
electronics

Article

Securing IoT Devices: A Robust and Efficient Deep Learning
with a Mixed Batch Adversarial Generation Process for
CAPTCHA Security Verification

Stephen Dankwa * and Lu Yang *

����������
�������

Citation: Dankwa, S.; Yang, L.

Securing IoT Devices: A Robust and

Efficient Deep Learning with a Mixed

Batch Adversarial Generation Process

for CAPTCHA Security Verification.

Electronics 2021, 10, 1798. https://

doi.org/10.3390/electronics10151798

Academic Editors: Sang-Soo Yeo and

Damien Sauveron

Received: 25 June 2021

Accepted: 23 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Automation Engineering, University of Electronic Science and Technology of China,
Chengdu 611371, China
* Correspondence: nabistephen@gmail.com (S.D.); yanglu@uestc.edu.cn (L.Y.)

Abstract: The Internet of Things environment (e.g., smart phones, smart televisions, and smart
watches) ensures that the end user experience is easy, by connecting lives on web services via the
internet. Integrating Internet of Things devices poses ethical risks related to data security, privacy,
reliability and management, data mining, and knowledge exchange. An adversarial machine learning
attack is a good practice to adopt, to strengthen the security of text-based CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans Apart), to withstand against malicious
attacks from computer hackers, to protect Internet of Things devices and the end user’s privacy. The
goal of this current study is to perform security vulnerability verification on adversarial text-based
CAPTCHA, based on attacker–defender scenarios. Therefore, this study proposed computation-
efficient deep learning with a mixed batch adversarial generation process model, which attempted to
break the transferability attack, and mitigate the problem of catastrophic forgetting in the context of
adversarial attack defense. After performing K-fold cross-validation, experimental results showed
that the proposed defense model achieved mean accuracies in the range of 82–84% among three
gradient-based adversarial attack datasets.

Keywords: security; privacy; IoT; artificial intelligence; adversarial machine learning; deep learning;
convolutional neural network; attacks; denoising autoencoder; CAPTCHA

1. Introduction

Internet of Things (IoT) devices refer to electronic devices (of any size) that have the
capability of connecting to the internet, and collecting and sharing data, as illustrated in
Figure 1a. The aim of IoT devices is to connect and exchange data with other devices
and systems over the internet. Electronic devices, such as smartphones, make use of edge
systems in the mobile IoT environment [1]. Smartphones are dominant IoT devices used to
access cloud-based services, conveying sensory data related to human tasks.

They are embedded with sensors, including global positioning systems (GPSs), barom-
eters, magnetometers, microphones, gyroscopes, accelerometers, etc. In regard to the
internet, end users can perform their daily life activities online with their connected
electronic devices. Most of the time, these sensors request end users to provide private
information before proceeding with online activities. These sensors, working together,
present a fairly complete picture of the end users’ daily activities, which has privacy im-
plications. Another interesting aspect is that smartphones can be connected to other IoT
devices, such as smart TVs and smart watches, to share data, as illustrated in Figure 1b.
The main goal of implementing these aforementioned IoT devices is to assist humans in
performing their daily life activities with ease and comfort.
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Figure 1. (a) Sample IoT devices connected to the internet to perform tasks; (b) sample connected
IoT devices through smartphones.

However, unfortunately, malicious attackers (or intruders) on the internet tend to
write automated malicious applications to attack websites where end users perform their
activities. These security threats sometimes put the information stored on connected IoT
devices at risk. As a means of combating these malicious attacks, to protect electronic
devices or smartphones and the end user’s private data, cyber security practitioners
generate CAPTCHAs as a security solution to differentiate machine bots and humans.

Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA) is a universal automatic security program, based on cryptographic protocol;
its underlying hardness assumption is centered on the problem of artificial intelligence
(AI) [2]. The main uses of CAPTCHAs are to alleviate the impact of distributed denial
of service (DDoS) attacks, prevent automatic registration of free email addresses or spam
postings to forums, and to prevent automatic scrapping of web content [2]. CAPTCHAs
are categorized into video, audio, images, and text-based. Among these four CAPTCHA
categories, text-based CAPTCHAs are more famous and powerful security mechanisms
used against automatic malicious programs. According to Hussain et al. [2], several
approaches have been developed to secure text-based CAPTCHAs, such as text distortion,
random lines, and overlapping of characters with foreground and background noise.
However, these text-based CAPTCHAs with conventional background and foreground
noise, as a form of security, have been compromised due to the advancement of deep
learning (DL), and can be solved with high accuracy.
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The aforementioned observation was proven by several researchers [3–14]. DL is
beneficial in other fields, including target recognition [15], speech recognition [16,17],
image recognition [18–20], image restoration [21–23], audio classification [24,25], object
detection [26–30], scene recognition [31], etc., but it has been considered “bad news” in
text-based CAPTCHAs, by penetrating their security and making them vulnerable.

Adversarial machine learning attacks may be highly necessary and recommended
in the area of cyber security. Recently, AML attacks, where the robustness of an image
classifier model is exposed to small perturbations, have gained more attention [32–56] in the
artificial intelligence (AI) research community. An adversarial attack implants adversarial
or vector noise in the input image, and is deliberately constructed to fool and deceive
image classifier models.

Adversarial attacks can be seen in other fields of artificial intelligence, such as medicine
and autonomous driving, threatening deep learning models (for example, when an au-
tonomous vehicle misjudges a stop sign on the road, as a result of the deformation of the
sign by malicious attackers through AML attacks). Meanwhile, to the human eye, the stop
sign may look normal, but to the deep learning model, it may represent a different image
all together due to adversarial perturbations, which may lead to serious accidents and
threats to human safety. Moreover, as a result, improving the robustness of deep learning
models against adversarial attacks has been a popular topic among researchers.

However, when it comes to the cyber security research community, an adversarial
attack can be considered good news, as it can be used as a security mechanism to strengthen
CAPTCHAs to deceive deep learning models, to prevent malicious attacks or intrusions,
and improve security. The rise of adversarial ML attacks is promising attack measures
used to strengthen the security of text-based CAPTCHAs, but there is little research on
this when compared to the aforementioned research studies under conventional text-based
CAPTCHAs. The most important aspect is that, after generating adversarial text-based
CAPTCHAs, it is eminent to verify the strength of their security before they are deployed
on a website or web applications, which is a goal to be accomplished in this current work.

The motivations behind this current work can be attributed to the following intrusion
detection survey works, based on securing a smart grid from intrusion [57], network-based
intrusion detection [58], fuzzy signature-based intrusion detection systems [59], anomaly-
based intrusion detection systems [60], intrusion detection for in-vehicle networks [61],
intrusion detection and prevention systems in digital substations [62], operational data-
based intrusion detection for smart grids [63], defending network intrusion detection
systems against adversarial evasion attacks [64], generative adversarial attacks against
intrusion detection systems [65], adversarial machine learning in intrusion detection sys-
tems [66]. In addition, the present study work relates well with the work by Radanliev
et al. [67], in terms of using artificial intelligence for IoT risk assessment. According to
their studies, AI can be used in cyber risk analytics to enlighten organizational resilience
and understand cyber risk. Their work focused on the identification of the role of AI in
connected IoT devices to perform IoT risk assessment. Moreover, integration of IoT devices
poses an ethical risk related to data security, privacy, reliability and management, data
mining, and knowledge exchange [68].

