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Abstract: This paper presents two designs of high-efficiency polarizer reflectarray antennas able
to generate a collimated beam in dual-circular polarization using a linearly polarized feed, with
application to high-gain antennas for data transmission links from a Cubesat. First, an 18 cm × 18 cm
polarizer reflectarray operating in the 17.2–22.7 GHz band has been designed, fabricated, and tested.
The measurements of the prototype show an aperture efficiency of 52.7% for right-handed circular
polarization (RHCP) and 57.3% for left-handed circular polarization (LHCP), both values higher than
those previously reported in related works. Then, a dual-band polarizer reflectarray is presented
for the first time, which operates in dual-CP in the frequency bands of 20 GHz and 30 GHz. The
proposed antenna technology enables a reduction of the complexity and cost of the feed chain to
operate in dual-CP, as a linear-to-circular polarizer is no longer required. This property, combined
with the lightweight, flat profile and low fabrication cost of printed reflectarrays, makes the proposed
antennas good candidates for Cubesat applications.

Keywords: broadband; circular polarization; CubeSat; dual band; high-gain antenna; polarizer;
reflectarray; satellite communications

1. Introduction

CubeSats are a cost-efficient solution to conduct scientific research and to validate
new communication technologies in space. The appearance of the CubeSat standard revo-
lutionized the world of small satellites in the early 2000s, leading to the fast development
of pico- and nano-satellite applications among universities, small technology companies,
and other organizations [1,2]. CubeSats are typically built by several blocks of dimensions
10 cm × 10 cm × 10 cm and a maximum weight of 1.33 kg, called 1 U (unit volume for
CubeSats). Due to the small size of the CubeSat, there is a limited volume in the spacecraft
to accommodate the antenna systems required for remote sensing applications and data
transmission links [3,4]. The establishment of a high-data-rate communication link between
the Cubesat and the Earth (or another satellite) usually requires a high-gain antenna, which
must be lightweight and present low stowage volume [4]. Some recent developments on
high-gain antennas proposed for Cubesat applications are deployable mesh reflectors [5,6],
folded-panel reflectarrays [7,8], metasurfaces [9,10], and membrane antennas [11].

Among the previous antenna types, reflectarrays are positioning as one of the most
promising technologies for CubeSats [12]. Reflectarrays provide high values of gain and
radiation efficiency (similar to those of reflectors), with the added advantage of their flat
surface, which allows them to be easily folded and stowed on the spacecraft, as well as
to implement simple deploying mechanisms in flight. NASA has recently launched two
CubeSat missions using folded-panel reflectarrays as high-gain antennas: ISARA (Inte-
grated Solar Array and Reflect-array Antenna) [7] and MarCO (Mars Cube One) [8]. Both
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reflectarrays operate in circular polarization (CP), which is more resistant to electromag-
netic phenomena and polarization mismatch than linear polarization (LP). To design a CP
reflectarray antenna, the conventional approach is based on the use of a CP feed [13–15],
which normally includes a linear-to-circular polarizer in the feeding chain. The polarizer
increases the cost and design complexity of the feeding chain and would require additional
stowage volume in the CubeSat. For this reason, several reflectarray antennas have been
proposed to produce a CP beam using an LP feed [16–21], performing LP-to-CP conversion
at the same time as collimating a high-gain beam (hence, we will refer to them as polarizer
reflectarrays). This technology allows to simplify the design of the feeding chain, also
reducing its cost; however, the results reported to date show that it is difficult to achieve
high aperture efficiency with a broad operating band [16–21].

In this paper, the authors present two designs of polarizer reflectarrays to produce
a dual-CP beam using a dual-LP feed, with application to CubeSat missions in K/Ka-
bands. First, a broadband polarizer reflectarray has been designed, manufactured, and
tested, showing higher radiation efficiency than other polarizer reflectarrays reported in
the literature. Then, the design of a dual-band polarizer reflectarray is presented for the
first time, enabling simultaneous operation in dual-CP at the 20 GHz and 30 GHz bands.
The results of both designs confirm the potential of reflectarrays as high-gain, low-stowage
antennas for high-speed data transmission links from a Cubesat.

