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Nerijus Morkevicius * , Algimantas Venčkauskas , Nerijus Šatkauskas and Jevgenijus Toldinas

����������
�������

Citation: Morkevicius, N.;
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Abstract: Fog computing is meant to deal with the problems which cloud computing cannot solve
alone. As the fog is closer to a user, it can improve some very important QoS characteristics, such as
a latency and availability. One of the challenges in the fog architecture is heterogeneous constrained
devices and the dynamic nature of the end devices, which requires a dynamic service orchestration
to provide an efficient service placement inside the fog nodes. An optimization method is needed to
ensure the required level of QoS while requiring minimal resources from fog and end devices, thus
ensuring the longest lifecycle of the whole IoT system. A two-stage multi-objective optimization
method to find the best placement of services among available fog nodes is presented in this paper.
A Pareto set of non-dominated possible service distributions is found using the integer multi-objective
particle swarm optimization method. Then, the analytical hierarchy process is used to choose the best
service distribution according to the application-specific judgment matrix. An illustrative scenario
with experimental results is presented to demonstrate characteristics of the proposed method.

Keywords: fog computing; Internet of Things; service placement; fog service orchestration

1. Introduction

Fog computing acts as a missing link in the cloud-to-thing continuum. Services are
provided closer to the edge of the network to enhance frequent services, latency, availability,
and analysis. Fog computing places some computation resources in close proximity to
a user where numerous heterogeneous end devices have to work in harmony. Control
functions must work autonomously in such a heterogeneous and complex environment.
Therefore, an orchestration is a centralized executable process to coordinate any interaction
among any application or service [1]. Figure 1 shows the fog computing architecture.

Figure 1. Fog computing architecture.

There is a wide variety of the application areas. As the review paper [2] classifies
it in their fog computing application taxonomy, it is an application area which is made
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of municipal services, smart citizens, smart education, smart healthcare, smart buildings,
smart energy, smart governance, etc. The main concerns which were identified in the re-
viewed papers were the following: bandwidth management, power management, security,
mobility, resource management, and latency.

In order to ensure any heterogeneous service provision infrastructure with a scalability,
interoperability, and adaptability in mind, fog nodes have to be dynamically deployable [3].
These fog nodes also use constrained resources [1] if they are compared to a cloud infras-
tructure. Additionally, in order to give access to relevant services as well as to prevent
any unauthorized access, access control or privacy control is required [4]. Having that in
mind, security and privacy are a big concern [5,6]. Fog computing solutions frequently
have insufficient security due to the fact that they rely on intensive communications with
constrained devices [7] and constrained resources [8] located at the end device layer. If one
of many end devices does not support a communication protocol of a sufficient strength,
the security of the whole solution may be compromised. Moreover, roaming services are
supported in some fog solutions, when the service follows a human, vehicle, etc., and
travels from one fog node to another. In such cases, when any lower security service is
brought to a secure fog node, the security of this fog node may be compromised. Similar
problems may also occur with other QoS parameters such as a latency, bandwidth, range,
etc. However, service orchestrators which are placed in the fog nodes may be used to mon-
itor the whole situation in the fog node (including any communications with neighboring
fog nodes) to take any required measures in the case of any potential violations of security
and other QoS parameters.

After a dynamic service orchestrator deploys any relevant services within specific
fog nodes, there is another hurdle to overcome, the optimization [9]. Fog computing
keeps computing resources close to users and to the end nodes to reduce any delay for
IoT services. It can also deal with the privacy, data locality, and bandwidth consumption.
There are several objectives that can be enhanced by an optimization, such as a latency,
cost, or energy management. It is a part of the quality of service (QoS) but it may come
with a trade-off.

Any fog service orchestration can be challenging in such conditions. Cloud service
orchestration may already be reliable enough at the moment [10], but the situation is
different with fog computing. The complexity builds up due to the diversity of different
services and resources. There are also concerns about interoperability, performance and
service assurance, lifecycle management, scalability, security, and resilience, as identified in
the review [11]. The paper [12] suggests that scalability, dynamics, and security are among
the most common orchestration challenges which are specified in research papers.

Our goal in this research is to offer an effective orchestrator working in the fog layer
of the fog computing architecture by providing effective means to solve the QoS- and
security-related problems of the orchestration in heterogeneous fog layer devices and
services. The idea is to check the placement of fog devices and services for any potential
QoS and security issues in order to find any non-optimal distribution of services among
fog nodes.

This paper includes three main contributions aimed at the fog service orchestration
problem of an optimal placement of services inside the available fog nodes. First, it presents
a detailed review of the fog service orchestration challenges and solutions proposed by
other authors. The review clearly demonstrates the most promising mechanisms to be
used for a fog service orchestration and it defines the problem more formally, which is
addressed in this paper. Second, a two-stage optimal service placement algorithm based on
integer multi-objective particle swarm optimization (IMOPSO) and the analytical hierarchy
process (AHP) is proposed and formally described. The first stage of the proposed method
finds a Pareto set of non-dominated potential placements of services, then the AHP is used
to choose one best solution according to the application-specific judgment matrix provided
by a user. Third, the proposed method is experimentally evaluated using an illustrative
scenario, showing the performance of the algorithm in some likely situations.
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The rest of this paper is structured in the following way: related publications are
presented in Section 2, following by Section 3, which presents a more formal definition
of the service orchestration problem. We describe our proposed method in Section 4.
Evaluation and experimental results are summarized in Section 5, and, finally, Section 6 is
dedicated to conclusions and a discussion.

