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Abstract: This paper introduces a four-way power combiner operating in the 94 GHz millimeter-
wave based on spatial power combining technology. The four millimeter-waves with Gaussian beams
are combined in the waveguide, increasing the output power. The combiner is composed of five
circular waveguides connected by four long and narrow coupling slots. Four sub-waveguides are
separately connected to four input ports and one main waveguide is connected to a common output
port. The TE11-mode is used as the input mode, which has two vertical and horizontal polarization
directions. Four sub-waveguides are respectively input corresponding to polarization directions
TE11-wave with Gaussian beams. The power of TE11-wave is transmitted to the main waveguide
by the coupling slots, combined in the main waveguide, and output with the common port. We
analyze the combiner and verify the availability of the design structure by numerical stimulation
with CST MWS (Microwave Studio) software. The power-combining efficiency can be over 97%,
and the output beams remain Gaussian beams with nearly fourfold increased power. The proposed
model provides technological approaches for power combiner application in millimeter-wave.

Keywords: power-combining efficiency; Gaussian beams; circular waveguide; TE11-mode

1. Introduction

In general, the output power from a single power source is limited. However, higher
power is required in order to have a larger action radius, stronger anti-jamming capability,
and better transmission quality. Higher power generation is not possible from a single
source. Therefore, the power combiner is a key component to increase output power
in the microwave and millimeter-wave system. Many scholars have developed power
combiners with spatial power-combining technology based on waveguide structures. Xin
Cao proposed a two-way power combiner, operated on 30 GHz with 800 mw of power
and 78.9% of combining efficiency [1]. Xiao et al. proposed a two-curved channel compact
power combiner operating in X band that significantly reduces the impact of reflected
waves in interactive areas [2]. Recently, most research for power combiner has been focused
on microwave [3,4] and low-frequency millimeter-wave [5]. These have problems of too
large size and low power, respectively.

High-frequency millimeter-wave has the advantage of narrow beams, strong penetra-
bility, high resolution, and better anti-interference, displaying well-applied prospects in
communications [6–9], imaging [10,11], and radar [12,13]. Simultaneously, high-frequency
millimeter-waves have a shorter wavelength, which could effectively reduce the size of
components and provide more benefits in terms of system miniaturization. The power of
a single source in high-frequency millimeter-wave is limited by material properties. The
power combiners in low frequency millimeter-wave with high-power output have a large
system size. The high-frequency millimeter-wave power combiners are preferable to low
frequency ones in anti-jamming, transmission quality, imaging resolution, and precision
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tracking radar ability [14]. Consequently, a power combiner is worthy of important re-
search in the field of high-frequency millimeter-wave systems. At present, there are few
studies on high-power combiners in high-frequency millimeter-wave systems. The main
difficulty is how the structure of the combiner can support high-power combination and
output. Some power combiners in high-frequency millimeter-wave systems [15–17] based
on circuit power combining technology are usually capable of carrying tens of watts.

Therefore, a feasible four-way power combiner that combines four millimeter-waves
with Gaussian beams by spatial power combining technology based on circular waveguide
structures was proposed in 94 GHz. Spatial power combining technology [18–21], based
on waveguide structures, has been investigated in the fields of microwave for a long time,
which can realize efficiently combining of multiplexing power. Compared with circuit
power combining technology, spatial power combining technology is more suited to high
power combining. The power capacity of the combiner can reach MW level. Circular
waveguide has the characteristic of low loss and dual polarization, often employed in
antenna feeder and microwave resonance cavity [22–24], also forming the output cavity of
the microwave tubes [25]. Furthermore, circular cylinder waveguides are easy to fabricate
in the four-way power combiner [15]. Moreover, the power handling capacity of a circular
cylinder waveguide is larger than that of a rectangular waveguide in the same cross-section
area [26]. Consequently, the design structure of the combiner is based on a circular cylinder
waveguide. On the basis of coupled mode theory, the four millimeter-waves with Gaussian
beams could be transmitted and combined in the waveguide by designing a favorable
structure. The output power could be increased fourfold, and the output beams remain
Gaussian beams. In particular, the combiner has high isolation and high power-combining
efficiency with low-loss in the 94 GHz millimeter-wave. In addition, the structure of a
power combiner is compact, symmetrical, and relatively miniaturized, which will be more
convenient in some applications.