2. Operating Principle of the Polarizer Reflectarray

A reflectarray consists of a planar array of radiating elements which are illuminated
by a feeder antenna (typically, a horn), in a similar way to a parabolic reflector [12]. To
generate a collimated or a shaped beam, the reflectarray elements are designed to introduce
a certain phase shift in the incident field from the feed-horn. The following expression can
be used to obtain the phase shift (Φ) required in each reflectarray element to produce a
focused beam in the direction (θb, ϕb):

Φ(xi, yi) = −k0 sin (θb) [xi cos (ϕb) + yi sin (ϕb)] + Φ0 (1)

where xi and yi are the Cartesian coordinates of the i-element with respect to the geometric
center of the antenna surface, k0 is the propagation constant in vacuum, and Φ0 is a constant
phase term applied to all the elements, which does not affect the generated beam (it can be
used to control the absolute phase values of the elements).

In printed reflectarray antennas, the phase shift introduced by each reflectarray ele-
ment is normally controlled by adjusting one or several of their geometrical parameters.
Some reflectarray elements allow independent control of the phase shift in each linear
component of the incident field, such as rectangular patches [16], crossed dipoles [17,18]
and Jerusalem crosses [19]. Hence, each reflectarray element can be designed to introduce
two different phase shifts, ΦX and ΦY, associated with the x and y linear components of
the incident field (note that some single-layer reflectarray cells [22,23] have two planes of
symmetry, which does not allow a different phase-shift in each field component). Although
both phase shifts can be obtained by Equation (1) to produce a beam in the same direction,
they can be calculated using a different phase constant for each LP (Φ0X and Φ0Y). If a
dual-LP feed is used to illuminate the reflectarray, with the incident field oriented in the
direction of the x and y axes of the reflectarray, the antenna will produce a collimated beam
in dual-LP, see Figure 1a.

The design of a dual-CP reflectarray using a dual-LP feed can be accomplished by
rotating the feed-horn so that the incident LP waves are oriented at 45◦ slant with respect
to the x and y axes of the reflectarray, as shown in Figure 1a,b. Each incident LP is
decomposed into two orthogonal components of similar amplitude (they will present the
same amplitude in the case of normal incidence). The reflectarray elements are designed to
provide the phase shifts required for a collimated beam while enforcing that ΦX = ΦY ± 90◦

by means of a proper election of the phase constants Φ0X and Φ0Y. This leads to a 90◦

phase difference between the x and y components of the reflected field, which will produce
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a reflected CP wave. As shown in Figure 1, the sense of the reflected CP (right-handed CP
-RHCP- or left-handed CP -LHCP) is determined by the orientation of the incident LP (45◦

or −45◦). Therefore, a reflectarray antenna with a dual-LP feed can generate a high-gain
beam in dual-CP without the use of a polarizer in the feed chain.
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3. Design and Demonstration of a Broadband Polarizer Reflectarray Antenna

A broadband polarizer reflectarray that produces a dual-CP beam with a linearly
polarized feed has been designed, manufactured, and tested. The dimensions of the
reflectarray surface are 180 mm × 180 mm (comprising 30 × 30 reflectarray cells), in order
to obtain a maximum gain close to 30 dBi at 20 GHz and to be compatible with the size of a
3 U CubeSat, see Figure 2a. The reflectarray is designed to produce a focused beam in the
direction θb = 25◦, ϕb = 0◦. The feed is placed at the coordinates (−85, 0, 180) mm according
to the reference system of the reflectarray shown in Figure 1a. The offset configuration of
the feed ensures that there will be no blockage of the radiated beam.

Dual-layer reflectarray cells formed by two stacked rectangular patches have been
used for the design of the reflectarray antenna, as can be seen in Figure 2b. The use of
two stacked patches instead of one patch provides a larger phase variation range for the
reflection coefficient of the cell and results in a broadband performance of the reflectarray
antenna [24]. The cell periodicity is pX = pY = 6 mm, which is smaller than half the
wavelength at the operating frequencies of the reflectarray. The dimensions of the patches
(lX1-lX2 and lY1-lY2) will be independently adjusted for each reflectarray cell, considering
a range of variation from 1.6 mm to 5.5 mm. The two dielectric layers are implemented
by commercial CuClad 233LX substrates, each with thickness h = 0.787 mm, a relative
dielectric constant of 2.33, and a loss tangent of 0.0012. These substrates have been chosen
because of their simplicity of manufacturing and low losses.