2. Related Work Review

Fog orchestrator components, as concluded in the paper [5], can generally be divided
into three main groups: fog orchestrator, fog node which can function as a fog orchestrator
agent (FOA), and end devices. A fog orchestrator needs to consult its catalogs and certain
monitoring data to make an orchestration plan. A fog orchestrator can start its orchestration
manually or after reaching a benchmark, such as the availability of other nodes. FOA, in
turn, can handle only local resources which are within that particular node.

The main research challenges in fog orchestration identified by Velasquez et al. [13] are
the following: resource management, performance, and security management. Resource
and service allocation optimization techniques are used, among others, to address these
challenges. The problem is that an allocation procedure is a non-trivial problem, because
essentially it is a multi-objective optimization problem.

In order to address the issues in the perspective of the fog computing, the authors
of the paper [14] suggest using four of their proposed algorithms for their identified
construction phase and maintenance phase. The construction phase aims to find some
probable candidate locations to place the gateways while using the candidate location
identification (CLI) algorithm. A Hungarian method-based topology construction (HTC)
algorithm is used to select the optimal gateway locations. Meanwhile, the maintenance
phase increases the processing resources in the gateways by intelligent sleep scheduling
with the help of the vacation-based resource allocation (VRA) algorithm. Their processing
and storage resources in the gateways are further improved based on the tracked data
arrival rates with the help of the dynamic resource allocation (DRA) algorithm. Another
option which can be beneficial to improving the performance of a network in terms of
reliability and response is caching, as was noted in the publication [15]. The caching at
the fog nodes can reduce computational complexity and network load. Even though the
computing power is the most critical aspect in the fog node to complete specific tasks as
the paper [16] suggests, an effective allocation of resources can vary due to limitations.
These limitations may include the hierarchy of the fog network, network communication
resources, and storage resources.

Yang et al. [17,18] confirm that the orchestration has to deal with a number of factors
such as resource filtering and assignment, component selection and placement, dynamics
with the runtime QoS, systematic data-driven optimization, or machine learning for orches-
tration. They implemented a novel parallel genetic algorithm-based framework (GA-Par)
on Spark. They normalized the utility of security and network QoS into an objective fitness
function within GA-Par. It reduces any security risks and performance deterioration. As
their experiments later demonstrated, GA-Par outperforms a standalone genetic algorithm
(SGA). Skarlat et al. [19] proposed to solve the fog service placement problem (FSPP) by us-
ing orchestration control nodes which place each service either in the fog cells or in the fog
orchestration control nodes. The goal of optimization is to maximize the number of service
placements in the fog nodes (rather than in cloud ones), while satisfying the requirements
of each application. The authors used a genetic algorithm to find the optimal FSPP.

The authors of another paper identified resource allocation and provisioning as a chal-
lenging task considering dynamic changes of user requirements and limited resources [20].
They proposed their resource allocation and provisioning algorithms based on the resource
ranking. They evaluated their algorithms in a simulation environment after extending their
CloudSim toolkit. There are mainly two steps which are used to solve a deadline-based
user dynamic behavior problem. First, they ranked resources based on processing power,
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bandwidth, and response time. Later, they provided resources by prioritizing processing
application requests.

As the deployment infrastructure has to adapt itself to extremely dynamic require-
ments, the fog layer may not provide enough resources and, meanwhile, the cloud layer
can fail due to latency requirements [21]. The paper presents a rewriting-based approach
to design and verify a self-adaptation and orchestration process in order to achieve a low
latency and the right quantity of resources. An executable solution is provided based on
Maude, the formal specification language. Properties are expressed using linear temporal
logic (LTL). Their proposed cloud–fog orchestrator works as a self-adaptation controller.
It is deployed in the fog layer as a fog node master for low latency requirements. The
orchestrator triggers the right actions after a decision is made.

Smart service placement and management of services in big fog platforms can be
challenging due to a dynamic nature of the workload applications and user requirements
for low energy consumption and good response time. Container orchestration platforms are
to help with this issue [22]. These solutions either use heuristics for their timely decisions
or AI methods such as reinforcement learning and evolutionary approaches for dynamic
scenarios. Heuristics cannot quickly adapt to extremely dynamic environments, while
the second option can negatively impact response time. The authors also noted that they
need scheduling policies which are efficient in volatile environments. They offer a gradient
based optimization strategy using back-propagation of gradients with respect to the input
(GOBI). They also developed a coupled simulation and container orchestration framework
(COSCO) that enabled the creation of a hybrid simulation decision approach (GOBI*) which
they used to optimize their quality of service (QoS) parameters.

As the service offloading is relevant enough in the perspective of time and energy,
selection of the best fog node can be a serious challenge [23]. The researchers presented in
their paper a module placement method by classification and regression tree algorithm
(MPCA). Decision parameters select the best fog node, including authentication, confiden-
tiality, integrity, availability, capacity, speed, and cost. They later analyzed and applied the
probability of network resource utilization in the module offloading to optimize the MPCA.

Linear programming is another very popular optimization method used for resource
allocation and service placement in fog nodes. Arkian et al. [24] linearized a mixed-
integer non-linear program (MINLP) into the mixed-integer linear program (MILP) for
optimal task distribution and virtual machine placement by using the minimization of cost.
Velasquez et al. [25] proposed the service orchestrator which tries to minimize the latency
of services using integer linear programming (ILP) to minimize the hop count between
communicating nodes.

