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Abstract: System identification problems are always challenging to address in applications that
involve long impulse responses, especially in the framework of multichannel systems. In this
context, the main goal of this review paper is to promote some recent developments that exploit
decomposition-based approaches to multiple-input/single-output (MISO) system identification
problems, which can be efficiently solved as combinations of low-dimension solutions. The basic
idea is to reformulate such a high-dimension problem in the framework of bilinear forms, and
to then take advantage of the Kronecker product decomposition and low-rank approximation of
the spatiotemporal impulse response of the system. The validity of this approach is addressed in
terms of the celebrated Wiener filter, by developing an iterative version with improved performance
features (related to the accuracy and robustness of the solution). Simulation results support the main
theoretical findings and indicate the appealing performance of these developments.

Keywords: system identification; linear system; bilinear system; best approximation; singular value
decomposition; optimal filtering; Wiener filter; multichannel acoustic echo cancellation

1. Introduction

Solving a system identification problem represents a key step in many important
real-world applications [1,2]. In general, such a problem can be formulated in terms
of estimating or modeling the parameters of an unknown system when a set of data is
available, which is usually related to the input and output of the system. Depending on the
specific particularities of the problem or application, we can deal with different types of
systems, according to their numbers of inputs and outputs. The simplest formulation is the
well-known single-input/single-output (SISO) system. Furthermore, in some applications
we can deal with more elaborated structures, such as multiple-input/single-output (MISO)
and multiple-input/multiple-output (MIMO) systems.

The linearity is an important feature of a system, which can significantly simplify the
overall identification problem. Even if many real-world systems face nonlinear behaviors,
it is always desirable to address or reformulate the framework such that it has a linear
approach to some extent. In this context, a useful topic is related to bilinear forms, which
have been addressed in the literature in different ways and contexts [3–22]; most often they
are related to approximating nonlinear systems.

In general, a bilinear model can approximate a large class of nonlinear systems via a
finite sum of the Volterra series expansion between the inputs and outputs of the system.
Therefore, in this context, bilinear systems behave similarly (to some extent) to linear
models. This could further simplify the analysis, as outlined before. Due to this simplicity,
bilinear systems have been involved in a wide range of applications, such as digital filter
synthesis [7], prediction problems [8], channel equalization [9], echo cancellation [10],
chaotic communications [16], neural networks [20], and active noise control [21]. Neverthe-
less, in all these frameworks, the bilinear term is defined with respect to the data, i.e., in
terms of an input-output relation.
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In this study, we focus on a different approach by defining the bilinear term with
respect to the impulse responses of a spatiotemporal model, in the context of MISO systems.
Several similar frameworks can be found in the literature, in the context of particular
applications, such as channel equalization [13], nonlinear acoustic echo cancellation [15],
and target detection [18]. However, most of these works were not associated with or ana-
lyzed in conjunction with bilinear forms. Usually, they were referred to as joint adaptation
processes or cascaded systems, which are similar to the Hammerstein model [23].

More recently, an iterative Wiener filter for such bilinear forms was developed in the
framework of a MISO system identification problem [24]. As compared to the conventional
Wiener filter, the iterative version can obtain good accuracy even when a only small
amount of information is available for the estimation of the statistics. Following the Wiener
benchmark, another category of solutions relies on adaptive filtering [25,26]. Several
adaptive filters tailored for the identification of bilinear forms have also been developed,
following the main categories of algorithms. For example, the least-mean-square (LMS) and
normalized LMS (NLMS) versions can be found in [27,28]. In addition, several recursive
least-squares (RLS) algorithms for bilinear forms were developed in [29]. Moreover, a
Kalman filter tailored for the identification of bilinear forms was proposed in [30].

In the previously mentioned approaches, the spatiotemporal impulse response of the
MISO system is considered perfectly separable, and its components are combined using the
Kronecker product. The identification of such linearly separable systems can be efficiently
exploited in the frameworks of different applications, such as source separation [31,32],
array beamforming [33,34], and object recognition [35,36]. In these contexts, the basic
solution relies on the decomposition and modeling techniques of rank-1 tensors [37–42].
Nevertheless, it is highly useful to exploit the decomposition-based approach for the
identification of more general forms of impulse responses.