The phase shift distributions that must be introduced in each linear component of
the incident field (x and y) to produce a dual-CP beam at 19.7 GHz (design frequency)
are depicted in Figure 3. These phases have been obtained by applying Equation (1)
with Φ0X = 250◦ and Φ0Y = 160◦, so a 90◦ difference is achieved between the phase shifts
associated with the x and y components, in order to generate a reflected CP wave from an
incident LP with 45◦ skew, as explained in Section 2.
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Figure 3. Phase shifts (in degrees) that must be introduced by the reflectarray elements in the (a) x component and (b) y
component of the incident field to produce a dual-CP beam at 19.7 GHz.

The oblique incidence in most of the reflectarray cells results in small differences
between the amplitude of the x and y components in which the two LP radiated by the feed
are decomposed, see Figure 4. These variations are not critical to perform the LP-to-CP
conversion, since they are between −1 dB and 1 dB in most of the reflectarray cells.

The reflectarray cells made up of two stacked patches have been designed to introduce
the phase shifts shown in Figure 3, accounting for the real incidence angles in each cell.
The dimensions of the patches along the x and y axes (lX1-lX2 and lY1-lY2) are independently
adjusted to introduce a different phase shift in each linear component of the incident field,
keeping the following relations between the upper and lower patches: lX2 = 0.8 lX1, and
lY2 = 0.8 lY1. This scale factor between the two layers provides two close resonances that
lead to a smooth variation in the phase response of the cell in a range larger than 500◦,
as can be checked in Figure 5a,b, which show the amplitude and phase of the reflection
coefficient associated to the x and y components of the incident field as a function of the
corresponding patch dimensions. The results in Figure 5 have been obtained considering
the following incidence angles: θinc = 25◦, ϕinc = 0◦, which correspond to the reflectarray
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cells located near to the geometrical center of the reflectarray antenna. The electromagnetic
simulations have been performed using an in-house Method of Moments (MoM) code [25],
which applies an infinite array model to obtain the reflection coefficients of the reflectarray
cell. The MoM analysis tool has been satisfactorily validated in previous works by the
manufacturing and measurement of several reflectarray prototypes in Ku [26] and Ka
bands [27]. For the MoM simulations, the relative dielectric constant (2.33) and loss tangent
(0.0012) of the CuClad layers are considered, so the simulations account for the dielectric
losses of the substrates. The printed elements are modeled as perfect conductors since the
conductivity losses of the copper are negligible at these frequencies.
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The dimensions of the rectangular patches have been adjusted cell-by-cell using the
same electromagnetic software, which has been embedded in an iterative design routine.
The photo-etching masks of the two reflectarray layers, with the final dimensions of the
rectangular patches, are shown in Figure 6. The patches have been photo-etched on both
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sides of the upper CuClad 233 LX substrate. Then, this substrate with the printed elements
has been bonded to the lower CuClad sheet (with copper in its bottom side) using 37-µm
CuClad 6250 bonding film (relative dielectric constant of 2.32, and loss tangent of 0.0013).
The reflectarray has been illuminated by a K-band pyramidal horn (Narda 638), which
has a gain of 15.6 dBi at 20 GHz and provides around −9 dB illumination taper on the
reflectarray edges. The horn has been properly positioned to radiate the incident LP first
at 45◦ slant (so the reflectarray generates a focused beam in RHCP), and then, at −45◦

slant (to generate the beam in LHCP). A photograph of the fabricated reflectarray antenna
demonstrator at the anechoic chamber of the Universidad Politécnica de Madrid is shown
in Figure 7.
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The comparison of the simulated and measured radiation patterns of the polarizer
reflectarray antenna at 19.7 GHz in the xz-plane (the plane that contains the feed and
the beam) and in the azimuth plane (the orthogonal plane tilted 25◦ with respect to the
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z-axis) for the beams generated in RHCP and LHCP is shown in Figure 8. Concerning
the simulations, the field radiated by the horn has been modeled using a typical cosq