In terms of performing adversarial CAPTCHA security verification, to the best of our
knowledge, most researchers, after fooling their proposed CNN solver models using the
adversarial attack algorithms, did not go further in regard to building defense models
to test the strength of the generated adversarial text-based CAPTCHAs. Even with the
works that built defense models, they did so by utilizing image processing filters, which
are sometimes not effective against some adversarial attack algorithms. This current work
is significant to the security community, in terms of verifying the security of adversarial
text-based CAPTCHA to secure IoT devices, especially smartphones and smart TVs, which
are commonly used by humans, to protect their data and privacy. The assumption is that if
security mechanism measures are strengthened, the activities by malicious attackers on the
internet, through web applications, can also be diminished, thereby securing IoT devices,
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in terms of protecting data and end users’ privacy. This current study provides practical
awareness of cyber risk assessment and proposes AI framework that can be utilized to
perform security verification on web applications in which IoT devices are connected
through the internet. Even though the focus is on CAPTCHAs for securing low-powered
IoT devices, such as smartphones [1] and smart TVs [69], with respect to this current study,
it can also be beneficial to more native scenarios and sensors, which are connected to web
application programming interfaces (APIs).

Therefore, in this current research work, we propose techniques for adversarial text-
based CAPTCHA image generation, by utilizing adversarial attack algorithms, including
the Fast Gradient Sign Method (FGSM), Iterative Fast Gradient Sign Method (I-FGSM),
and Momentum Iterative Fast Gradient Sign Method (MI-FGSM). These techniques will
strengthen the security of conventional text-based CAPTCHAs by injecting a small ad-
versarial or vector noise to generate adversarial CAPTCHAs that will retain the human
perception, and then fool the Convolutional Neural Network (CNN) model.

After successfully deceiving the proposed CNN solver model, we proposed two
defense models. The first method is a fundamental defense model, which is the CNN with
a Denoising Autoencoder (DAE-CNN) to solve adversarial text-based CAPTCHAs. The
purpose of the DAE network is to automatically pre-process the adversarial text-based
CAPTCHA images, where the encoder will create compressed or latent representation of the
CAPTCHA images, and then the decoder will reconstruct the original CAPTCHAs from the
latent representation. This will improve the quality of the adversarial CAPTCHA images
by removing the noise and, therefore, increase the accuracy of the CNN solver model. This
technique is less robust, requires less computation, and cannot perform generalization,
it only knows adversarial text-based by forgetting how the original CAPTCHA looks
like. This scenario is sometimes referred to as catastrophic forgetting in the context of
adversarial attack defense. In order to mitigate this problem, this study proposes a second
defense model by introducing the Mixed Batch Adversarial Generation Process (MBAGP).
This technique will make the defense model more robust and more computation-efficient,
and then improve the model’s capability to solve adversarial text-based CAPTCHAs. In
addition, we introduce the optimal learning rate finder algorithm in conjunction with a
cyclical learning rate policy to accelerate the defense model’s convergence rate to improve
recognition accuracy. The goal of the proposed defense model is, in its robustness, to
remove the adversarial noise. This ethical practice will serve as a form of adversarial text-
based CAPTCHA security verification system, which will in turn secure the aforementioned
IoT devices when connected to web services, and then protect the end user’s privacy as
well.

The significance of this current study presents a way to minimize the activities of
automatic malicious attackers. In addition, it also shows the cyber security research
community how to perform adversarial text-based CAPTCHA security verification, using
deep learning, based on the attacker–defender scenario in the context of IoT risk assessment.
The following sections of this current work are organized as follows. In Section 2, the work
presents related works; Section 3 presents the materials and the proposed methodologies
used in this work; Section 4 presents the results of the proposed CNN solver model and
the attackers; Section 5 presents the discussions, which includes comparisons with related
study works, comparisons among the transfer learning results with the proposed defense
models, and implications of the study work. Finally, Section 6 presents the conclusion and
summary of this current work.

2. Related Works

According to Dankwa et al. [13], CAPTCHA deciphering is an ethical and indispens-
able form of a vulnerability assessment approach, to assess the strength of security in
text-based CAPTCHAs before they are deployed on web applications.

With respect to previous works, Kopp et al. [70] performed text-based CAPTCHA
breaking using the cluster algorithm and CNN, consisting of two steps, character localiza-
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tion and recognition. Their CNN architecture resembled the LeNet-5 architecture. Their
localization, CNN, consisted of two (2) convolutional layers with six (6) and sixteen (16)
5 × 5 kernels, each followed by 2 × 2 max pooling layers, and a final fully-connected
output layer. They concluded that the use of CNN is superior to multi-layered perceptron
(MLP).

In the work by Ondrej et al. [71], after generating their bubble text-based CAPTCHA
images, they then performed a comparative study based on traditional machine learning
algorithms, such as Multi-Layered Perceptron (MLP), K-Nearest Neighbor, Support Vector
Machines, and Decision Trees. They achieved a success rate of 89% based on all of their
analyzed algorithms to solve the CAPTCHAs.

Zhao et al. [9] used the Python CAPTCHA library to generate both single-letter (e.g.,
“A”), and multi-letter (e.g., “GCKD”) datasets. They generated 50,000 single-letter images,
and 50,000 four-letter text-based CAPTCHA images. They, therefore, developed Support
Vector Machines, K-Means algorithm, Convolutional Neural Network, and the VGG-19 pre-
trained model with transfer learning. They concluded that, for the single-letter CAPTCHA
images, the CNN model was superior to the SVM and K-Means models with an accuracy
of 99%. The VGG-19 transfer learning model achieved 95% on the single-letter CAPTCHAs.
The interesting aspect of the CNN model was that, as the number of letters increased
from one to four, the model’s accuracy reduced to 76%. They stated that, based on their
estimation, there was a mistake on judging the location of each letter (that is, splitting
for individual letters) in the CAPTCHA images, with distortions, lines, and a noisy and
complex background, thereby decreasing their accuracy by 50% per letter.

In the work by Yang et al. [72], they proposed a CNN model to solve Chinese-character
CAPTCHA images. The CNN architecture consisted of standard convolutional layers with
3 × 3 kernels, each followed by a ReLU activation function. They used four (4) max
pooling layers, which were designed to subsample the resolution of the feature maps in the
previous layer with 2 × 2 kernels. They then added a flattened layer to reduce each vector
to one dimension, which was then fed to a fully-connected layer. Lastly, the final layer
was fully connected to the previous dense layer with a softmax activation. Their proposed
CNN model achieved 99.45% accuracy to solve the Chinese-character CAPTCHA images
with noisy backgrounds.

Zahra et al. [73] proposed a standard CNN model to solve both numerical and alpha–
numerical text-based CAPTCHAs with fie characters in each CAPTCHA image. They
generated their dataset using the Python CAPTCHA library. Their network started with a
convolutional layer with 32 input neurons, ReLU activation function, 5 × 5 kernels. They
used max pooling with 2 × 2 kernels, 30% dropout rate, and an output layer with softmax
activation. They compiled their network using the Adam optimizer. Their proposed CNN
model achieved 98.94% and 98.31% for the numerical and alpha–numerical, respectively.