Several recent works have followed this idea by exploiting the nearest Kronecker product
decomposition and low-rank approximations [43–47]. In this context, the basic concept is
to reformulate a high-dimension system identification problem as a combination of low-
dimension solutions, thereby gaining in terms of both performance and complexity. Due
to its features, this approach can be used in different practical applications—e.g., [48–55],
among which we can mention acoustic feedback cancellation, adaptive beamforming, speech
dereverberation, multichannel linear prediction, and nonlinear system identification.

A unified study on the efficient identification of linear and bilinear systems exploiting
the decomposition-based approach is provided in this review paper. First, in Section 2,
we present different system models, in the context of linear and bilinear forms. Then,
in Section 3, we show how these models are related, thereby outlining the equivalence
among the systems. The ideas behind the decomposition-based approach together with
the optimal low-rank approximation are presented in Section 4. Since the Wiener filter rep-
resents a benchmark tool for the system identification problems, we illustrate its behavior
in Section 5, wherein we also introduce an iterative version with improved performance
features. Simulation results are provided in Section 6, in order to support the main theo-
retical findings. Finally, several conclusions and perspectives of this study are outlined in
Section 7.

2. Different Input Output Linear/Bilinear System Models

In this study, we assume that the input and output, and the noise signals, take real
values and have zero means. The most popular input output system is the so-called SISO
system given by

d(k) = hT
t x(k) + w(k) (1)

= y(k) + w(k),
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where d(k) denotes the desired (or reference) signal at discrete-time index k, ht is the
system’s temporal impulse response of length L, and the superscript T denotes the transpose
operator. The vector

x(k) =
[

x(k) x(k− 1) · · · x(k− L + 1)
]T (2)

contains the most recent L samples of the input signal, x(k); w(k) is the additive noise;
and y(k) = hT

t x(k) is the linear form in ht. A typical assumption that can be made is that
x(k) and w(k) are uncorrelated (or even independent, which is not really required if we
only handle second-order statistics). We refer to (1) as the linear SISO (LSISO) system. Its
general block diagram is provided in Figure 1.

�� 
�

�(k) 
y(k) 

w(k) 

d(k) 

Figure 1. A general block diagram of the LSISO system from (1).

Without loss of generality, let us assume that L = L1L2, with L1 ≥ L2. A shorter
version of the input signal vector, x(k), may be written as

x′(k) =
[

x(k) x(k− 1) · · · x(k− L1 + 1)
]T . (3)

As a result, we can express (2) as

x(k) =
[

x′T(k) x′T(k− L1) · · · x′T [k− (L2 − 1)L1]
]T , (4)

from which we deduce the matrix of size L1 × L2:

X(k) =
[

x′(k) x′(k− L1) · · · x′[k− (L2 − 1)L1]
]
. (5)

In other terms, we have

x(k) = vec[X(k)], (6)

where vec[·] denotes vectorization, i.e., the operation of converting a matrix into a vec-
tor. It may also be convenient to use the inverse of the vectorization operator [40], i.e.,
X(k) = ivec[x(k)], which is equivalent to (6). Therefore, the most straightforward bilinear
system that follows from the previous development results as

d(k) = hT
t1X(k)ht2 + w(k) (7)

= y(k) + w(k),

where ht1 and ht2 are the first and second temporal impulse responses, of lengths L1 and
L2, respectively; and y(k) = hT

t1X(k)ht2 is now bilinear in ht1 and ht2. We call (7) the
bilinear SISO (BSISO1) system. The equivalency between the LSISO and BSISO1 systems is
explained and detailed in Section 3, together with the connections among different models
that are discussed in the current section.
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An obvious generalization of (7) is

d(k) =
L2

∑
l=1

hT
t1,lX(k)ht2,l + w(k), (8)

where ht1,l , l = 1, 2, . . . , L2 and ht2,l , l = 1, 2, . . . , L2 are the first and second sets of the
system temporal impulse responses of lengths L1 and L2, respectively. We refer to (8) as
the BSISO2 system. Expression (8) can be rewritten as

d(k) = hT
t1X(k)ht2 + w(k) (9)