(θ) distribution with q = 10.5. The reflected field components on the reflectarray surface
have been calculated by the abovementioned MoM software, and then, these components
have been used to obtain the numerical radiation patterns of the antenna. As can be seen
in Figure 8, there is a good match between measurements and simulated results. There
is a small deviation of the beam in azimuth (around 0.8◦) which is mainly attributed to
misalignments of the measurement setup and fabrication tolerances in the pieces of the
horn supporting structure.
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The measured radiation patterns of the polarizer reflectarray antenna at 19.7 GHz
show a maximum gain of 29.95 dBi in LHCP and 29.58 dBi in RHCP, while the side-lobe
levels (SLL) are lower than −19.5 dB in both polarizations. The aperture efficiency at
19.7 GHz is 56.3% for LHCP and 51.7% for RHCP. Moreover, the measured cross-polar
levels are 26 dB below the co-polar maximum, which leads to an axial ratio (AR) of 0.87 dB.

The measured radiation patterns of the polarizer reflectarray at other frequencies,
ranging from 18.2 GHz to 21.2 GHz, are shown in Figure 9 for the beam produced in LHCP.
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As can be seen, the antenna exhibits a stable gain and SLL. The cross-polar levels remain
fairly stable at frequencies lower than 20 GHz, while they increase above 20 GHz. A similar
in-band performance is achieved for the RHCP beam. Figure 10 shows the maximum
gain of the reflectarray antenna as a function of frequency, comparing the measured and
simulated gain values for both RHCP and LHCP in the frequency range from 17.2 GHz to
22.7 GHz. The maximum gain in the operating band is 30.2 dBi for LHCP and 29.84 dBi
for RHCP (both achieved at 20.1 GHz) which correspond to aperture efficiencies of 57.3%
for LHCP and 52.7% for RHCP, both values higher than those previously reported in
other polarizer reflectarrays [16–21]. The 1-dB gain bandwidth is around 4.1 GHz (relative
bandwidth of 20%) and the 3-dB gain bandwidth is larger than 5.5 GHz (relative bandwidth
of 27.5%). The maximum SLL over the entire bandwidth is −16 dB. The AR performance
of the polarizer reflectarray has also been studied in the 17.2–22 GHz band (see Figure 11),
showing a 3-dB AR relative bandwidth of 19% (between 17.2 GHz and 20.7 GHz) for both
RHCP and LHCP.
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Table 1 presents a comparison of the main antenna parameters between the polarizer
reflectarray demonstrator shown in this work and other polarizer reflectarrays reported
in the literature. As can be seen, the proposed reflectarray exhibits the highest aperture
efficiency. The 1-dB gain bandwidth is comparable to that reported in [17] and the SLL
is lower than previous works (note that the SLL in [18] is provided only at the center
frequency). Moreover, the proposed reflectarray has been designed with an offset-feed
configuration to avoid aperture blockage produced by the feed, and it is the only polarizer
reflectarray with a tilted beam (25◦). The antenna can be designed for larger fixed scanned
beams, up to 60◦ from broadside, at the cost of the corresponding reduction in directivity
(which in this case is around 0.5 dB). Despite the scanned beam, the aperture efficiency of
the proposed antenna is higher than that of the other polarizer reflectarrays in the literature
(with broadside beams).

Table 1. Comparison of this work with previously reported polarizer reflectarrays.

Ref. No. Layers Feed/Beam
Scheme Gain Bandwidth (%) 3-dB AR

Bandwidth (%)
Max. Aperture
Efficiency (%) Max. SLL (dB)

[16] 1 Centered/
Broadside 17 (1-dB) 11 39 −14

(cent. freq.)

[17] 2 Centered/
Broadside 20 (1-dB) 28 44 −15

(cent. freq.)

[18] 2 Offset/
Broadside

14.1/11.6 (3-dB)
(LHCP/RHCP)

16.3/16.8
(LHCP/RHCP)

40.7/46.5
(LHCP/RHCP)

−16
(cent. freq.)

[19] 1 Offset/
Broadside 12.5 (1-dB) 50 46.3 −15

[20] 2 Centered/
Broadside 40 (3-dB) 40 38.7 −10

[21] 2 Offset/
Broadside 11.6 (1-dB) 12.5 30 −11

(cent. freq.)