In the work by Shu et al. [74], they generated four-character text-based CAPTCHA
images with distortions, rotation, and noisy background using the CAPTCHA open source
python library tool. They built an end-to-end deep CNN–RNN model, which first con-
structed a deep Convolutional Neural Network based on residual network architecture to
accurately extract the input CAPTCHA image features. In their study, via a constructed
variant RNN network, which is a two-layer GRU network, the deep internal features of
the text-based CAPTCHA are extracted and the final output sequence becomes the four-
character CAPTCHA. Their proposed CNN–RNN model achieved 99% accuracy to solve
text-based CAPTCHAs. This kind of architecture sometimes gives good results; however,
it is relatively complex to train.

Hu et al. [14] used the Python script to generate five-character text-based CAPTCHA
images. They then proposed a method based on VGG-Net CNN, with a transfer learning
approach to solve their generated CAPTCHAs. Their study used an adaptive learning
rate technique to accelerate the convergence rate of their model to solve the problem of
over-fitting, and obtained local optimal solution. Their model achieved 96.5% to solve
five-character text-based CAPTCHAs with background noise and adhesion distortions.
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Osadchy et al. [75] proposed Deep-CAPTCHA using adversarial examples for CAPTCHA
generation based on an object classification framework, which involved a large number of
classes. They used the Fast Gradient Sign Method algorithm to generate single text-based
CAPTCHA characters based on the MNIST digits dataset. Papernot et al. [76] proofed the
limitations of deep learning in an adversarial setting. They exploited forward derivatives,
which informed the learned behavior of Deep Neural Networks (DNNs) and generated
adversarial saliency maps, allowing efficient exploration of the adversarial sample spaces.
They used their algorithm to generate single text-based CAPTCHA characters based on the
MNIST digits dataset.

Zhang et al. [77] showed the effect of adversarial examples on the robustness of
CAPTCHAs. They used the VGG16, ResNet101, and the Inception-ResNet-V2 CNNs in
conjunction with the Fast Gradient Sign Method and the Universal Adversarial Perturba-
tions method [78] to generate their adversarial text-based CAPTCHAs. Kwon et al. [79]
generated their adversarial text-based CAPTCHAs using the FGSM, I-FGSM, and the
Deep-Fool algorithms. Their experiment results showed a 0% recognition rate with epsilon
of 0.15 for FGSM, a 0% recognition rate with alpha of 0.1 with 50 iterations for I-FGSM,
and a 45% recognition rate with 150 iterations for the Deep-Fool algorithm. Their CNN
architecture consisted of five convolutional layers, five max pooling layers followed each
of the convolutional layers, six ReLU activation layers, one fully connected layer, and an
output layer with softmax activation.

In the work by Shao [80], the study proposed adversarial text-based CAPTCHA,
named Robust Text CAPTCHA (RTC). The work then defended against their generated
adversarial text-based CAPTCHAs using image processing filters with transfer learning
techniques. For their CNN architectures, the study used pre-trained models including
LeNet, AlexNet, GoogLeNet, VGG19, ResNet50, and DenseNet169. The observation results
showed that the image processing filters, together with the pre-trained CNN models, were
not able to withstand the generated adversarial text-based CAPTCHAs.

3. Materials and Methods

This section presents the dataset used in this current work, the adversarial attack
algorithms, the proposed CNN solver architecture, the proposed fundamental defense
DAE–CNN workflow, the cyclical learning rate policy algorithm, and the robust and
efficient CNN with the Mixed Batch Adversarial Generation Process (MBAGP) defense
workflow.

3.1. Data Acquisition and Description

In this current work, we generated our own text-based CAPTCHA image dataset,
as shown in Figure 2a, using an open source Python library, since there are no publicly
available text-based CAPTCHA data to be used. The text-based CAPTCHAs contain both
digits (0–9) and uppercase English letters (A–Z), consisting of four characters. We then
collected more complex real world text-based CAPTCHAs, as seen in Figure 2b.

In total, we generated 10,000 original text-based CAPTCHA datasets. We then divided
the datasets into training and testing sets, representing 80% and 20%, respectively. Based
on the training and testing sets of the original CAPTCHA dataset, we generated the
adversarial examples using the FGSM, I-FGSM, and the MI-FGSM attack algorithms with
an epsilon of 0.25, iteration of 10, and a decay factor of 1.0. A sample of the adversarial
text-based CAPTCHA generated is shown in Figure 3c. In the perception of the human
eye, Figure 3a,c look identical, but to the CNN solver model, they look like two entirely
different images, which may lead to low accuracy for the model to solve. The Python
library used in this work is available at (https://pypi.org/project/captcha/ (accessed on 6
May 2021)).

https://pypi.org/project/captcha/
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Figure 2. (a) Sample of the generated text-based CAPTCHAs with conventional noise using an open
source Python library; (b) Sample of collected complex real world text-based CAPTCHA images.

Figure 3. (a) Sample conventional text-based CAPTCHA generated; (b) sample adversarial or vector noise to be injected
into the conventional text-based CAPTCHA; (c) sample of the generated adversarial text-based CAPTCHA.

3.2. Adversarial Attack Algorithms

This section presents the concept behind adversarial attack formulation and the
gradient-based attack algorithms used in this current work.

3.2.1. Adversarial Attack Formulation

There is a trained Convolutional Neural Network (CNN) classifier given as

f∅ (x) = y (1)

where x is the image, ∅ is a parameter, and y is the probability distribution over the classes.
The CNN assigns to x the class C(x) = argmaxiyi. Therefore, for some, image x finds
perturbation δ, such that,

C(x + δ) 6= C(x) (2)

C(x + δ) = t (3)

where (2) is untargeted adversarial attacking, and (3) is targeted adversarial attacking.
Based on either (2) or (3), what we want is to represent x + δ to human as C(x).

3.2.2. Fast Gradient Sign Method

In the Fast Gradient Sign Method (FGSM) [36], the gradient descent is changed from
the original image x, based on the epsilon ε value, and then the adversarial example xAdv is
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obtained through optimization. It is a simple technique to be used to generate adversarial
examples with good performance. FGSM can be formulated as:

xAdv = x + ε ∗ Sign (∇x J (θ, x, y)) (4)

3.2.3. Iterative Fast Gradient Sign Method

The Iterative Fast Gradient Sign Method (I-FGSM) [49] generates adversarial examples
based on a given iteration on a target image classifier model. I-FGSM can be formulated as:

xAdv
t = xAdv

t + α ∗ Sign
(
∇x J

(
θ, xAdv

t , y
))

(5)

3.2.4. Momentum Iterative Fast Gradient Sign Method

In the Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [50], transferability
is improved based on the past updating direction, which is termed as momentum.

gt+1 = µ∗ gt +
∇x J

(
θ, xAdv

t , y
)

‖∇x J
(
θ, xAdv

t , y
)
‖

(6)

xAdv
t = xAdv

t + α ∗ Sign (gt+1) (7)

Based on (4), (5), and (7), xAdv, xAdv
t , xAdv

t are the adversarial examples, ε is the epsilon,
θ is the classifier model, x is the original CAPTCHA image, y is the target labels, J is the
loss function, µ is the momentum factor, gt is the gradient direction of t. In this work, the
adversarial text-based CAPTCHA examples were generated using (4), (5), and (7).

