execute Univariate and Multivariate time series pattern segmentation.
As template-based segmentation approaches are more abundant in the literature, those have
supported the discussion of the DL model performance. Thus, a conventional approach
was defined as a baseline for performance comparison purposes: sDTW, a template-based
subsequence matching algorithm.

The goal of this experiment consisted of detecting similar matches of a particular
pattern category in long signals. The univariate analysis has been conducted in ECG
signals from the LUDB dataset. Visually, cardiac cycle occurrence sites predicted by the
proposed model were reasonably fitted to the expected ones, even evaluating ECG signals
with increased noise components, which must be highlighted. Objectively, the DL-based
model expressed greater scores than those obtained by the sDTW technique.

The multivariate analysis was performed in IMU data extracted from a Human Ac-
tivity dataset. The collection and processing of human movement data in manufacturing
sites offer faster, accurate, and ubiquitous digitalization, which helps analyze and improve
manufacturing and assembly line processes. The collected information may be used to
oversee task execution by the worker and implement pedagogical strategies to refrain
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workers from performing incorrect movements or adapt different strategies to improve
well-being.

This problem was more challenging for several reasons: The multi-dimensionality
of data, the relevant morphological variability of activity patterns compared to that of
heartbeats, and the lack of signals. The latter issue led to the application of a transfer
learning approach and data augmentation techniques, preventing network overfitting. By
visual observation of the data, the proposed DL model segmentation still achieved an
adequate performance, although relatively worse when compared to the aforementioned
in cardiac cycles. However, the scores were still considerably better than those obtained
by the sDTW technique, which favors the robustness of a learning-based segmentation
method.

Furthermore, although it has not been quantitatively validated, in terms of temporal
complexity, the inference step of the proposed model is expected to be faster than that of
sDTW algorithm by the fact the latter requires the computation of a cost matrix and a path
searching method every time a new sequence is evaluated (although it does not require a
training stage), while the former only needs a set of tuned weights.

Regarding some future work guidelines, posterior analysis could use the annotated
pattern cycles (from ground truth) in a metric learning approach for measuring the simi-
larity of each predicted pattern, constituting an additional filter to mitigate the presence
of wrongly annotated windows. Another option could consist of implementing a Varia-
tional Autoencoder (VAE) model so that it learns the general shape of annotated patterns,
being, then, able to reject some wrongly predicted ones, regarding an eventual real-world
application. The addition of more types of background (instead of exclusively the baseline
between consecutive cycles) such as noise, artifacts, and out-of-domain signals would also
help to increase the generalization capacity of the proposed network. Apart from that,
performing this analysis in additional datasets and other data types (even outside the
physiological/human activity domains) would help validate this pipeline and consolidate
the results obtained and reported in this paper. Additional datasets such as the MIT-BIH
Arrhythmia (ECG signals) [52] and Fantasia (ECG and Respiration time series) [53] datasets
could be a suitable alternative to test the transfer learning hypothesis from biosignals to
IMU-based pattern segmentation. The evaluation of the segmentation performance on
other types of biosignals such as the EEG (e.g., from the S-EDF-153 [54] dataset) could
also comprise an interesting experiment regarding a deeper validation of the proposed
framework. With respect to other IMU-based human activity datasets, the AnDy [55]
dataset should also be considered as an appropriate option.
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Appendix A. Supplementary Details about the Neural Network Architecture Choice

Some similar papers (referenced in Section 1.3), published by Sereda et al. [16]
and Moskalenko et al. [35], have tested their networks’ performance in LUDB dataset,
although considering a multi-classification task (distinguishing P, QRS, T waveforms, and
the signal background). The segmentation metrics were proposed in [16], being available
on Github (https://github.com/Namenaro/ecg_segmentation/blob/master/metrics.py,

https://physionet.org/content/ludb/1.0.1
https://physionet.org/content/ludb/1.0.1
https://github.com/Namenaro/ecg_segmentation/blob/master/metrics.py
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accessed on 21 March 2021). Such metrics measure how (temporally) close each predicted
ECG wave’s onset and offset timestamp is from the expected, using a tolerance parameter
that defines which annotations are close enough (True Positive—TP) and whose are outside
that tolerance interval (False Positives—FP). Note the concept of TP and FP is different
than the described in this paper.

Table A1. Overview of the segmentation performance metrics across the proposed architecture and two already proposed in
the literature. Error distributions are presented as the averaged temporal errors and the corresponding standard deviation.
Best scores are highlighted.

Metric Model
Evaluated ECG Segment

Ponset Pof f set QRSonset QRSof f set Tonset Tof f set
HG 100.0 100.0 100.0 100.0 99.7 98.8
C/D 99.6 99.6 100.0 100.0 97.0 97.0Sensitivity (%)

U-Net 96.2 96.2 99.7 99.7 99.1 97.6

HG 90.7 90.7 98.4 88.1 91.9 90.8
C/D 89.7 89.7 98.2 87.8 93.3 93.0Precision (%)

U-Net 92.3 92.3 99.7 99.4 95.9 94.2
HG −1.8 ± 18.3 −3.7 ± 15.6 1.3 ± 9.4 −0.9 ± 11.3 −5.1 ± 32.7 −3.4 ± 28.3
C/D 1.2 ± 19.2 −4.4 ± 17.6 1.3 ± 10.3 2.0 ± 11.3 −2.9 ± 30.1 1.5 ± 29.8Error distribution

(µ± σ ms) U-Net −1.0 ± 11.8 −4.7 ± 14.7 0.1 ± 11.1 1.4 ± 10.6 −10.0 ± 35.0 −13.0 ± 33.0
HG—Hourglass architecture (Ours); C/D—Sequential Convolution/Deconvolution architecture [16]; U-Net—U-shaped architecture [35].
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