This work 2 Offset/
Tilted (25◦) 20 (1-dB) 19 52.7/57.3

(RHCP/LHCP) −16

4. Design of a Dual-Band Polarizer Reflectarray Antenna

In all previous works about polarizer reflectarrays, the antenna operates over a single
frequency band to produce a high-gain beam in dual-CP. In this Section, a dual-band
polarizer reflectarray is presented for the first time, which is designed to operate in the
frequency bands of 19.2–20.2 GHz and 29–30 GHz. Again, the reflectarray surface is
formed by a rectangular array of 30 × 30 cells, but in this case, the cell dimensions have
slightly been reduced to 5.7 mm × 5.7 mm, to prevent the appearance of grating lobes
at the higher operating frequencies. Thus, the dimensions of the reflectarray surface are
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171 mm × 171 mm. An offset-feed configuration, like the one shown in Figure 2a, has
been considered, with the feed placed at the coordinates (−40, 0, 195) mm. The antenna is
designed to produce a focused beam in dual-CP in the direction θb = 13◦, ϕb = 0◦.

The required phase shift distributions at 19.7 GHz and 29.5 GHz (design frequencies)
that must be introduced in the x and y components of the incident field to produce a
focused beam at θb = 13◦, ϕb = 0◦ are shown in Figure 12. These phases have been
obtained by applying Equation (1) with the following relation between the phase constants:
Φ0X = Φ0Y + 90◦, so that an incident LP wave at 45◦ slant will be converted into a reflected
RHCP wave at both bands, while an incident LP at −45◦ slant will be transformed into
LHCP. Note that this design method allows changing the sense of the CP between the two
frequency bands, considering Φ0X = Φ0Y + 90◦ when computing the phases at 19.7 GHz,
and Φ0X = Φ0Y − 90◦ when doing the same at 29.5 GHz.
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To implement the four-phase distributions shown in Figure 12, the reflectarray ele-
ments must be able to provide a different phase shift in each linear component (x and
y) at each frequency (19.7 GHz and 29.5 GHz). Dual-layer reflectarray cells have been
used, where the rectangular patches have been replaced by orthogonally arranged groups
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of stacked parallel dipoles, as depicted in Figure 13. The dipoles printed on the lower
dielectric layer (lengths lX1-lX2-lX3, and lY1-lY2-lY3) are used to adjust the phase shift intro-
duced at 19.7 GHz, while the upper dipoles (lengths lX4-lX5 and lY4-lY5) control the phases
introduced at 29.5 GHz. Besides, the use of orthogonal groups of dipoles (lengths lXi and
lYi) enables independent phasing in each linear component of the incident field at both
operating bands. A detailed explanation about the performance of this structure can be
found in [27,28], where scaled versions of the cell were used for the design of dual-LP
reflectarrays in the Ku/Ka-bands. In this work, the same cell structure is applied to design
a dual-band, dual-CP reflectarray antenna.
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Figure 13. Dual-layer reflectarray cells are formed by orthogonally arranged groups of dipoles, each
comprising five dipoles on the bottom dielectric layer and three dipoles on the upper layer.

The two dielectric layers of the reflectarray are implemented using polycarbonate
(permittivity of 2.8 and loss tangent of 0.0005) with a different thickness for each layer:
h1 = 1.3 mm and h2 = 0.6 mm. This material can be used to fabricate the reflectarray by
additive manufacturing processes using a 3D printer [29], resulting in a low-cost antenna
for Cubesats. The cell periodicity is pX = pY = 5.7 mm, which corresponds to 0.57·λ at
30 GHz. The width of the dipoles is 0.25 mm, and the distance between parallel dipoles
(from edge to edge) is 0.25 mm in the lower layer and 0.5 mm in the upper layer. To
achieve a smooth phase response at the two operation bands of the antenna, the following
relations are set between the lengths of the dipoles: lX2(Y2) = 0.81·lX1(Y1), lX3(Y3) = 0.62·lX1(Y1),
lX5(Y5) = 0.81·lX4(Y4). The phase and amplitude responses of the reflectarray cell associated to
the x component of the incident field are shown in Figure 14a,b for the 20 GHz and 30 GHz
bands, respectively. These results have been obtained by combining MoM analysis with the
local periodicity assumption and considering that the incidence angles on the reflectarray
cell are θinc = 10◦, ϕinc = 0◦, which correspond to the central part of the reflectarray surface.
A phase range larger than 400◦ is obtained in both frequency bands, with low dielectric
losses (similar performance is achieved for the y component).
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Figure 14. Phase and amplitude of the reflection coefficient associated with the x component of the incident field (a) at the
lower band (19.2–20.2 GHz) and (b) at the upper band (29–30 GHz).