3.3. Basic Concepts behind Autoencoders (AEs)

As illustrated in Figure 4, an autoencoder (AE) is composed of an encoder and decoder.
The variable X in the lower layer represents an input value, which is regenerated as an
output value via the middle hidden layer. The middle hidden layer serves as a feature
extractor. The regenerated value X’ aims to be a value similar to the input value X. The
input vector X of the lower layer is calculated by the encoder and compressed to y as an
output through the hidden layer, which is formulated as:

y = α(Wx + b) (8)

Figure 4. The general architecture of an autoencoder (AE) neural network.
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In the decoder model, the y value of the hidden layer is remapped to X’, and then
reconstructed as an output value, formulated as:

z = α
(
W ′y + b′

)
(9)

Autoencoders (AEs) study an encoder function from input to representation, and a
decoder function, back from representation to the input space, such that the reconstruction,
a combination of the encoder and decoder, is good for training examples [81]. In simple
terms, an autoencoder (AE) is a neural network that is trained to attempt to copy its input
to its output, as shown in Figure 4.

3.4. Existing CNN Architectures Used as Transfer Learning

Based on the aforementioned related works, previous researchers generated their
adversarial CAPTCHAs by adopting transfer learning techniques in conjunction with
adversarial attack algorithms. Therefore, in order to evaluate the strength of the proposed
CNN model, we adopted transfer learning methods by using notable state-of-the-art CNN
architectures. These famous CNN architectures include GoogLeNet [82], ResNet [83],
VGG-Net [84], Xception [85], and DenseNet [86].

3.4.1. GoogLeNet

The GoogLeNet architecture starts with two Conv–max pool blocks and continues
with a series of inception blocks separated by max pool layers before the final fully-
connected layer. In their paper, all of the convolutions in conjunction with those inside
the inception modules, used rectified linear activation. The inception block takes the
tensor as the input and passes it through four different streams as: a 1 × 1 convolution
layer, a 1 × 1 convolution layer followed by a 3 × 3 convolution layer, a 1 × 1 convolution
layer followed by a 5 × 5 convolution layer, and a 3 × 3 max pool layer followed a
1 × 1 convolution layer. Then, the output tensors of all four final convolution layers are
concatenated to one tensor.

3.4.2. ResNet

ResNet begins with a Conv–BatchNorm–ReLU block and then continues with a series
of ResNet blocks before the final average pool and fully-connected layers. The ResNet
block comprises of a repetition of blocks. The input tensor goes through three Conv–
BatchNorm–ReLU blocks and then the output is added to the input tensor to form a skip
connection. The two types of skip connection in ResNet are the identity and projection
blocks. The identity block takes a tensor as an input and then passes it through one stream
of: a 1 × 1 convolution layer followed by a batch-normalization and a rectified linear unit
activation layer, a 3× 3 convolution layer followed by a batch-normalization and a rectified
linear unit activation layer, and a 1× 1 convolution layer followed by a batch-normalization
layer. Then the output is added to the input tensor. The projection block takes a tensor as
an input and then passes it through two streams, the left and right streams. The left stream
consists of: a 1 × 1 convolution layer followed by a batch-normalization and a rectified
linear unit activation layer, a 3 × 3 convolution layer followed by a batch-normalization
and a rectified linear unit activation layer, and a 1 × 1 convolution layer followed by a
batch-normalization layer. The left consists of a 1 × 1 convolution layer followed by a
batch-normalization layer.

3.4.3. VGG-Net

The VGG-Net architecture comprises of five convolutional blocks and three fully-
connected layers. Each convolutional block consists of two or more convolutional layers
and a max pool layer. All hidden layers are equipped with the rectification non-linearity,
and max pooling is performed over a 2 × 2-pixel window, with stride 2. In this current
work, we implemented VGG19 architecture.
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3.4.4. Xception

With respect to the Xception architecture, all pointwise convolution and depth-wise
separable convolution layers are followed by batch-normalization. Moreover, all of the
depth-wise separable convolution layers contain a depth multiplier of 1. The Xception
network is grouped in three flows, which are entry flow, middle flow with eight repetitions
of the same block, and exit flow.

3.4.5. DenseNet

The DenseNet architecture connects each layer to every other layer in a feed-forward
manner. The feature maps of all preceding layers are used as inputs, and then its own
feature maps are used as inputs into all subsequent layers. Some of the advantages of
the DenseNet architecture are to prevent the vanishing-gradient problem, and strengthen
feature propagation. In this current work, we used the Dense-121 network, which is easy
to implement and train, but effective. The architecture starts with standard convolution-
pooling block, and continues with a series of dense block and transition layers. It finally
closes with a global average pooling and fully connected layer.

3.5. The Proposed CNN Solver Model without Defense

The architecture of our proposed CNN solver model consists of nine convolutional
layers, nine batch-normalization layers, nine rectified linear unit activation layers, three max
pooling layers, one flatten layer, one dropout layer, and four fully-connected layers with
each output with softmax activation. The network structure starts with Conv=>BatchNorm
=>ReLU=>max pool block, and repeat itself for three times. Each block contains three
convolutional layers, three batch-normalization layers, three activation ReLU layers, with
each of the batch-normalization layers. The network contains three max pooling layers,
which follows each of the three blocks. At the end of the max pooling layer, we placed a
flatten layer, and a dropout, which connected to four fully-connected layers with output
softmax activation layers. This study proposed a custom CNN architecture because,
sometimes, the aforementioned transfer learning techniques may take a longer time to train,
may sometimes consume a lot of memory and space, especially, the ResNet architecture is
very difficult to implement and train.

The network structure of the proposed CNN solver model is illustrated in Figure 5.

3.6. The Cyclical Learning Rate Policy

Initially, we used an automatic learning rate finder algorithm to find optimal learning
rates, which were then used in the CLR algorithms. The idea was to make the defensive
model more robust to withstand the adversarial text-based CAPTCHAs, by accelerating
the convergence rate of the CNN solver model.

In the experiment, using the cyclical learning rate (CLR) [87] technique leads to faster
convergence and fewer hyper-parameter updates. CLRs oscillate back and forth between
two bounds when training, and slowly increase the learning rate after each batch update.
By decreasing the learning rate overtime, the CNN model is allowed to descend into lower
areas of the loss domain. However, in reality, there is no guarantee that the model will
descend into areas of low losses when lowering the learning rate. This is a problem that
the CLR method tries to solve.

Therefore, the CLR policy practically eliminates the need to experimentally find the
best values and schedule for the global learning rates. Training with CLRs instead of fixed
values achieved good performance without the need to tune the model.