= y(k) + w(k),

where

ht1 =
[

hT
t1,1 hT

t1,2 · · · hT
t1,L2

]T
, (10)

ht2 =
[

hT
t2,1 hT

t2,2 · · · hT
t2,L2

]T
, (11)

and

X(k) = bdiag[X(k), X(k), . . . , X(k)] (12)

is a block-diagonal matrix with L2 diagonal blocks. We can see that y(k) = hT
t1X(k)ht2 is

bilinear in ht1 and ht2.
An important extension of the LSISO system in (1) is the so-called linear MISO (LMISO)

system:

d(k) =
M

∑
m=1

hT
mxm(k) + w(k), (13)

where M denotes the number of system inputs (or channels), hm, m = 1, 2, . . . , M are the
M channel impulse responses of length L, and the vector

xm(k) =
[

xm(k) xm(k− 1) · · · xm(k− L + 1)
]T (14)

contains the most recent L samples of the mth (m = 1, 2, . . . , M) input signal, xm(k). The
general block diagram of the LMISO system is provided in Figure 2. Equation (13) can be
rewritten as

d(k) = h
T

x(k) + w(k) (15)

= y(k) + w(k),

where

h =
[

hT
1 hT

2 · · · hT
M
]T , (16)

x(k) =
[

xT
1 (k) xT

2 (k) · · · xT
M(k)

]T . (17)

Clearly, y(k) = h
T

x(k) is linear in h. Of course, the particular case of M = 1 corresponds
to the LSISO system.
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Figure 2. A general block diagram of the LMISO system from (13).

As in the single-channel case, let L = L1L2 but with ML1 ≥ L2. We can decompose
xm(k), similarly to (4), as

xm(k) =
[

x′Tm (k) x′Tm (k− L1) · · · x′Tm [k− (L2 − 1)L1]
]T , (18)

where

x′m(k) =
[

xm(k) xm(k− 1) · · · xm(k− L1 + 1)
]T . (19)

Then, we concatenate the M input signals as

x(k) =
[

x′T(k) x′T(k− L1) · · · x′T [k− (L2 − 1)L1]
]T , (20)

where

x′(k) =
[

x′T1 (k) x′T2 (k) · · · x′TM(k)
]T (21)

is a vector of length ML1. Consequently, the LMISO system in (13) or (15) can be expressed
in an equivalent manner as

d(k) = hTx(k) + w(k), (22)

where h (of length ML) represents the spatiotemporal impulse response of the system, with
the same coefficients as h, resulting through simple permutations, according to the inputs.

The first bilinear MISO (BMISO1) system can be derived from the LSISO system in (1),
according to (15) [24]:

d(k) = hT
t X(k)hs + w(k) (23)

= y(k) + w(k),

where ht (of length L) represents the temporal impulse response of the system, X(k) =
ivec[x(k)], hs (of length M) represents the spatial impulse response of the system, and
y(k) = hT

t X(k)hs is the bilinear form in ht and hs. For M = 1, (23) is equivalent to the
LSISO system in (1); this also means that the bilinear structure is lost in the single-channel
particular case.

Now, from (20), we can build the matrix of size ML1 × L2:

X(k) = ivec[x(k)]. (24)

Then, our second bilinear MISO (BMISO2) system is derived according to (22). We get

d(k) = hT
st1X(k)ht2 + w(k) (25)

= y(k) + w(k),
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where hst1 (of length ML1) is the spatiotemporal impulse response of the system, ht2 (of
length L2) is the system temporal impulse response, and y(k) = hT

st1X(k)ht2 is the bilinear
form in hst1 and ht2. For M = 1, we obtain exactly the BSISO1 system in (7).

Our third and last bilinear MISO (BMISO3) system is just an obvious generalization
of (25), i.e.,

d(k) =
L2

∑
l=1

hT
st1,lX(k)ht2,l + w(k), (26)

where hst1,l , l = 1, 2, . . . , L2 (of length ML1) is the set of spatiotemporal impulse responses
of the system, and ht2,l , l = 1, 2, . . . , L2 (of length L2) is the set of temporal impulse
responses of the system. For M = 1, we get the BSISO2 in (8). Relation (26) can be
rewritten as

d(k) = hT
st1X(k)ht2 + w(k) (27)

= y(k) + w(k),

where

hst1 =
[

hT
st1,1 hT

st1,2 · · · hT
st1,L2

]T
, (28)

ht2 =
[

hT
t2,1 hT

t2,2 · · · hT
t2,L2

]T
, (29)

and

X(k) = bdiag[X(k), X(k), . . . , X(k)] (30)

is a block-diagonal matrix with L2 diagonal blocks, while y(k) = hT
st1X(k)ht2 is bilinear in

hst1 and ht2.