The authors of [26] present a method used to help deployments of composite appli-
cations in fog infrastructures, which have to satisfy software, hardware, and QoS require-
ments. The developed prototype (FogTorch) uses the Monte Carlo method to find the best
deployment which ensures the lowest fog resource consumption—the aggregated averaged
percentage of consumed RAM and storage in all the fog nodes.

A sequential decision-making Markov decision problem (MDP) enhanced by the
technique of Lyapunov optimization is used by the authors of [27] to minimize operational
costs of an IoT system while providing rigorous performance guarantees. The proposed
method is intended to be used for a general problem of resource allocation and workload
scheduling in cloud computing, but it may also be applied to a service placement problem
in fog nodes.

As fog computing has a number of challenges to deal with, optimization is vital, and
the classification of optimization problems can play an important role [28]. A service
placement problem, in general, has been shown to be NP-complete by the authors of [29].
An optimization is typically made up of [30] (a) a set of variables to encode decisions,
(b) a set of possible values for each variable, (c) a set of constraints which the variables are
to satisfy, and (d) an objective function. Optimization solutions involving end devices and
fog nodes differ based on their application area.
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Our analyses of the methods used by other authors for service placement problem op-
timization, as well as findings of other researchers [31], show that various well-established
optimization methods are used for this task, including integer linear programming, genetic
algorithms, the Markov decision process, gradient based optimization, the Monte Carlo
method, reinforcement learning, etc. The objective functions used by the authors of these
methods vary from an overall cost minimization [24,27], to network latency [25], hop
and service migration count [25], and response time and latency of the IoT system [26].
The literature review allows us to conclude that the most optimization methods tend to
seek for an optimal placement of the services based on the most important parameter of
the IoT system, which is represented by the objective function used in an optimization
process. Other important parameters of IoT systems in such cases are used as restrictions,
and usually include latency, power, bandwidth and QoS [24,26], CPU, RAM, and storage
demands [19]. This kind of optimization problem formulation allows one to avoid the
challenges of multi-objective optimization, but it may not be used in situations where more
than one objective function is required. Some other approaches tend to evaluate several
characteristics by combining them into one composite criterion, such as cost [24,27] or fog
resource consumption [26] composed from an average RAM and storage usage in the fog
nodes. The composite criteria calculation equations usually are provided by the authors of
the proposed algorithms, and they use some predefined coefficients which are difficult to
justify and validate. One very important challenge remains in this area in that case—how to
find the best placement of the services according to several different heterogeneous criteria,
with different origins and different units of a measurement, when they often contradict
each other. The usage of composite criteria is not always the best answer to this.

The service placement optimization method proposed in this paper tries to address
these challenges by using a multi-objective optimization method to find all non-dominated
placements of the services and then to select one best placement using an analytical
hierarchy process which simplifies the process of the criterion comparison performed
by the experts of the application area. In this way, any number of objective functions
(optimization criteria) may be used in the optimization process as long as experts are able
to provide a consistent pair-to-pair comparison of their priority in the context of a concrete
area of application.

3. Orchestrator Components and Architecture

In this paper, we consider the fog orchestration architecture and components presented
in Figure 2. We have a service orchestrator in the cloud layer which is used to optimally
distribute the services between several orchestrated fog nodes. The orchestrated fog nodes
host some services which communicate with end devices, collect and process data, and
make some local decisions on the control of actuators located in the end device layer.
Special services (orchestrator agents) are physically located in each fog node and they
communicate with the orchestrator to provide it with all the necessary information needed
to make any decisions on service placement.

Orchestrator agents locally monitor the hardware and software environment of the
fog nodes. They are aware of the current CPU and RAM usage, power requirement and
energy levels, available communication protocols and bandwidth, security capabilities,
state of the hosted services, etc. They summarize all the collected information to provide
it to the orchestrator in the cloud layer. The orchestrator is aware of the current situation
in all the fog nodes and, additionally, it has security and QoS requirements imposed by
the application area of the IoT solution, and it makes decisions on starting, stopping, or
moving particular services among the orchestrated fog nodes. The decisions made by
the orchestrator are communicated down to the orchestrator agents inside the fog nodes,
then the orchestrator agents initialize the required actions on the services. A control cycle
performed inside the orchestrator is illustrated in Figure 3.
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Figure 2. Fog orchestrator architecture and components.

Figure 3. Control cycle inside the orchestrator.

The method of the fog service orchestration presented in this paper is intended to
be used inside the orchestrator. The main task of the proposed method is to optimally
distribute n services among k fog nodes according to the information collected from the
corresponding fog nodes and the requirements imposed by the area of an application
of the IoT system. This task of a service distribution is not trivial since several different
optimization criteria which contradict each other must usually be considered (i.e., security
level, energy consumption, bandwidth capabilities, latency, etc.). The number of possible
different distributions of services among fog nodes increases rapidly with the increase
in the number of available fog nodes and services. Any evaluation of all the possible
placements of the services is infeasible, therefore, more sophisticated methods are needed.
Moreover, the situation and the evaluation criteria can change dynamically due to the
dynamic environment of the fog architecture. Some currently available fog nodes as well
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as end devices may change their location or new fog nodes may even emerge while, on the
other hand, some currently running services may become unused and some new services
may occur.

4. Method for Fog Service Orchestration

We propose to use multi-objective optimization to decide which placement of n
available services in k fog nodes is the best according to given constraints and conditions.
The overall flow chart of the proposed two-stage optimization method is presented in
Figure 4.

Figure 4. Flow chart of the proposed service distribution optimization process.