The CyclicLR () callback implements a cyclical learning rate policy, as used in this
current study. The technique cycles the learning rates between the two boundaries with
constant frequency [87]. The amplitude of the cycle can be scaled on a per-iteration or
per-cycle basis. The cyclical callback has three built-in policies, which are: “triangular”:
a basic triangular cycle with no amplitude scaling, “triangular2”: a basic triangular cycle
that scales the initial amplitude by half each cycle, and “exp_range”: a cycle that scales
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initial amplitude by gamma at each cyclic iteration. The arguments of the cyclical callback
can be seen from Table 1.

Figure 5. The network structure of the proposed CNN solver model.

The structure of the CLR policy algorithm is represented as:

cycle = np. f loor
(

1 +
iterations
2 ∗ stepsize

)
(10)

x = np.abs(
iterations

stepsize
− 2 ∗ cycle + 1) (11)

lr = baselr + (max_lr− base_lr)∗ np.maximum(0, (1− x)) ∗ sacle_ f n(x) (12)

where x is either the iteration or cycle depending on the scale_mode.
The codes are available at https://github.com/sambhav37/Keras-learning-rate-fin

der (accessed on 23 May 2021), and https://github.com/bckenstler/CLR (accessed on 23
May 2021) based the LRF and the CLR algorithms, respectively.

https://github.com/sambhav37/Keras-learning-rate-finder
https://github.com/sambhav37/Keras-learning-rate-finder
https://github.com/bckenstler/CLR
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Table 1. The arguments of the CLR algorithm and its descriptions.

Arguments Descriptions

base_lr Initial learning rate, which is the lower boundary in the cycle

max_lr The upper boundary in the cycle. It defines the cycle amplitude
(max_lr—base_lr)

step_size Number of training iterations per half cycle, which be 2–8 × training
iterations in epoch

mode The cyclical policy to be used. Default is triangular

gamma It is a constant in exp_range scaling function

Scale_fn Custom scaling policy defined by a single argument lambda function

Scale_mode Defines whether scale_fn is evaluated cycle number or cycle iterations.
Default id cycle.

3.7. Denoising Autoencoder (DAE) Neural Network

In conventional autoencoders (AEs), the reconstruction of the input at the output is
based on the learned underlying manifold of the training dataset’s distribution. Conven-
tionally, autoencoders (AEs) minimize some functions, which is formulated as:

L(x, g( f (x))) (13)

where L is a loss function, which penalizes g( f (x)) as result of being dissimilar from x,
such as the L2 norm of their difference. Based on (13), a Denoising Autoencoder (DAE)
neural network minimizes

L(x, g( f (x̃))) (14)

where x̃ is a copy of x, which has been corrupted by the adversarial or vector noise. The
loss function, which we want to minimize for the DAE, is given as:

L = −logpdecoder(x | y = f (x̃)) (15)

where pdecoder is a factorial distribution, y is an internal representation, x̃ is the adversarial
text-based CAPTCHA version of the original text-based CAPTCHA sample x, which is
obtained through the given corruption process C(x̃ | x) , based on the FGSM, I-FGSM, and
MI-FGSM adversarial attack algorithms.

The DAE neural network’s computational graph of the cost function is illustrated in
Figure 6.

Figure 6. The DAE neural network’s computational graph.
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3.8. The Proposed Technique of the Baseline Defense Deep Learning Model

Existing defending strategies, including adversarial training [6], image processing,
and manual labelling, have been compromised, and sometimes may not be effective against
some adversarial text-based CAPTCHA attacks. A basic workflow, defending against
adversarial attacks, is illustrated in Figure 7. Therefore, with this assumption, this study
initially proposes a Convolutional Neural Network with Denoising Autoencoder (DAE-
CNN) as a defense model. The workflow of the proposed DAE-CNN model is illustrated in
Figure 8. Given the corrupted process (x̃ | x) , which represents a conditional distribution
over the generated adversarial text-based CAPTCHA data x̃ from the original text-based
CAPTCHA data x, then the DAE neural network will learn a reconstruction distribution
preconstruct (X|X̃), which is estimated from the training pairs (x, x̃) as follows:

• Sample a training example x from the original CAPTCHA dataset.
• Sample an adversarial CAPTCHA version x̃ from C(X̃|X = x).
• Use (x, x̃) as a training example to estimate the DAE reconstruction distribution

preconstruct(x, x̃) = pdecoder(x|y ) with y as the output of the encoder f (x̃) and pdecoder
is typically represented as a decoder g(y).

Figure 7. The basic workflow of the adversarial defense model.

The output of the DAE network is then served as input to the CNN model. We further
accelerate the convergence rate of the CNN solver model with an automatic learning
rate finder (LRF) algorithm to find optimal learning rates in conjunction with the cyclical
learning rate (CLR) policy. The proposed CNN solver model architecture and the CLR
algorithm were already explained in the aforementioned section. For the proposed CNN
solver architecture, the input shape was 160 × 60, depending on the width and the height
of the text-based CAPTCHA, respectively. With vigorous experiments, we trained the CNN
model using categorical cross-entropy (CCE), and Adam as the loss function, and optimizer,
with a batch size of 32 over 25 epochs, respectively. The learning rate was automatically
obtained using the cyclical learning rate policy to improve accuracy.

The structure of the DAE was a bottleneck fully-connected neural network, with
the input dimension unit equal to the output dimension unit. The input and output
dimension units were obtained through multiplication of 160 × 60 based on the width
and the height of the CAPTCHA image. The DAE was then trained with the original
CAPTCHA and the adversarial CAPTCHA datasets. Based on the experiment, the mean
square error (MSE), and Adam were used as the loss function, and optimizer, to compile
the network with a batch size of 256 over 200 epochs, respectively. After training, the
DAE network obtained a MSE value of 0.0040, which showed the DAE network’s robust
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capability to approximate the clean data input of both the original and the adversarial
CAPTCHA datasets. The codes in this work were implemented using the Python 3.6
programming language, and were executed and trained on a GPU, based on the Google
Colab (https://colab.research.google.com/ (accessed on 20 February 2021)) environment.

Figure 8. The workflow of the proposed baseline deep learning model for adversarial text-based
CAPTCHA security verification.

3.9. The Proposed Technique of the Robust Defense Deep Learning with the Mixed Batch
Adversarial Generation Process

The robust proposed defense model was inspired by the works [88,89]. They provided
checklists and recommendations that can be followed to develop a more robust, efficient,
and uncompromised defense model. According to their work, a good starting point is a
model as equal to the defense model as possible, which this study has already implemented,
as illustrated in Figure 8. The assumption is that, if the defense model would just add some
layers to the baseline model, then it would be better to try the baseline model. They further
stated that a good proposed defense model should attempt to break the transferability
attack.

Therefore, our innovation idea in the second proposed defense model is to introduced
a technique called MBAGP, which stands for, Mixed Batch Adversarial Generation Process,
to implement a completely new proposed defense model. That is, instead of fine-tuning
the CNN model on the adversarial CAPTCHA images, the batch generation training
process itself is reconstructed. The second proposed defense model violated the standard
protocol of training neural networks in batches by incorporating the adversarial text-based
CAPTCHA images into the training process itself, together with the original data. Meaning,
the model itself will generate adversarial CAPTCHA images, combine them with the
original CAPTCHA training dataset, and then the model is finally trained.