The remainder of the paper is organized as follows. In Section 2, we employ coupled
mode theory to design the four-way power combiner, and provide a detailed introduction
to the structure of this combiner. In Section 3, we performed numerical simulation analysis
on this combiner with CST MWS simulation software, and investigated the influence of
the physical mechanism of the combiner for power-combining efficiency. We investigate
the optimum dimensions of the structure of the combiner to realize the highest power-
combining efficiency. Finally, our conclusions are summarized in Section 4.

2. Theory and Model
2.1. Theory

The following is the principle of the four-way power combiner. According to coupled
wave theory, the waves will couple with each other during the transmission process when
mutually parallel waveguides are adjacent to each other. While there is a coupling structure
between two adjacent waveguides, power exchange occurs during wave transmission
between waveguides. The coupling equation is as follows:

dEa

dz
= iKabEb exp[i(ka − kb)z] + iCaEa (1)

dEb
dz

= iKbaEa exp[i(kb − ka)z] + iCbEb (2)

ka − kb = ∆k (3)

For a single mode, effective coupling can occur when the propagation constants are equal:

Ca = Cb (4)

Assuming that waveguide-b has a single mode wave propagation and waveguide-a
has no wave propagation at z = 0 (port 4), Eb(0) = Eb0, Ea(0) = 0. The power of the
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two waveguides is |Ea(z)|2 and |Eb(z)|2, respectively. The schematic is shown in Figure 1.
According to power conservation conditions,

d
dz

(
|Ea(z)|2 + |Eb(z)|2

)
= 0 (5)
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The powers of the waveguide-a and the waveguide-b are as follows:

Pa(z) = Pb0
K2[

K2 + (∆k)2
] sin2

([
K2 + (∆k)2

]1/2
z
)

(6)

Pb(z) = Pb0

1− K2[
K2 + (∆k)2

] sin2
([

K2 + (∆k)2
]1/2

z
) (7)

When
[
K2 + (∆k)2

]1/2
z = π/2, the Pa(z) reaches the maximum with realizing the

maximum power conversion between the two waveguides. The excitation power input
to port 4 is transmitted to waveguide-a by favorable coupling structures and output from
port 2. Port 1 and port 3 have basically no power output. The power of waveguide-b is
almost completely transmitted into waveguide-a, and the maximum power conversion
efficiency is as follows:

η =
Pa(z)
Pb0

=
K2

K2 + (∆k)2 (8)

When ∆k = 0, complete power conversion is realized.
Among the transmission modes of a circular waveguide, the TE11-mode is the funda-