The optimization process has two main steps—multi-objective optimization and
a multi-objective decision, but the problem must be expressed as a formal mathematical
model before using any formal optimization methods. The following subsections describe
the optimization process in detail. We summarize the key notations used in this paper in
Table 1 in order to give a description of the optimization process.
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Table 1. Key notations used in this paper.

Notation Description
n Total number of services

k Total number of available fog nodes for hosting
the services

Xi = (x1, x2, . . . , xn)
T ,

xj ∈ {1, 2, . . . , k}, j = 1, 2, . . . , n

i-th possible distribution of services among the fog
nodes, also the position of the i-th particle in

n-dimensional definition area

m Total number of evaluation criteria, also the number
of objective functions

f j(x), j = 1, 2, . . . , m j-th evaluation criterion, objective function

Fi = ( f1(Xi), f2(Xi), . . . , fm(Xi))
T Score vector of the i-th particle

Vi, Vi ∈ Rn Velocity of the i-th particle
pBesti The best score of the i-th particle
pBPosi The best position of the i-th particle
gBest The best global score of all the particles
gBPos Position of the particle with the best global score

S Set of particles, swarm

R External repository of particles, a set of Pareto
optimal solutions

Xopt
The best service distribution among all the available

fog nodes, particle with the best score

4.1. The Optimization Model of a Service Distribution Problem

The main task of this optimization procedure is to find an optimal distribution of
n services among possible k fog nodes. Each fog node may have slightly different char-
acteristics, but we assume that all the nodes are capable of running all the services. The
goal of optimization is to distribute all the services in such a way that a set of important
characteristics is optimal. Characteristics of the i-th possible service distribution Xi are
expressed by the values of the objective functions f j(Xi), j = 1, 2, . . . , m and constraint
conditions. The objective of the optimization process is to find the best service distribu-
tion Xopt which minimizes all the objective functions f j, i.e., we have a multi-objective
optimization problem:

Xopt = argmin
i

F(Xi) (1)

where F(x) = { f1(x), f2(x), . . . , fm(x)} is a set of the objective functions, and x ∈ {Xi} is
a member of the set with all the possible service distributions.

Constraint conditions are expressed by the following equations:{
gj(Xi) ≥ 0, j = 1, 2, . . . , ng
hK(Xi) = 0, k = 1, 2, . . . , nh

(2)

4.2. Objective Functions

Different fog nodes have different performance, network bandwidth, and security
characteristics. Different distributions of services among the fog nodes may produce
a working system with slightly different characteristics. For example, if one fog node
supports a lower level of a security (due to limited hardware capabilities), and an important
service is placed in this node, then the overall security of the whole system is reduced
to the security of the least secure fog node. We consider multiple objective functions
( f j(.), j = 1, 2, . . . , m) to evaluate all such situations, which include: overall security of the
system, CPU utilization, RAM utilization, power utilization, range, etc. Some objective
functions which were used in our experiments are provided in the following paragraphs.
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A security of the whole system while using the i-th service distribution fsec(Xi) is
defined by the lowest security of all the services. We assign security levels (expressed in
security bits, according to the NIST publication [32]) to fog nodes based on their capabilities
to support corresponding security protocols. We assume that services are capable working
on all the fog nodes, then a value of the security criteria function fsec(Xi) for the service
distribution Xi is the lowest security level of all the fog nodes in which at least one service
is hosted. For example, if we have a situation where three fog nodes are able to provide
128 bits of security and one fog node is constrained to support only 86 bits of security, and
if at least one service is hosted by it, then the overall security of the service distribution is
equal to 86 bits, i.e., the value of the objective function fsec(Xi) = 86. If we use our services
in the application area which requires a specific level of security, then such a requirement
is expressed as a constraint condition, i.e., if some application area requires at least 128 bits
of security, then we have a corresponding constraint gsec(Xi) ≥ 128.

The criterion of CPU usage fCPU(.) evaluates how evenly, CPU utilization-wise, the
services are distributed among the fog nodes. The main idea here is to try to decrease the
overall CPU utilization of the system to allow hosting of additional services more easily in
the case they occur during the runtime of the system. Each fog node has its CPU capabilities
expressed in MIPS, which depend on HW capabilities of the corresponding fog node. All
services are also evaluated for required CPU resources. To calculate the value of CPU usage
of the whole system while using the i-th service distribution fCPU(Xi), we first calculate
a relative CPU usage for each fog node (dividing the sum of CPU resources required by all
the services hosted in each fog node by the capabilities of the corresponding fog nodes) and
we find afterwards the maximum CPU utilization among all the fog nodes. The lower the
maximum CPU utilization is, the better service distribution we have. We can obtain this
situation while using this method of calculation, when some service distributions make
up a CPU allocation greater than 100% in some fog nodes and, therefore, corresponding
constraints are added to the optimization problem. The usage of this criterion automatically
solves some frequent restrictions and incompatibilities, i.e., situations when some services
require CPU resources which may not be provided by some fog nodes.

The criterion of RAM usage fRAM(.) which evaluates how evenly RAM utilization is
distributed among any fog nodes hosting the services is very similar to CPU usage. The
calculation of this criterion is the same as the calculation of CPU usage. A constraint which
does not allow exceeding 100% of the RAM utilization in each fog node is also added.

A criterion of the power usage fpw(Xi) of possible service distribution Xi is evaluated
using the average power requirements of each service (expressed in mW) and the available
power of fog nodes (expressed in mW). The main objective of this evaluation is to maximize
the overall runtime of the system. A calculation is performed by dividing the sum of
power requirements of all the services hosted in each fog node by the available power of
a corresponding fog node to find the maximum among all the fog nodes. A distribution of
services is better in such a case when all the fog nodes are evenly loaded power-wise, i.e.,
the maximum power utilization is minimized.