The steps involved in the reconstruction of the standard training procedure to incor-
porate the adversarial CAPTCHA images are as follows:

• The CNN model is initialized;
• The total N training samples are selected;
• The CNN model is used, together with the adversarial attack algorithm to generate a

total of N Adversarial samples;
• The original and the adversarial CAPTCHA images are mixed, for a batch size of

N × 2;
• The defense model on both the original and adversarial CAPTCHA training samples

are trained.

https://colab.research.google.com/
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The first proposed defense method is less robust and less computation since we will
generate only one set of adversarial images, and then fine-tune the model on only the
adversarial CAPTCHA images. While the second proposed method, is the MBAGP-CNN
model, is more robust and significantly more computation-efficient. The advantage is that
it may see both the original CAPTCHA and the adversarial CAPTCHA images through
every single batch update throughout the training process. In simple terms, the robust
defense model will be used to generate the adversarial CAPTCHA images throughout each
batch, as a result, the model will deceive itself, and then learn from its mistakes, so that
it can better defend against adversarial CAPTCHA images. In addition, it will learn the
patterns of both the original CAPTCHA and the adversarial text-based CAPTCHA images.
In addition, the robust MBAGP-CNN model will improve itself based on two factors. For
the first factor, the discriminating patterns of the training data will be ideally learned by
the model after each batch update. For the second factor, the model will learn to defend
against its own generated adversarial text-based CAPTCHAs.

3.10. Performance Evaluation

The proposed deep learning model was evaluated using accuracy and K-fold cross-
validation.

3.10.1. Accuracy

The formulas for accuracy is given as:

Accuracy =
(TP + TN)

(TP + FP + FN + TN)

where TP is True Positive, TN is True Negative, FP is False Positive, FN is False Negative
based on the model’s prediction.

3.10.2. K-Fold Cross-Validation

In this current work, we performed K-fold cross-validation to further evaluate the
robust performance of the proposed model. A typical cross-validation workflow flowchart
is illustrated in Figure 9.

Figure 9. A typical cross-validation workflow in model training [90].

The process of the K-fold cross-validation is described as [90]:

â Splitting the data into K-folds;
â Out of the K-folds, K-1 sets are used to train, whereas the remaining set is used for

testing;
â The CNN model is trained and tested K times; each time a new set is used as testing,

whereas the remaining set is used for training;
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â The average of the results obtained at each set represents the result of the K-fold
cross-validation.

The process of the K-fold cross-validation is illustrated in Figure 10. In this current
work, we performed five-fold cross-validation based on empirical evidence that 5- or
10-fold cross validation should be preferred [90]. The workflow of the proposed MBAGP-
CNN model is illustrated in Figure 11.

Figure 10. Performing a K-fold cross-validation process [90].

Figure 11. The workflow of the proposed robust deep learning model for adversarial text-based
CAPTCHA security verification.
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4. Results

This section presents the results of the proposed CNN solver and the results after
attacking the model with the adversarial text-based CAPTCHAs.

The Results of the CNN Solver Model without Defense

After 25 epochs, the proposed CNN solver model achieved training accuracies for C1,
C2, C3, and C4, which corresponded to 0.9972, 0.99.04, 0.9889, and 0.99.65, respectively. The
acronyms C1–C4 represents the number of fully-connected layers used in the proposed CNN,
as illustrated in Figure 5. The training losses for C1, C2, C3, and C4 represented 0.0138,
0.0369, 0.0433, and 0.0166, respectively. The validation accuracies for C1, C2, C3, and C4
were 0.9243, 0.8239, 0.7938, and 0.9152, respectively. The validation losses for C1, C2, C3,
and C4 represented 0.2515, 0.6880, 0.8787, and 0.3277, respectively. Table 2 summarizes the
performance results of the proposed CNN solver model based on the original generated text-
based CAPTCHA dataset. The visualization representation of the accuracy and loss results
obtained by the CNN solver model without defense is illustrated in Figure 12a,b, respectively.
After testing, the CNN solver model achieved a competitive performance result of an overall
accuracy of 90% to solve text-based CAPTCHAs with conventional noise. After strengthening
the security of the generated CAPTCHAs, based on the original text-based CAPTCHAs using
the FGSM, I-FGSM, and MI-FGSM attack algorithms, the experiment results showed that
the FGSM CAPTCHA attack reduced the test accuracy of the CNN solver model without
defense, from 90% to 33.15%, with an epsilon of 0.25, with the same epsilon and iteration
of 10, the I-FGSM CAPTCHA attack reduced the test accuracy from 90% to 35.46%, and the
MI-FGSM CAPTCHA attack reduced the test accuracy from 90% to 32.65%, with the same
epsilon, iterations, and a decay factor of 1.0. These observation results, based on the attack
algorithms, showed the power and essence of adversarial attacks on text-based CAPTCHAs
for security strengthening, as shown in Figure 13. The study observed that the MI-FSGM
algorithm performed better based on the lowest accuracy obtained. The next section discusses
the results of the defense models obtained in this current work.

Table 2. The performance results of the proposed CNN solver model based on the conventional
text-based CAPTCHA dataset.

Class Training Accuracy Training Loss Validation Accuracy Validation Loss

C1 0.9972 0.0138 0.9243 0.2515

C2 0.9904 0.0369 0.8239 0.6880

C3 0.9889 0.0433 0.7938 0.8787

C4 0.9965 0.0166 0.9152 0.3277

The study further performed five-fold cross-validation on the CNN solver model
based on the original CAPTCHA dataset. Table 3 shows the accuracies by the various
K-folds. The highest accuracy was detected at fold 3, which was 1.0000, as visualized in
Figure 14. The CNN solver model achieved a mean accuracy of 89.80% and a standard
deviation of 0.0595, based on the 5-fiveold cross-validation.

Table 3. Accuracies achieved by performing five-Fold cross-validation on the CNN solver model
based on the original dataset.

K-Fold Accuracy

1 0.8300
2 0.8512
3 1.0000
4 0.9188
5 0.8900

Mean: 89.80% Std: 0.0595
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Figure 12. (a) Training and validation accuracies obtained by the proposed CNN Solver model based
on the original dataset. (b) Training and validation losses by the proposed CNN solver model based
on the original dataset.

Figure 13. The overall test accuracy by the CNN solver model without defense versus the accuracies
obtained after the attacks.
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Figure 14. The accuracies achieved by the folds after performing five-fold cross-validation on the
CNN solver model based on the original dataset.

5. Discussion

In the work by Zhanyang et al. [91], they conducted a survey on artificial intelligence
(AI) for securing IoT services in edge computing. According to their observations, in
the context of security and privacy preservation issues, AI has opened up many possible
windows to address security challenges. The main ideas behind text-based CAPTCHAs
are: they serve as a means of security to secure user-logins against dictionary or brute force
password guessing, prevent automated usage of various web services, prevent machine
bots from spamming on forums, prevent downloading large files, etc. As mentioned
in the previous related works section, several researchers who performed text-based
CAPTCHA security verification used the transfer learning approach to build their CNN
models. However, in this current work, the study proposed custom CNN architecture as
an inspiration from these notable existing CNN architectures. This is because, sometimes,
these existing CNN architectures contain a greater number of parameters, and consume a
lot of time and memory, especially VGGNet, and ResNet. As a result, in order to evaluate
the strengths and weaknesses of our proposed CNN solver and defense models, we adopted
the transfer learning technique based on the famous state-of-the-art CNN architectures,
such as GoogLeNet, ResNet, VGGNet, Xception, and DenseNet.