3. Equivalence among Systems

In this section, we show how the different linear and bilinear systems are related. Let
us start with the BSISO1 system in (7). Its bilinear term can be rewritten as

y(k) = hT
t1X(k)ht2

= tr
[(

ht1hT
t2

)T
X(k)

]
= vecT

(
ht1hT

t2

)
vec[X(k)]

= (ht2 ⊗ ht1)
Tx(k), (31)

where tr[·] denotes the trace of a square matrix and ⊗ is the Kronecker product [56]. With
(31) in mind, comparing the BSISO1 system with the LSISO system in (1), we can clearly
observe that the two systems are identical if ht = ht2 ⊗ ht1. Therefore, in general, we can
say that BSISO1 is a particular case of LSISO. In other words, BSISO1 is also an LSISO with
some structure of its temporal impulse response.

Now, let us focus on the BSISO2 system in (8). Another way to express its bilinear
term is
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y(k) =
L2

∑
l=1

hT
t1,lX(k)ht2,l

=
L2

∑
l=1

vecT
(

ht1,lh
T
t2,l

)
vec[X(k)]

= vecT

(
L2

∑
l=1

ht1,lh
T
t2,l

)
x(k)

= vecT(Ht)x(k), (32)

where

Ht =
L2

∑
l=1

ht1,lh
T
t2,l (33)

is a matrix of size L1 × L2 of rank equal to L2 in general. At the same time, the temporal
impulse response of the LSISO system can be decomposed as

ht =
[

hT
t,1 hT

t,2 · · · hT
t,L2

]T
, (34)

where ht,l , l = 1, 2, . . . , L2 are impulse responses of length L1 each. Next, we can rewrite
the linear term of the LSISO system as

y(k) = hT
t x(k)

= vecT(Ht)x(k), (35)

where Ht = ivec(ht). It can be easily seen by comparing (32) and (35) that the LSISO and
BSISO2 systems are equivalent.

In the same way, we can write the bilinear term of the BMISO1 system in (23) as

y(k) = hT
t X(k)hs

= (hs ⊗ ht)
Tx(k). (36)

Then, by comparing the previous expression with the bilinear form of the LMISO system in
(15), we can see that the two are the same if h = hs ⊗ ht. In general, BMISO1 is a particular
case of LMISO.

The bilinear term of the second bilinear MISO system, i.e., BMISO2 in (25), can also be
expressed as

y(k) = hT
st1X(k)ht2

= (ht2 ⊗ hst1)
Tx(k). (37)

Again, we can conclude that the BMISO2 system is a particular case of the LMISO system
in (22), where h = ht2 ⊗ hst1.

Finally, the bilinear form of the BMISO3 system in (26) may be written as

y(k) =
L2

∑
l=1

hT
st1,lX(k)ht2,l

= vecT(Hst)x(k), (38)
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where

Hst =
L2

∑
l=1

hst1,lh
T
t2,l (39)

is a matrix of size ML1 × L2 of rank equal to L2 in general. At the same time, the spatiotem-
poral impulse response of the LMISO system in (22) can be decomposed as

h =
[

hT
1 hT

2 · · · hT
L2

]T
, (40)

where hl , l = 1, 2, . . . , L2 are impulse responses of length ML1 each. Next, we can rewrite
the linear term of the LMISO system as

y(k) = hTx(k)

= vecT(Hst)x(k), (41)

where Hst = ivec(h). It can be easily seen by comparing (38) and (41) that the LMISO and
BMISO3 systems are equivalent.

4. Best Approximation

The main objective in this study is to identify the LMISO system in (13) (or, equiv-
alently, in (15) or (22)). The LSISO system is just a particular case and has been studied
before. We can achieve this goal based on what is already known about bilinear forms and
how they are best approximated.