The communication of fog devices with sensors and actuators is affected by the
physical range between devices in some cases. Some communications protocols add strict
requirements for the range as some of them may be less efficient if the communication
range is increased. A criterion of the maximum range frng(.) may be used to assess these
properties. In this study, a criterion of the range is calculated by averaging the range of each
fog node location with respect to all the devices the particular fog node is communicating
with to find the maximum of these ranges among all the fog nodes hosting at least one
service which requires communication with end devices. The main idea of this criterion is
to prefer a shorter communication path as it ensures better performance in most cases. Any
corresponding constraints on the range may be also added if a communication protocol
induces such restrictions.

Other application-specific criteria such as local storage capabilities, communication
latency, bandwidth, etc. may also be evaluated, defining corresponding objective functions
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representing system characteristics which are important in a particular application scenario.
All specific implementations of the criteria evaluation functions fi(.) are implementation
specific and are out of the scope of this paper. The proposed optimization procedure is not
limited to any specific amount or nature of the objective functions as long as they follow
a few common criteria:

• A return value of the objective function must be a positive real number.
• Better values of the criteria must be expressed by smaller numbers (this is because the

particle swarm optimization method searches for a minimum of the function).

Generally, one common feature of all these objective functions is that they are mutually
exclusive. Any optimization of one objective will often be at the expense of affecting the
other one. For example, we may consider moving all the services to more secure fog
nodes to increase security, but such a service distribution will likely cause reduced power
efficiency, excessive load on some of the nodes, and a lower overall runtime of the system.
Moreover, different objectives have different measurement units, e.g., security may be
evaluated in bits while the power requirement of the services is measured in Watts, any
available network bandwidth is measured in kbps, etc. Even if all the measurements are
converted to real positive numbers, it is still very difficult to objectively compare them.
There is no single solution to a multi-objective optimization problem that optimizes all
the objectives at the same time. The objective functions are contradictory in this situation,
therefore a set of non-dominated (Pareto optimal) solutions can be found. We propose to
use a two-stage optimization procedure (see Figure 4) in order to deal with this situation,
where the first step will use a multi-objective optimization to find a set of solutions (possible
distributions of services), the elements of which are a Pareto optimal. We propose to use for
this the integer multi-objective particle swarm optimization (IMOPSO) method described
in the next paragraph. A choice of the particle swarm optimization method is based on
the research of other authors [33–35] which shows that this method is suitable for a similar
class of problems, and it demonstrates good results. We will use the analytical hierarchy
process (AHP) in the second step to choose the best solution from a Pareto optimal set.

4.3. IMOPSO for Finding a Pareto Set of Possible Service Distributions

The original particle swarm optimization (PSO) algorithm is best suited for an opti-
mization of continuous problems, but several modifications [36,37] exist, which enable it
to be used for discrete problems. In the case of multiple objectives which contradict each
other, the PSO algorithm may be adapted to find a Pareto optimal set of solutions [38,39].
We used the Multi-objective particle swarm optimization (MOPSO) method proposed
by Coello et. all in [39] to find a Pareto set of the possible service distributions among
fog nodes. In order to use this method, we had to slightly adapt it for it to work in the
constrained integer n-dimensional space of possible distributions of services represented
as the particles of a swarm (the original method uses a continuous real number space).

We used the vector Xi = (x1, x2, . . . , xn)
T , xj ∈ {1, 2, . . . , k}, j = 1, 2, . . . , n to encode

the i-th distribution of services, where n is the number of services which have to be
distributed among k fog nodes. The meaning of the vector element xj = l is that the j-th
service must be placed in the l-th fog node.

A flow diagram of the integer multi-objective particle swarm optimization (IMOPSO)
algorithm is shown in Figure 5.
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Figure 5. Flow chart of IMOPSO algorithm.

The main steps of the IMOPSO algorithm are the following:

1. Initialize the particle swarm S by randomly generating an initial set of positions of the
particles (possible service distributions) Xi, i = 1, 2, . . . , |S|, where |S| is the initial
size of a particle swarm.

2. Initialize the velocities Vi =
→
0 , the best scores pBesti =

→
ın f , and the best positions

pBPosi = Xi of all the particles in the swarm S. Initialize the global best position

gBPos =
→
0 and the global best score gBPos =

→
ın f .

3. Repeat it until a maximum number of iterations is reached:

• Evaluate the new scores Fi of all the particles in the swarm S using all the
objective functions: Fi = ( f1(Xi), f2(Xi), . . . , fm(Xi))

T , i = 1, 2, . . . , |S|.
• Calculate new velocities of each particle using the expression Vi = wVi +

r1(pBPosi − Xi) + r2(gBPos− Xi), where w is an inertia weight (initially a real
value around 0.4); r1 and r2 are random numbers in the range of [0..1]; Vi is the
velocity of the i-th particle; pBPosi is the position of the i-th particle with the best
score; Xi is the current position of the i-th particle; and gBPos is the position of
the particle with the best global score.

• Update positions of all the particles in the swarm: Xi = round(Xi + Vi),
i = 1, 2, . . . , |S|. The position is approximated to the nearest integer value.
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If the particle is out of the range, give it the opposite direction of the speed
(Vi = −Vi), and set the position Xi to the edge of the range of its definition.