After testing on the original CAPTCHA dataset, the pre-trained models achieved
accuracies of 80.47%, 80.78%, 81.45%, 86.79%, and 84.88% based on GoogLeNet, ResNet50,
VGG19, Xception, and DenseNet121, respectively, as shown in Table 4 and Figure 15. The
observed results showed that the Xception and the DenseNet transfer learning models
exhibited good results on the original CAPTCHA test set. This work then fine-tuned the
transfer learning or pre-trained models on the generated adversarial text-based CAPTCHA
test sets. The attacks to the proposed pre-trained solver models were successful at reducing
~50% of the test accuracy, as seen from Table 4 and Figure 15. The observation was that the
attack algorithms strengthened the security of the conventional text-based CAPTCHAs,
and drastically reduced the test accuracies by fooling the pre-trained models and our
proposed CNN solver model, as shown in Figure 15.
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Table 4. Comparison accuracy results between the transfer learning CNN models and the proposed
CNN solver model based on the original text-based CAPTCHA, FGSM attack, I-FGSM attack, and
MI-FGSM attack testing datasets.

CNN Solver
Model

Original
CAPTCHA (%)

FGSM Attack
(%)

I-FGSM Attack
(%)

MI-FGSM
Attack (%)

GoogLeNet 80.47 22.89 23.56 20.98

ResNet50 80.78 23.56 24.56 22.98

VGG19 81.45 29.87 30.45 26.67

Xception 86.79 30.23 31.78 29.15

DenseNet121 84.88 30.02 31.45 28.90

CNN (proposed) 90.00 33.15 35.46 32.65

Figure 15. Comparison results of the testing accuracies obtained by the transfer learning and the
proposed CNN solver models based on the original and the adversarial text-based CAPTCHA
datasets.

However, the goal in this current work is to perform adversarial text-based CAPTCHA
security verification, so it means that the security of the CNN solver models need to be
strengthened to withstand the attacks. This study initially used the image processing filter,
which included, MeanBlur, MedianBlur, GuassianBlur, and RotateFilter techniques, in
conjunction with the transfer learning approach, and our proposed CNN, as a form of a
feasibility analysis to defend against the adversarial text-based CAPTCHAs. However, the
results of the image processing filters, together with CNN models, were less effective on
the adversarial text-based CAPTCHAs. Therefore, with inspiration from existing defense
techniques and guidelines [85], we proposed our first Convolutional Neural Network
with Denoising Autoencoder (DAE-CNN), as a defense workflow model, as illustrated in
Figure 8. Based on the adversarial test sets, the proposed DAE-CNN model was successful
at reducing ~10% of the test accuracy among the three adversarial attack algorithms, FGSM,
I-FGSM, and MI-FGSM, as shown in Figures 16–18, respectively. Tables 5–7 summarize
the comparison accuracy results, defending against the FGSM, I-FSGM, and MI-FGSM
attacks using the image processing filters with the transfer learning models, compared to
the proposed DAE-CNN model based on the testing sets.
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Figure 16. Comparison results of the testing accuracies obtained by the defensive models based on
the FGSM text-based CAPTCHA attack.

Figure 17. Comparison results of the testing accuracies obtained by the defensive models based on
the I-FGSM text-based CAPTCHA attack.

Table 5. Comparison accuracy results, defending against the FGSM attack using the image processing filters with the
transfer learning models compared to the proposed DAE-CNN model, based on the testing dataset.

Filter GoogLeNet
(%) ResNet50 (%) VGG19 (%) Xception (%) DenseNet121

(%)
CNN

(Proposed) (%)

MeanBlur 30.45 30.14 31.89 56.78 54.98 57.88

MedianBlur 31.09 31.00 33.78 65.78 60.23 58.64

GaussianBlur 45.43 44.98 59.45 60.44 61.56 60.54

RotateFilter 23.90 23.87 31.02 50.98 49.87 45.97

DAE (proposed) 54.78 63.78 69.45 76.89 74.98 80.15
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Figure 18. Comparison results of the testing accuracies obtained by the defensive models based on
the MI-FGSM text-based CAPTCHA attack.

Table 6. Comparison accuracy results, defending against the I-FGSM attack, using image processing filters with the transfer
learning models compared to the proposed DAE-CNN model based on the testing dataset.

Filter GoogLeNet
(%) ResNet50 (%) VGG19 (%) Xception (%) DenseNet121

(%)
CNN

(Proposed) (%)

MeanBlur 32.53 32.45 33.76 60.89 58.62 5989

MedianBlur 33.67 32.67 34.68 68.76 66.12 59.97

GaussianBlur 48.90 47.96 50.58 63.07 60.67 61.23

RotateFilter 30.78 29.89 32.54 52.45 51.02 50.54

DAE (proposed) 55.68 60.77 60.98 79.13 75.96 80.64

Table 7. Comparison accuracy results, defending against the MI-FGSM attack using the image processing filters with the
transfer learning models compared to the proposed DAE-CNN model, based on the testing dataset.

Filter GoogLeNet
(%) ResNet50 (%) VGG19 (%) Xception (%) DenseNet121

(%)
CNN

(Proposed) (%)

MeanBlur 29.78 29.34 30.79 54.97 53.78 52.45

MedianBlur 30.65 30.45 31.98 63.09 58.98 55.87

GaussianBlur 43.56 42.65 57.63 60.13 56.90 57.09

RotateFilter 21.34 21.89 29.66 49.89 46.34 44.56

DAE (proposed) 54.67 55.98 60.43 74.90 71.87 79.89

This study further went on to propose a second defense model, which is more robust
and computationally-efficient when compared to the first method. Based on the innovation
idea, this study took the DAE-CNN model, and then introduced a technique called Mixed
Batch Adversarial Generation Process (MBAGP). We reconstructed the standard training
procedure protocol of the CNN batch training process. The idea was to mitigate the
problem of catastrophic forgetting, as already explained and illustrated in detail in Figure 7.
The MBAGP-CNN model is able to generalize and perform better to verify adversarial
text-based CAPTCHA security. Based on the adversarial test sets, the proposed DAE-CNN
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model was successful at reducing ~5% of the test accuracy among the three adversarial
attack algorithms, FGSM, I-FGSM, and MI-FGSM, as shown in Figures 19–21, respectively.
In comparison, as shown in Figure 22, the MBAGP-CNN model exhibited good and
competitive performance results when compared to the DAE-CNN defense model, to
perform a successful adversarial text-based security verification.

Figure 19. Comparison results of the testing accuracies obtained by the defense models based on the
FGSM text-based CAPTCHA attack, in terms of the proposed MBAGP-CNN model.