mental mode of circular waveguide and suitable mode for antenna. The TE11-mode has
vertical and horizontal polarization directions, and the coupling coefficients in the two
polarization directions are very different. Furthermore, the TE11-mode could cause direct
radiation into the atmosphere. According to the orthogonal polarization mode theory,
the polarization direction of the TE11-mode is associated with the structural direction of
the designed coupling slot when coupling the TE11-wave from one waveguide to another.
When the designed coupling slot structure is appropriate for coupling the vertical polar-
ization TE11-wave, the vertical polarization TE11-wave input to one waveguide can be
completely coupled to another waveguide by the coupling slot, but the horizontal polar-
ization TE11-waves input to one waveguide can be rarely coupled to another waveguide.
When the designed coupling slot structure is appropriate for coupling the vertical polar-
ization TE11-wave, the horizontal polarization TE11-wave input to one waveguide can be
completely coupled to another waveguide by the coupling slot, but the vertical polarization
TE11-waves input to one waveguide can rarely be coupled to another waveguide. These
principles are shown in Figures 2 and 3 by numerical stimulation software CST.
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In Figures 2 and 3, the two identical waveguides are connected by a coupling slot. Sig-
nificantly, the connected direction of the two waveguides by the coupling slot is different,
and the transverse and longitudinal electric-field distributions are shown. In Figure 2a, the
horizontal polarization TE11-wave with Gaussian beams is input to a single waveguide,
and the connected direction of two waveguides by the coupling slot is the y-direction. In
Figure 2b, it can be clearly seen that the great majority of power of the horizontal polar-
ization TE11-wave input to one waveguide is transmitted to another waveguide by the
coupling slot. Similarly, the vertical polarization TE11-wave with Gaussian beams is input
to one waveguide, and the direction of the coupling slot connected with two waveguides is
the x-direction, as shown in Figure 3. The great majority of power of the vertical polariza-
tion TE11-wave input to one waveguide is transmitted to another waveguide. In Figure 4,
the connected direction of the coupling slot between two waveguides is the x-direction, and
the two waveguides are input horizontal and vertical polarization TE11-wave with Gaus-
sian beams simultaneously, respectively. It can clearly be seen that the vertical polarization
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TE11-waves are mostly coupled to another waveguide by the coupling slot. Nevertheless,
the structure of the coupling slot is not appropriate for coupling the horizontal polarization
TE11-wave. Hence, the horizontal polarization TE11-wave is absolutely transmitted in
its own waveguide and is isolated from another waveguide. Fang et al. [27] proposed a
two-way power combiner using circular waveguides based on spatial power combining
technology with this theory in 9–10 GHz. The input mode of the microwave is the vertical
polarization TE11-wave, which realized the transmission and combination of 3 GW power
in engineering.
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2.2. Model

Figure 5a is the designed 3D (three-dimensional) structure of the four-way millimeter-
wave power combiner in this paper. The center is the main-waveguide, and the four
sub-waveguides are symmetrically located above, below, left, and right of the main-
waveguide. The combiner is a centrally symmetrical structure at the XY cross section. The
main-waveguides are closely connected with each sub-waveguide by four coupling slots.
Figure 5b,c show the detailed structure parameters of the combiner. Figure 5b is the XZ
cross section of the combiner. The radius R and length of the five waveguides are equal,
while the length of the four coupling slots is also equal. The distance W between the main-
waveguide and sub-waveguides is equal. The position of the main waveguide along the
z-direction relative to the sub-waveguides is 15 mm apart. In the z-direction, the starting
position of the coupling slot is 5 mm away from the starting position of the main waveg-
uide, the bottom of the coupling slot is 5 mm from the bottom of the sub-waveguide and
20 mm from the bottom of the main waveguide. Figure 5c is the XY cross-section structure
of the combiner. The width of the four coupling slots is Lw. The starting position of the
sub-waveguides is z = 0 mm along the z-direction. The center of the main-waveguide
is x = 0 mm and y = 0 mm in XY coordinates. The main waveguide is the power-
combining and common output channel, and the four surrounding sub-waveguides are the
input channels. Port 1 and port 2 are input vertical polarization TE11-waves with Gaussian
beams. Port 3 and port 4 are input horizontal polarization TE11-waves with Gaussian
beams.
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Lc is the designed coupling length of the four coupling slots. When Lc reaches a certain
value, the entire power can theoretically be transmitted from the sub-waveguides to the
main-waveguide. Four TE11-waves are coupled to the main-waveguide by four coupling
slots, and combined in the main channel. This combiner was input identical power, so the
variation of theoretical power in the main waveguide is as follows:

Ptotal = 4P0
K2[

K2 + (∆k)2
] sin2

([
K2 + (∆k)2

]1/2
z
)

(9)

Theoretical variation of the power of one sub-waveguide and main-waveguide is
shown in Figure 5d, and the final output power is 4P0 at the common output port. This
structure could theoretically increase the output power by four times, which is a solution
to the limited application of a single power millimeter-wave source.