• Update all the best scores pBesti and the best positions pBPosi of all the particles
in the swarm i = 1, 2, . . . , |S|. If the new score Fi dominates the current best
score pBesti, then update the best position and the best score of the i-th particle.
If the new score neither dominates nor is dominated by the current best score of
the i-th particle, then set the best position (and the best score) of the particle to
a new position with a probability of 0.5.

• Update the global best score gBest and the global best position gBPos of the
particles using the same algorithm used for updating the best scores of the
individual particles.

• Store the positions and scores of the particles that are non-dominated in the
external repository (set R). Use all the available particles in the sets S and R
during any dominance comparison.

• Analyze the repository R and remove all the duplicated and dominated scores.

4. The external repository R is a set of Pareto optimal solutions.

4.4. Finding an Optimal Service Distribution Using the AHP

We used the analytical hierarchy process (AHP) [40,41] to choose the best solution
from a Pareto optimal set by using pairwise comparisons of all non-dominated distribu-
tions of services using all the available objective functions. The AHP is usually used in
situations where a decision must be made using a small amount of quantitative data, using
a deep analysis performed by several decision-making parties, by applying a pair-to-pair
comparison of possible solutions. The AHP may be adapted to be used by machine-
based decision making in the scenarios where complex multiple criteria problems are
evaluated [42–44]. The choice of the AHP instead of other more formal multi-criteria
decision-making algorithms is based on the following reasons [40].

The AHP allows one to automatically check the consistency of the evaluations pro-
vided by decision makers. The AHP uses normalized values of criteria, so it allows one
to use heterogeneous measurement scales for different criteria. For example, one can use
a purely qualitative scale for the security (high, low, medium) and use inconsistent numeric
scales for any power and CPU requirements at the same moment. The AHP uses pairwise
comparisons of the alternatives only, which eases multi-objective decision making to obtain
improved reliability of the results. The importance of the criteria used in the AHP is also
evaluated using the same methodology, which allows one to skip the most controversial
step of a manual weight assignment to different criteria.

A three-level hierarchical structure of the AHP is generalized in Figure 6. Level one
is an objective of the process which in our case is to choose an optimal distribution of all
the available services among fog nodes. The second level is the criteria, which are the
same as the objective functions used in the IMOPSO part of the optimization process. An
important step in this level is to use the same AHP to find the weight of all the criteria
by using a pairwise comparison of the criteria. This step should be done manually before
putting an automatic service allocation algorithm into production. Moreover, a step of
the evaluation of criterion importance should be different based on the application area
in which a service orchestrator is applied. For example, security may be evaluated as
more important than power efficiency in a healthcare application compared to a home
automation application. We assume in our algorithm that the step of the evaluation of
criterion importance is already performed, and the decision-making system already has its
judgment matrix with all the required weights of all the criteria in level 2.

The third level is alternatives. These are filled with all the Pareto optimal solutions
from a previous step of the optimization process using the IMOPSO method. Then, the
AHP is started to choose the best alternative. The whole process is summarized in Figure 7.
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Figure 6. Hierarchical framework for AHP.

Figure 7. Process of AHP decision making.

The main steps of the AHP are the following:

1. Construct a corresponding AHP framework using a Pareto optimal solution set to prepare
all the data structures for a comparison of alternatives using all the available criteria.

2. Load a judgment matrix with the results of pairwise comparisons of criteria prepared
to be used in the current application area.

3. Repeat the following step for each criterion (objective function) fk(.), k = 1, 2, . . . , m:

• Construct the weight coefficient matrix Mk =
(
mi,j
)

using all the alternatives in
the Pareto optimal solution set R. The size of the matrix Mk is s× s, where s = |R|;
mi,j ∈ (0, 9]; mi,j =

1
mj,i

; mi,i = 1; i, j = 1, 2, . . . , s. The matrix Mk elements are

calculated using special comparison functions mi,j = compk
(
Xi, Xj

)
which use

a corresponding objective function fk(.), which calculates two objective function
values fk(Xi) and fk

(
Xj
)
, and compares them with each other to transform

the result into the required real number from the interval (0, 9]. A comparison
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function heavily depends on the meaning of the criteria and the corresponding
real number represents a preference of one alternative over another [35].

4. Provide all the created matrices to the standard AHP decision-making method to
obtain any estimated weights of all the alternatives.

5. Check the consistency of the provided matrices using consistency indicators provided
by the AHP. Choose the best alternative as the final solution of an optimization process.

5. Implementation and Evaluation

Implementation results of our method are summarized in this section with a dis-
cussion on each result. The implementation of a real fog computing environment with
a measurement of all the parameters used in the service placement decisions is out of the
scope of this paper, and it also makes it difficult to scale the solution and reproduce the
results, therefore, we used a simulation. The main objective is to show how the proposed
method performs in different situations as well as to test the feasibility of the proposed
service placement method.

We implemented the proposed optimal service placement-finding method using Mat-
lab. The implementation uses as an input some basic performance information on the fog
nodes and services, a set of the objective functions, and an application area-specific judg-
ment matrix J. The method performs integer multi-objective particle swarm optimization,
finds a Pareto optimal set of solutions, automatically performs an AHP using a provided
judgment matrix, and finds the best placement of the services in the fog nodes.