Figure 20. Comparison results of the testing accuracies obtained by the defense models based on the
I-FGSM text-based CAPTCHA attack, in terms of the proposed MBAGP-CNN model.
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Figure 21. Comparison results of the testing accuracies obtained by the defense models, based on the
MI-FGSM text-based CAPTCHA attack, in terms of the proposed MBAGP-CNN model.

Figure 22. Comparison results of the testing accuracies obtained by the proposed MBAGP-CNN and
the DAE-CNN defense models, based on FGSM, I-FGSM, and MI-FGSM attacks.

The study further performed five-fold cross-validation on the proposed MBAGP-
CNN model based on the FGSM, I-FGSM, and MI-FGSM attacks. Figure 23 presents the
accuracies obtained at the various K-folds. Based on the FGSM attack, the highest accuracy
was detected at fold 3, which was 0.8858, as shown in Figure 23. The MBAGP-CNN defense
model therefore achieved a mean accuracy of 84.30%, and a standard deviation of 0.0251
based on the FGSM attack. Based on the I-FGSM attack, the highest accuracy was detected
at fold 2, which was 0.8531, as shown in Figure 23. The MBAGP-CNN defense model,
therefore, achieved a mean accuracy of 83.44%, and a standard deviation of 0.0161 based
on the I-FGSM attack. Based on the MI-FGSM attack, the highest accuracy was detected
at fold 4, which was 0.8588, as shown in Figure 23. The MBAGP-CNN defense model
therefore achieved a mean accuracy of 82.20% and a standard deviation of 0.0260 based on
the MI-FGSM attack.
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Figure 23. The accuracies achieved by the folds after performing five-fold cross-validation on the
MBAGP-CNN solver model based on the FGSM, I-FGSM, and MI-FGSM attacks.

The implications of this current study are:

• With observations on websites, it seems that text-based CAPTCHAs will remain in
the system for a very longer time, and for that matter, this current study suggests
that cyber security researchers take advantage of adversarial attacks to strengthen
the security of their generated text-based CAPTCHAs. This can be achieved by
implementing robust attack algorithms to strengthen the generated CAPTCHAs to
withstand automatic malicious attacks in order to secure IoT devices and end users’
privacy.

• Implementing robust adversarial text-based attack algorithms can assist in minimizing
the activities of automatic malicious attacks.

• Defending against adversarial CAPTCHA attacks is tedious and usually involves a
lot of effort, which frustrates hackers. It may also remain and will continue to be an
active research area.

• It is necessary to perform vulnerability assessments on the generated adversarial
CAPTCHAs before they are used on websites for public use, for example, this study
recommends taking advantage of the MBAGP technique.

• Among the three gradient-based adversarial attacks, MI-FSGM showed highly de-
fensive security measures against the CNN solver models, relative to this study, as
compared to FSGM and I-FSGM.

• If cybersecurity practitioners want to perform vulnerability assessments on adversarial
CAPTCHAs, using transfer learning approaches without building their own CNN
models, then they should consider Xception and DenseNet architectures.

• In the context of IoT risk assessment, the proposed AI framework technology can be
used to perform adversarial text-based CAPTCHA security verification using deep
learning. This will help minimize malicious attacks through effective CAPTCHA
generating algorithms to secure smartphones and smart TVs, which are connected to
websites from spamming.

• In addition, the proposed technology will assist in the evaluation of ethical risks based
on data protection and privacy on IoT devices, especially smartphones.

• Another dimension of the proposed technology can be seen in more native scenarios
and sensors, which are connected to web application programming interfaces (APIs).
Home security cameras are accessible from mobile IoT devices, such as smartphones.
A user authentication system comprising of adversarial images can be generated to
verify users who use their smartphones to access home security cameras.
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6. Conclusions

Text-based CAPTCHA is still widely used and will remain, for a longer time, as a
security mechanism to differentiate machine bots from humans. In this current work,
we proposed a technique to generate adversarial text-based CAPTCHAs using the Fast
Gradient Sign Method (FGSM), Iterative Fast Gradient Sign Method (I-FGSM), and the
Momentum Iterative Fast Gradient Sign Method (MI-FGSM) algorithms. We proposed a
more robust and computation-efficient deep learning defense model—a Convolutional
Neural Network with a Mixed Batch Adversarial Generation Process (MBAGP-CNN) to
perform adversarial text-based CAPTCHA security vulnerability verification.

Based on the experiment’s results, the proposed CNN solver model achieved a com-
petitive result to solve the original text-based CAPTCHAs with about 90% accuracy based
on the test set. The adversarial attacks to the proposed CNN solver model were successful
at reducing ~60% of the test accuracy, with an epsilon of 0.25, iteration of 10, and a decay
factor of 1.0. Therefore, this study initially proposed a fundamental defense vulnerability
verification model based on the Convolutional Neural Network (CNN) with a Denoising
Autoencoder (DAE-CNN). The number of dimensions occupied by the input data were re-
duced by the hidden layer representation of the DAE neural network and, hence, increased
recognition accuracy of the CNN classifier against adversarial text-based CAPTCHA at-
tacks. The experiment results showed that the proposed DAE-CNN model was successful
at reducing ~10% of the test accuracy among the three gradient-based adversarial attacks.
However, this study observed that the DAE-CNN model was less robust and less computa-
tional, and could be improved to exhibit good performance. Therefore, this study proposed
a more robust and more computation-efficient defense model by introducing the Mixed
Batch Adversarial Generation Process (MBAGP). The novel proposed MBAGP-CNN model
attempted to break the transferability attack, and mitigate the problem of catastrophic
forgetting in the context of an adversarial attack defense. Ideally, the MBAGP-CNN model
generated image batches of both the original and the adversarial CAPTCHA images by
reconstructing the training process of the DAE-CNN model, which improved the model’s
capability to generalized denoising on both original and adversarial images to defend
against adversarial text-based CAPTCHAs. Competitive experiment results showed that
the proposed defense and robust MBAGP-CNN model was successful at reducing ~5% of
the test accuracy among the three gradient-based adversarial attacks. This study further
introduced the learning rate finder algorithm to find optimal learning rates in conjunction
with the cyclical learning rate policy to accelerate the convergence rate of the defense
models to improve accuracy.

This study further performed K-fold cross-validation to evaluate the robustness of
the proposed MBAGP-CNN model. The proposed defense model then achieved mean
accuracies of 84.30%, 83.44%, and 82.20% based on the FGSM, I-FGSM, and the MI-FGSM
attack datasets, respectively. The study emphasizes that the result figures are the key
contribution outcomes of the experiments conducted in this work. Adversarial text-based
CAPTCHA attacks were shown to withstand against automatic malicious attackers or
intruders. However, there is still a security risk after performing vulnerability assessment,
as our proposed robust defense model obtained accuracy more than 80% among the three
adversarial attack algorithms based on five-fold cross validation. Therefore, there is still a
need to improve upon adversarial text-based CAPTCHA-generating algorithms to defend
against automatic malicious attacks. This current work is useful to the cyber security
community and in performing IoT risk assessment. In future works, we can attempt other
adversarial attack algorithms, see their results, and propose a defense model to perform
security vulnerability assessment.
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