Let a be a real-valued vector of length L. The 2-norm or Euclidean norm of this vector
is defined as

‖a‖2 =
√

aTa. (42)

Let A be a real-valued rectangular matrix of size L × C. The Frobenius norm and the
2-norm of this matrix are, respectively,

‖A‖F =
√

tr(ATA) (43)

and

‖A‖2 = max
‖x‖2=1

‖Ax‖2. (44)

Now, we can consider the impulse response of the BMISO3 system in (26); i.e., the
matrix Hst = ∑L2

l=1 hst1,lhT
t2,l of size ML1 × L2 with ML1 ≥ L2 (see Equation (38)). As

mentioned before, this system is equivalent to the LMISO system defined by relation (22).
The matrix Hst can be factorized through the singular value decomposition (SVD):

Hst = UΣVT (45)

=
L2

∑
l=1

σlulv
T
l ,

where U, of size ML1 × ML1, and V, of size L2 × L2, are orthogonal matrices and Σ is
an ML1 × L2 rectangular diagonal matrix having on the main diagonal nonnegative real
numbers. The columns of U and V are known as the left-singular and right-singular
vectors, respectively, of Hst, whereas the elements σl , l = 1, 2, . . . , L2 on the diagonal of Σ

are called singular values of Hst with σ1 ≥ σ2 ≥ · · · ≥ σL2 ≥ 0.



Electronics 2021, 10, 1790 9 of 33

Based on (39) and (45), we deduce that

hst1,l = α(σl)ul , (46)

ht2,l = β(σl)vl , (47)

with l = 1, 2, . . . , L2, where α(σl)β(σl) = σl , ul , l = 1, 2, . . . , L2 are the first L2 columns of
U, and vl , l = 1, 2, . . . , L2 are the columns of V. It may be easily checked that ‖Hst‖2 = σ1

and ‖Hst‖F =
√

∑L2
l=1 σ2

l . In addition, since h = vec(Hst) (see (41)), the global impulse
response can be decomposed as

h =
L2

∑
l=1

σl(vl ⊗ ul)

=
L2

∑
l=1

ht2,l ⊗ hst1,l . (48)

However, in practical scenarios, the matrix Hst is never really of full rank, because of
the reflections and/or sparseness in the system [57–60]. Let P� L2 and let us define the
following matrix:

Hst(P) =
P

∑
p=1

σpupvT
p . (49)

Now, the objective is to verify whether Hst can be well approximated by Hst(P). In the
positive scenario, the LMISO system can be written as

d(k) = vecT(Hst)x(k) + w(k)

= vecT [Hst(P)]x(k) + b(k) + w(k), (50)

where

b(k) = vecT(Υ)x(k) (51)

denotes the correlated noise (considered negligible), with Υ = ∑L2
i=P+1 σiuivT

i . Conse-
quently, the goal becomes to identify the new matrix Hst(P) instead of Hst. This new idea
may have a few advantages, as is explained in the following.

Next, we state a theorem given in [61,62], which helps to prove that Hst can be well
approximated by Hst(P). Let rank(Hst) = R ≤ L2 and let S be the set of ML1× L2 matrices
of rank equal to P < R. Then, the solution to the minimization problem

min
H∈S
‖Hst −H‖2 or min

H∈S
‖Hst −H‖F (52)

is given by (49). Furthermore, we have

min
H∈S
‖Hst −H‖2 = ‖Hst −Hst(P)‖2 = σP+1 (53)

and

min
H∈S
‖Hst −H‖F = ‖Hst −Hst(P)‖F =

√√√√ L2

∑
i=P+1

σ2
i . (54)
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Consequently, as long as the normalized misalignment,

M(P) =
‖Hst −Hst(P)‖F

‖Hst‖F
, (55)

remains very small, it is sufficient in practice to estimate the impulse responses hst1,p and
ht2,p for p = 1, 2, . . . , P.