3. Results

To verify the availability of the model proposed in Section 2, we use 3D CST MWS with
the finite integral method to numerically design and investigate the four-way power com-
biner in 94 GHz millimeter-wave. The numerical simulation frequency band is 93–95 GHz,
and the center frequency is 94 GHz. Port 1 and port 2 are input 1 MW power of vertical
polarization TE11-waves with Gaussian beams, respectively. Port 3 and port 4 are input
1 MW power of horizontal polarization TE11-waves with Gaussian beams, respectively.
For the operating frequency, the circular waveguide’s radius R is optimized to 3.6 mm.
The distance W between the main-waveguide and sub-waveguides is 2 mm. According
to the coupled wave theory, the power transmission degree is closely related to the width
Lw and length Lc of the coupling slot. The narrower the Lw, the longer the Lc required
for the entire power transmission when the size of radius R is constant. Consequently, we
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have indicated the influence of Lw and Lc on power-combining efficiency under decidedly
circular waveguide radius. Finally, we present the numerical simulation results of the
four-way power combiner in 94 GHz millimeter-wave.

3.1. The Influence of the Coupling Length Lc

The coupling slot length Lc is critical when the combiner employs long and narrow
coupling slots for power transmission. Suppose that Lc is shorter, only part of the power
could be transmitted into the main waveguide, while part of the power remains in the
sub-waveguide. Nevertheless, the too long coupling slot length Lc is not beneficial for
device miniaturization. Therefore, we have investigated an appropriate length of Lc. In
accordance with the radius R of circular waveguides, we first choose an integer value
3 mm from R as the coupling width Lw. Figure 6 shows the power-combining efficiency at
different Lc. In Figure 6a, the Lc ranges from 40 mm to 90 mm, and the interval is 5 mm.
In Figure 6b, the Lc ranges from 65 mm to 75 mm, and the interval is 1 mm. When Lc is
70 mm, the highest power-combining efficiency is 97.05%. The power-combining efficiency
decreases when Lc is more than 70 mm. As a result of operating on the high frequency
millimeter-wave condition, some higher order modes are generated in waveguides. The
power carried by higher order modes is transmitted back to the sub-waveguides because of
the too long coupling slots, so the power-combining efficiency is reduced. In the subsequent
studies of the combiner, the coupling slot length Lc is 70 mm in all cases.
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3.2. The Influence of the Coupling Length Lc

For invariant waveguide radius R and coupling slot length Lc, numerical simulation
research demonstrates that there is an upper limit of the coupling slot width Lw to achieve
higher transmission efficiency. Excessive coupling slot Lw width could cause serious
damage to the boundary conditions of circular waveguides. If the Lw is greater than this
value, the transmission power would decrease. The coupling slots’ length Lc is 70 mm
in all cases. The coupling slot width Lw ranges from 2 mm to 4 mm, and the interval is
0.2 mm. Figure 7 shows the power-combining efficiency at different Lw. As Lw ranges from
2.6 mm to 3.2 mm, the power-combining efficiency can reach about 97%. The highest power-
combining efficiency is 97.41% when Lw is 2.8 mm. For Lw is 4 mm, the power-combining
efficiency drops to only 52.30%. Lw has the greatest influence on the power-combining
efficiency compared with the coupling slot length Lc, and a slight difference could lead to
great variation of power-combining efficiency.
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3.3. Stimulation Field