5.1. Illustrative Scenario

We used an illustrative scenario to evaluate the characteristics of the proposed method.
We have 4 fog nodes and 13 services in this scenario, and they must be optimally placed
in those fog nodes. Capabilities of the fog nodes and requirements of the services are
chosen to show how the proposed method performs in different situations. We used
several papers [19,45,46] analyzing various requirements of real hardware and software
IoT systems to provide realistic numbers. A summary of the fog node parameters and
requirements of the services are presented in Tables 2 and 3.

A security level of any fog device is determined by the hardware and software capa-
bilities as well as by the availability of corresponding libraries, and it is expressed in bits
according to the NIST guidelines [32].

All services are divided into three main groups. Sense1, Sense2, and Sense3 services
are primarily used to communicate with any corresponding sensor devices, collect the
measurement data, and provide it to the other services for processing. On the other
hand, services Actuate1, Actuate2, and Actuate3 are mainly used to communicate with
the actuator devices. The rest of the services are primarily used to collect data, perform
calculations, and make decisions. Resource requirements of the services from different
classes are very different.

Table 2. Resources available in the fog nodes.

Power (mW) CPU (MIPS) RAM (MB) Security (bits)

Fog1 1000 2000 512 256

Fog2 2000 1000 256 112

Fog3 1000 1000 256 128

Fog4 2000 500 512 86
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Table 3. Resources required by the services.

Service Processing Power (mW) Transfer Power (mW) CPU (MIPS) RAM (MB)
Sense1 5 20 50 10

Sense2 5 25 60 15

Sense3 5 20 50 20

Process1 100 0 200 60

Process2 150 0 250 75

Process3 130 0 230 70

Process4 120 0 300 50

Process5 120 0 240 80

Process6 140 0 250 55

Process7 200 0 200 70

Actuate1 4 21 50 10

Actuate2 5 20 60 15

Actuate3 4 19 50 10

We used a “dynamic” objective function representing power requirements of the
service to better illustrate the capabilities of our method. The power requirements of the
service depend on which fog node is used to host this service. This is achieved by dividing
the power requirements into two parts: processing and transfer power. The processing
power is constant, and it is always required to perform an operation (the values of power
requirements were taken from the publication [19]). On the other hand, the transfer power
presented in Table 3 is required if no security is used to transfer the data (i.e., a plain http
protocol is used). The information on required power levels for a data transfer without any
security is based on the experimental results presented in the paper [47]. When the service
is placed in a fog node providing more security, then the corresponding requirement for
a transfer power is increased. For example, if a service is placed in a fog node providing
86 bits of security (e.g., this node is using 1024-bit RSA for a key agreement), then the
corresponding transfer power is multiplied by a coefficient of 1.5. The transfer power
increase coefficients were based on the results presented in [45] and [48]. We decided after
an analysis of the provided data to use these multipliers for modeling the increase in power
due to increased security: 1.5 for 86 bits of security, 2.25 for 112 bits, 4 for 128 bits, and 7.5
for 256 bits of security.

5.2. Evaluation Results

We use a simplified scenario where only two objective functions are used to show how
the IMOPSO algorithm works and how the Pareto set of solutions looks. A Pareto set may
be displayed in this case using a two-dimensional chart. A judgment matrix used in this
case consists only of 4 elements:

J =
(

1 3
1/3 1

)
(3)

If two objective functions, RAM and CPU, are used, then this judgment matrix means
that an even RAM usage distribution among all the fog nodes is more important than an
even CPU usage. A Pareto set produced by the IMOPSO algorithm is presented in Figure 8.
Then, a Pareto solution set is used in the second stage, employing an AHP, to find the best
placement of services. The best placement is summarized in Table 4.
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Figure 8. Pareto set of a simplified scenario.

Table 4. The best service placement in a simplified scenario.

Fog1 Fog2 Fog3 Fog4

Services

Actuate3
Process4
Process5
Process6

Sense1
Sense2

Actuate2
Process1

Sense3
Process2

Actuate1
Process3
Process7

The best score (the best values of the objective functions) in this case is (39, 96)T ,
meaning that this service placement ensures a maximal RAM usage of 39% among all four
fog nodes. The maximal usage of CPU is 96% in this case.

The second scenario shows an influence of the judgment matrix on the optimal place-
ment of services. Four objective functions are used in this case: power, CPU, security, and
RAM. The first judgment matrix prioritizes security and energy over the CPU and RAM:

J1 =


1 3

1/3 1
1/6 3
1/6 1

6 6
1/3 1

1 6
1/6 1

 (4)

The second judgment matrix prioritizes an even power consumption:

J2 =


1 7

1/7 1
3 6

1/2 1
1/3 2
1/6 1

1 2
1/2 1

 (5)

A Pareto set of solutions using the judgment matrix J1 is shown in Figure 9. Only
some projections of the set are shown as the set members are four-dimensional vectors and
they cannot be fully rendered in charts.
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Figure 9. Pareto set of the second scenario, security and energy are prioritized.
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The best placement of services is presented in Table 5. The best score in this case is
(35, 94, 112, 98)T . The overall security (determined by a security level of the least security-
capable fog node hosting at least one service) is 112 bits in this case, and the fog node Fog4
is not hosting any services, as its security is only 86 bits.

Table 5. Best service placement in the second scenario, security is prioritized over other criteria.

Fog1 Fog2 Fog3 Fog4

Services Process2
Process7

Sense1, Sense2,
Sense3, Process1,

Process3, Process6
Activate1, Activate3

Process4
Process5
Activate2

-

If the judgment matrix J2, which prioritizes even power consumption, is used in the
same situation, then the best placement is different (see Table 6), and the best score is
(26, 88, 86, 84)T .

Table 6. Best service placement in the second scenario, power is prioritized over other criteria.