In order to show the validity of this approach, let us consider two scenarios that will
also be detailed in the simulations provided in Section 6. In the first scenario, we consider
M = 4 impulse responses from the G168 Recommendation [63], which are network echo
paths of length L = 500, as depicted in Figure 3. In this case, the decomposition was per-
formed using L1 = 25 and L2 = 20. In the second scenario, we used two acoustic impulse
responses (i.e., M = 2), each one having L = 1024 coefficients, as depicted in Figure 4. Here,
we set L1 = L2 = 32 for the decomposition. In both cases, we evaluate the normalized
misalignment from (55) and the evolution of the singular values σl (l = 1, 2, . . . , L2) of the
matrix Hst. As we can see in Figure 5, the normalized misalignment decreased with the
value of P. This was much more apparent in the first scenario (corresponding to Figure 3),
where the rank of Hst resulted in R = 5, as shown in Figure 5a. Consequently, a good
approximation was obtained for P � L2. In case of the acoustic impulse responses (i.e.,
the scenario from Figure 4), the resulting matrix Hst was closer to being full rank, so that a
larger value of P was required to obtain a good approximation. Nevertheless, as we can
notice in Figure 5b, a value of P significantly lower as compared to L2 led to reasonable
attenuation of the misalignment (e.g., around −20 dB). This behavior is also supported
in Figure 6, where we can notice the decreasing trend of the singular values (which are
normalized to the maximum value).
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Figure 3. Impulse responses used in the first set of simulations from Section 6 (according to the
G168 Recommendation [63]), with L = 500 and M = 4: (a) the first network echo path from [63],
(b) the second network echo path from [63], (c) the fifth network echo path from [63], and (d) the
sixth network echo path from from [63].
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Figure 4. Impulse responses used in the second set of simulations from Section 6, with L = 1024 and
M = 2: (a) right acoustic echo path and (b) left acoustic echo path.
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Figure 5. Normalized misalignment evaluated based on (55) for different values of P, corresponding
to (a) the impulse responses from Figure 3, with M = 4, L = 500, L1 = 25, and L2 = 20; and (b) the
impulse responses from Figure 4, with M = 2, L = 1024, and L1 = L2 = 32. For better visualization,
the representation is limited to −100 dB.
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Figure 6. Singular values (normalized with respect to the maximum one) of the matrix Hst, corre-
sponding to (a) the impulse responses from Figure 3, with M = 4, L = 500, L1 = 25, and L2 = 20;
and (b) the impulse responses from Figure 4, with M = 2, L = 1024, and L1 = L2 = 32.

5. Identification with the Wiener Filter

The identification of the LMISO system in (22) involves finding a real-valued filter, ĥ,
of length ML, which estimates the system h. The error signal can be defined as

e(k) = d(k)− ŷ(k), (56)

where ŷ(k) = ĥ
T

x(k). The optimization criterion used to find the optimal filter is the
mean-squared error (MSE):

J
(

ĥ
)
= E

[
e2(k)

]
= σ2

d − 2ĥ
T

p + ĥ
T

Rĥ, (57)

where E[·] is the mathematical expectation, p = E[x(k)d(k)] represents the cross-correlation
vector between x(k) and d(k), and R = E

[
x(k)xT(k)

]
denotes the covariance matrix of x(k).

After minimizing J
(

ĥ
)

, the celebrated (multichannel) Wiener filter is obtained:

ĥW = R−1p. (58)

Since the covariance matrix in the expression above is of size ML×ML, a large number of
data samples (more than ML) is needed in order to obtain a reliable solution.

An alternative approach to identifying the LMISO system in (22) and estimating h as
in the conventional case is to identify the LMISO system in (50) and estimate Hst. In the
rest of this paper, the subscripts st and t are dropped in order to simplify the notation, and
in this way Hst = ∑L2

l=1 hst1,lhT
t2,l becomes H = ∑L2

l=1 h1,lhT
2,l .

Next, we assume that rank(H) = P� L2. Consequently, h can be decomposed as

h =
P

∑
p=1

h2,p ⊗ h1,p, (59)
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where the impulse responses h1,p and h2,p have lengths ML1 and L2, respectively. Therefore,
the filter ĥ may also be decomposed as

ĥ =
P

∑
p=1

ĥ2,p ⊗ ĥ1,p, (60)

where the filters ĥ1,p and ĥ2,p have lengths ML1 and L2, respectively. With the relations