The dimensions of the combiner with the highest power-combining efficiency are as
follows: R = 3.6 mm, W = 2 mm, Lw = 2.8 mm, and Lc = 70 mm. As shown in
Figure 8, this is the electric and power field distribution of the combiner. In Figure 8a,c, they
are the electric and power field distribution in the main waveguide and the sub-waveguides
1 and 2 (XZ cross section). In Figure 8b,d, they are the electric and power field distribution
in the main waveguide and the sub-waveguides 3 and 4 (YZ cross section). It could be
clearly observed that the polarization TE11-waves input in the four sub-waveguides are
largely coupled into the main-waveguide by the coupling slots, and only a small part of
the power remains in the sub-waveguides. Figure 9 shows the electric field distribution
of the XY cross section of the combiner. Figure 9a is the electric field distribution of the
vertical polarization TE11-waves with Gaussian beams of the sub-waveguides 1 and 2 and
the horizontal polarization TE11-waves with Gaussian beams of the sub-waveguides 3 and
4 of the initial position (z = 0 mm) of the combiner. Figure 9b shows that the majority
of the power is still in the sub-waveguides and a very small part of the power begins to
be coupled into the main waveguide at the beginning of the coupling slots. Figure 9c
shows that the power of sub-waveguides coupled to the main-waveguide happens by the
coupling slots, and a portion of the power remains in the sub-waveguides at the middle of
the coupling slot (z = 60 mm). Additionally, we can see the combination phenomenon
of the four waves in the main waveguide. Figure 9d shows that most of the powers are
coupled to the main waveguide near the bottom of the coupling slots (z = 89 mm).
Only very small amount of power is retained in the four sub-waveguides. Two horizontal
and two vertical TE11-waves are basically completely combined in the main waveguide.
Figure 9e shows the electric field distribution at the common output port of the main
waveguide. Two horizontal and two vertical polarization Gaussian beams are basically
completely combined in the main waveguide, and the output beams are still Gaussian
beams with higher power. The maximum electric field and power of the combiner are
1.355 × 107 V/m and 3.996 × 1011 V × A/m2, respectively.
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The transmission coefficient from input port 1 to output port S51 is −0.11 dB, and the
transmission coefficient from other input ports to the output ports are identical because the
four sub-waveguides are symmetrical with the main waveguide. The reflection coefficient
from input port S11 is −39.95 dB, and other input ports have identical reflection coefficient
owing to symmetry. The transmission coefficient between two input ports S12 is −37.95 dB
when the two input ports are in the same direction. The transmission coefficient between
two input ports S13 and S14 is 57.67 dB when the two input ports are in different directions.
Owing to the symmetry of the structure of the power combiner, the transmission coefficients
between other two input ports are identical with port 1.