The lengths of the dipoles in each reflectarray layer have been optimized to achieve
the required phase-shift values for each frequency and polarization, using an iterative
design routine similar to the one used in Section 3. The photo-etching masks of the two
reflectarray layers, with the final dimensions of the dipoles after the design process, are
presented in Figure 15.
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Figure 16 shows the simulated radiation patterns in RHCP and LHCP of the designed
dual-band polarizer reflectarray at 19.7 GHz and 29.5 GHz (center frequencies). To obtain
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these results, the electromagnetic field radiated by the feed has been modeled by a cosq (θ)
distribution with q = 10.5 at the 20 GHz band and q = 10.7 at the 30 GHz band. Note that the
feed has been properly oriented to produce two LP skewed at 45◦ and −45◦ with respect
to the x and y axes of the reflectarray, as it was done in Section 3 with the single-band
polarizer reflectarray. The maximum gain provided by the reflectarray is 30 dBi at 19.7 GHz
and 32 dBi at 29.5 GHz (same gain in RHCP and LHCP). These values are associated
with aperture efficiencies of 63% at 19.7 GHz and 44.7% at 29.5 GHz. The SLL is below
−19 dB at both frequencies. The cross-polar levels at 19.7 GHz are 19 dB below the co-polar
maximum, while at 29.5 GHz the cross-polar levels are 15 dB and 13 dB below the co-polar
maximum for RHCP and LHCP, respectively.
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The main limitation of the designed polarizer reflectarray is the cross-polar levels at
the higher frequency, which will reduce the available bandwidth. The AR at 29.5 GHz
is around 3.1 dB in RHCP and 3.9 dB in LHCP, while at 19.7 GHz the AR is 1.9 dB. The
high cross-polar levels are mainly produced by phase errors introduced by the reflectarray
elements since some of them are not able to simultaneously provide the exact phases
required in each polarization and frequency without errors. Advanced optimizations
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would be required to reduce the phase errors during the design of the reflectarray elements
and improve the AR at higher frequencies.

The antenna performance has also been evaluated within the two operating bands.
Concerning the 19.2–20.2 GHz band, the gain variation is within ±0.5 dB, and the cross-
polar levels are between 18 dB and 20 dB below the co-polar maximum (AR between 1.75
and 2.2 dB). This stable performance allows the reflectarray to operate in wider bandwidths,
e.g., from 18.95 GHz to 20.45 GHz (a total bandwidth of 1.5 GHz) with minor variations in
gain and AR. On the other hand, the available bandwidth centered at 29.5 GHz has been
reduced to 0.6 GHz (29.2–29.8 GHz) to ensure that the cross-polar levels are at least 12.5 dB
below the co-polar. The gain variation in this band is within ±0.3 dB. These results confirm
the dual-band operation of the polarizer reflectarray.

5. Conclusions

Two designs of high-efficiency polarizer reflectarray antennas to operate in dual-CP
using a dual-LP feed have been presented in this paper, with application to high-gain anten-
nas for Cubesats. First, a broadband polarizer reflectarray operating in the 17.2–22.7 GHz
band has been designed, fabricated, and tested, showing an aperture efficiency of 52.7% for
RHCP and 57.3% for LHCP, both values higher than those reported in previous works on
polarizer reflectarrays. Then, a dual-band polarizer reflectarray has been proposed for the
first time, which operates in the frequency bands of 19.2–20.2 GHz and 29.2–29.8 GHz. The
results of both designs are promising and confirm the potential of polarizer reflectarrays to
be used as high-gain, low-cost antennas for Cubesats, reducing the complexity and cost of
the antenna system by no longer requiring a linear-to-circular polarizer in the feeding chain.
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