Fog1 Fog2 Fog3 Fog4

Services Process5
Process6

Process2, Process3,
Process4, Activate1,

Activate3
Process1

Sense1, Sense2,
Sense3, Process7,

Activate2

The maximal power consumption among all the fog nodes is 26% in this case, and it is
significantly better than in the first variant (35%), but the overall security of the solution is
degraded to 86 bits, as several services are placed in the fog node Fog4.

The third illustrative scenario is meant to illustrate how the proposed service place-
ment method works in cases when some devices change their positions, and corresponding
services must be reallocated. We use an objective function considering the range from
a physical sensor device to the service monitoring device which is physically placed in one
of the fog nodes to demonstrate this scenario. The range in this case is only important for
services which are communicating with sensors or actuators. The range is considered 0
independently of the fog nodes they are hosted in with the services which are processing
data. A judgment matrix prioritizing the range is used in this scenario, while the objective
functions in this case are: range, CPU, security, RAM.

J3 =


1 5

1/5 1
3 5

1/2 1
1/3 2
1/5 1

1 2
1/2 1

 (6)

We used the data presented in the diagram (see Figure 10) to model the placement of
the services. All coordinates here are presented in meters.

The best service placements in each case are summarized in Tables 7 and 8, and the
corresponding scores are (13, 67, 128, 73)T and (9, 54, 86, 55)T .



Electronics 2021, 10, 1796 19 of 22

Figure 10. Service placement diagram. (a) Initial placement, (b) modified placement.

Table 7. Best service placement in the third scenario, the initial placement of sensors and actuators.

Fog1 Fog2 Fog3 Fog4

Services

Sense1, Sense2,
Activate1, Process1,
Process2, Process3,
Process5, Process6.

-
Sense3, Activate2,

Activate3, Process4,
Process7.

-

Table 8. Best service placement in the third scenario, the placement of sensors and actuators after
changes in their location.

Fog1 Fog2 Fog3 Fog4

Services Process1, Process2,
Process4, Process7

Sense2, Activate1,
Process5

Process3,
Process6

Sense1, Sense3,
Activate1, Activate3

The evaluation results clearly show that if the range is the most important objective
function, then the services are more likely to be placed in the adjacent fog nodes. On the
other hand, if more sensors are located near a less secure fog node, then the overall security
of the solutions may decrease (128 bits vs. 86 bits in the second scenario).

6. Discussion, Conclusions, and Future Work

An increase in IoT-based services has led to a need for more efficient means of handling
resources in systems comprising heterogeneous devices. A fog computing paradigm brings
computational resources closer to the edge of the cloud, but energy-, communication-, and
computation resource-constrained devices dominate near the edge. Different application
areas (healthcare, multimedia, home automation, etc.) require different characteristics
of the IoT system. The usage of various heterogeneous devices leads to difficulties in
predicting how much of the resources would be required within the fog nodes when all the
services are going to allocate all the resources they need. Moreover, the need for roaming
services which follow the actors (i.e., a person is moving inside a building, cars, etc.) arises
due to the limitations of some hardware devices (i.e., a limited range of communication
protocols), and therefore the resources in the fog nodes need to be reallocated in this
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case every time the situation changes. The best way to deal with these dynamic service
reallocations is to use service orchestrators, which decide the best way to allocate and
move, start, and stop any corresponding services as needed. One of the main challenges
while designing an effective service orchestrator is the need for a specialized method to
obtain an optimized service placement inside the available fog nodes.

A new optimization method for an optimal distribution of services among available
fog nodes was proposed in this paper. The two-stage method uses integer multi-objective
particle swarm optimization to find a Pareto optimal set of solutions and the analytical
hierarchy process using an application-specific judgment matrix for a decision on any
optimal distribution of services. Such a processing distribution allows one to assess
different heterogeneous criteria with different units of a measurement and different natures
(qualitative or quantitative). The method, apart from providing one best solution, also
ranks all the Pareto optimal solutions, enabling one to compare them with each other
(answering the question “how much better is one solution than the other?”) and, if needed,
to choose the second best, the third best, etc. solution.

The proposed method effectively works with the whole range of objective functions
(evaluation criteria), which could be easily expanded by new objective functions repre-
senting different criteria. Moreover, the objective functions may be dynamic, meaning
that not only the value but also the algorithm of an objective function calculation may be
different based on the service placement in particular fog nodes with particular software
and hardware capabilities.

If the same end device, service, and fog device set is used in a different application
area (i.e., healthcare vs. home automation) which requires different prioritization of criteria
(i.e., security is more important in healthcare compared to home automation) then only the
AHP judgment matrix must be changed. The method adapts to the situation and provides
appropriate results.

A number of interesting aspects of the proposed method could be explored in the
future. It would be interesting to use it in a real orchestrator of IoT infrastructure to
practically evaluate how different placements of services inside fog nodes influence the
performance of the whole IoT system. Another very interesting aspect to investigate is
objective function construction according to the experimentally obtained real-life results
involving all the interrelations among different criteria. An experiment using real hardware
and software would help to estimate some additional aspects of the proposed algorithm,
including the performance under different configurations of the infrastructure (number of
fog nodes, number of end devices, etc.) and different architectures of the corresponding
devices (supporting parallel processing, optimization using CPU or GPU, offloading an
optimization task to the cloud services, etc.).

We believe that the results of this work will be useful in further research in the area
of IoT fog computing service orchestration, and it will allow researchers to develop more
efficient IoT systems.
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