In the combiner, z from 20 mm to 90 mm is the coupling area. The blue line in Figure 10a
is the variation of normalization center power of the sub-waveguide 1 (x = 0, y = 0 mm)
along the z direction. The normalization center power of the sub-waveguides gradually
decreases to a small value of the coupling region. The orange line in Figure 10a is the
variation of the normalization central power of the main waveguide along the z direction,
and the normalization central power of the main waveguide gradually increases in the
coupling region. In Figure 10b, the blue line and the orange line are the variation of
normalization power of sub-waveguide 1 and main waveguide, respectively, along the z
direction. As the four sub-waveguides are centrally symmetrical with the main waveguide
in the XY cross section, the variation of the power of four sub-waveguides, which are
not to be described in detail, is identical. This can also be observed and demonstrated by
Figures 8 and 9. Figure 10c,d are the variation of normalization center power of waveguides
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along the x direction and the y direction, respectively. X from −12.8 mm to −5.6 mm is the
region of sub-waveguide 1, x from−3.6 mm to 3.6 mm is the region of the main waveguide,
x from 5.6 mm to 12.8 mm is the region of sub-waveguide 2. X from −5.6 mm to −3.6 mm
and from 3.6 to 5.6 mm are the regions of coupling slot 1 and 2, respectively. Y from 5.6 mm
to 12.8 mm is the region of sub-waveguide 3, y from −3.6 to 3.6 mm is the region of the
main waveguide, and y from −12.8 mm to −5.6 mm is the region of sub-waveguide 4. Y
from 3.6 mm to 5.6 mm and from −5.6 mm to −3.6 mm are the regions of coupling slot 3
and 4, respectively. The two blue lines are the variation of normalization central power
of the combiner at the beginning of the coupling slots. It can be observed that the power
of the four sub-waveguides is high and the power of the main waveguide is very small.
The two orange lines are the variation of normalization central power of the combiner at
the end of the coupling slot. The power of the main waveguide becomes extremely large,
and the power of the sub-waveguides becomes very small. In addition, the normalization
center power of the main waveguide at the bottom of the coupling slot is approximately
four times the power of one sub-waveguide at the beginning of the coupling slots. The
power of the common output port is 3.8963 MW. The power-combining efficiency of the
power combiner is 97.41% in 94 GHz millimeter-wave. The polarization TE11-waves with
Gaussian beams of the four sub-waveguides are all coupled into the main waveguide by the
coupling slots connected to the main waveguide. Only less than 4% of the power remains
in the sub-waveguides or is lost in transmission, realizing the highest power-combining
efficiency and promoting the output power.
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The electric field distributions in Figures 8 and 9 show that the four TE11-waves input
to four input ports are largely coupled from sub-waveguides to the main waveguide. The
power measured at the output port also shows that most of the power is combined and
output in the main waveguide. It is observed that the variation of normalization power
of sub-waveguides and main waveguide in Figure 10a,b is roughly consistent with the
variation of theoretical power in Figure 5d. It is proved that the model is a feasible method.

4. Discussion

Several combiners with large size or low power in microwave and low frequency
millimeter-wave are introduced in the Introduction section. Compared with these power
combiners, the four-way power combiner in 94 GHz could increase output power by four
times and has a structure with a small size, which is conducive to system miniaturization.
The carried power capacity can reach MW level using circular waveguides based on
spatial power-combining technology. A long and narrow coupling slot is employed, which
facilitates the power coupled from sub-waveguides to the main waveguide. In addition,
the sub-waveguides are located in the upper, lower, left, and right directions of the main-
waveguide. The TE11-waves of different polarization directions are input. The structure
has good isolation between sub-waveguides to achieve high power-combining efficiency.
Nevertheless, the size of the coupling slot is small, which needs to be more precise in the
production. A slight variation of the size of the coupling slot might lead to a large variation
of power-combining efficiency. When the processing procedure is imperfect or waveguides
are inhomogeneous, the polarization direction of the TE11-mode could be rotated.

In engineering application, the 94 GHz signal source can be connected to the W10
rectangular waveguide port through the coaxial. Because the design of the four-way power
combiner is a circular waveguide port, a rectangular-to-circular converter is required. The
94 GHz signal source generally transmits millimeter-wave signal with TE10 or TM10 mode.
It can be connected to the input ports of the four-way power combiner of the manuscript
through over-mode bent waveguide, which can realize the mode conversion to generate the
TE11 mode. The mode converter can be used to ensure the propagation of a single mode.

5. Conclusions

This paper presents a four-way power combiner in 94 GHz high frequency millimeter-
wave. The power combiner is designed with a symmetrical structure by circular waveg-
uides and coupling slots. We employ the coupled mode theory and the coupling coefficient
difference of the two vertical and horizontal polarization directions TE11-mode. Four-way
TE11-waves with Gaussian beams are coupled to the main waveguide by the correspond-
ing coupling slot structure. Then, the four millimeter-waves are combined in the main
channel and output with a common port, the power-combining efficiency can be over 97%,
and output power is increased by nearly four times. Furthermore, the combined output
beams remain Gaussian beams. The four-way power combiner is a solution to the power
limitation of a single millimeter-wave source, which can realize 3.8693 MW high-power
combination and output in the high-frequency millimeter-wave.
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