ĥ2,p ⊗ ĥ1,p =
(

ĥ2,p × 1
)
⊗
(

IML1 × ĥ1,p

)
=
(

ĥ2,p ⊗ IML1

)
ĥ1,p (61)

and

ĥ2,p ⊗ ĥ1,p =
(

IL2 × ĥ2,p

)
⊗
(

ĥ1,p × 1
)

=
(

IL2 ⊗ ĥ1,p

)
ĥ2,p, (62)

where IML1 and IL2 are the identity matrices of sizes ML1 ×ML1 and L2 × L2, respectively,
(60) may be rewritten as

ĥ =
P

∑
p=1

Ĥ2,pĥ1,p (63)

=
P

∑
p=1

Ĥ1,pĥ2,p, (64)

where

Ĥ2,p = ĥ2,p ⊗ IML1 ,

Ĥ1,p = IL2 ⊗ ĥ1,p

are matrices of sizes ML×ML1 and ML× L2, respectively. As a result, we may express
the error signal defined in (56) in two distinct ways:

e(k) = d(k)−
P

∑
p=1

ĥT
1,pĤT

2,px(k) (65)

= d(k)−
P

∑
p=1

ĥT
1,px2,p(k)

= d(k)− ĥ
T
1 x2(k)

and

e(k) = d(k)−
P

∑
p=1

ĥT
2,pĤT

1,px(k) (66)

= d(k)−
P

∑
p=1

ĥT
2,px1,p(k)

= d(k)− ĥ
T
2 x1(k),
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where

x2,p(k) = ĤT
2,px(k),

ĥ1 =
[

ĥT
1,1 ĥT

1,2 · · · ĥT
1,P

]T
,

x2(k) =
[

xT
2,1(k) xT

2,2(k) · · · xT
2,P(k)

]T
,

x1,p(k) = ĤT
1,px(k),

ĥ2 =
[

ĥT
2,1 ĥT

2,2 · · · ĥT
2,P

]T
,

x1(k) =
[

xT
1,1(k) xT

1,2(k) · · · xT
1,P(k)

]T
.

Continuing with this formulation, we can write the MSE criterion as

J
(

ĥ1, ĥ2

)
= σ2

d − 2ĥ
T
1 p

2
+ ĥ

T
1 R2ĥ1 (67)

= σ2
d − 2ĥ

T
2 p

1
+ ĥ

T
2 R1ĥ2, (68)

where

p
2
=
[

pTĤ2,1 pTĤ2,2 · · · pTĤ2,P
]T

,

R2 =


ĤT

2,1RĤ2,1 ĤT
2,1RĤ2,2 · · · ĤT

2,1RĤ2,P

ĤT
2,2RĤ2,1 ĤT

2,2RĤ2,2 · · · ĤT
2,2RĤ2,P

...
...

. . .
...

ĤT
2,PRĤ2,1 ĤT

2,PRĤ2,2 · · · ĤT
2,PRĤ2,P

,

p
1
=
[

pTĤ1,1 pTĤ1,2 · · · pTĤ1,P
]T

,

R1 =


ĤT

1,1RĤ1,1 ĤT
1,1RĤ1,2 · · · ĤT

1,1RĤ1,P

ĤT
1,2RĤ1,1 ĤT

1,2RĤ1,2 · · · ĤT
1,2RĤ1,P

...
...

. . .
...

ĤT
1,PRĤ1,1 ĤT

1,PRĤ1,2 · · · ĤT
1,PRĤ1,P

.

It can be noticed that the matrices R1 and R2 have sizes PL2 × PL2 and PML1 × PML1, re-
spectively, which can be much smaller than the size of R, which is ML×ML. Additionally,
at least PML1 data samples are required for the estimation of the statistics in the MSE from
(67) or (68), whereas in order to estimate the statistics in the conventional MSE from (57),
we need at least ML data samples. When ĥ2 is fixed, we can express (67) as

Jĥ2

(
ĥ1

)
= σ2

d − 2ĥ
T
1 p

2
+ ĥ

T
1 R2ĥ1 (69)

and when ĥ1 is fixed, we can write (68) as

Jĥ1

(
ĥ2

)
= σ2

d − 2ĥ
T
2 p

1
+ ĥ

T
2 R1ĥ2. (70)

This represents a bilinear optimization strategy [64].
In order to obtain the optimal filters, an iterative algorithm similar to the those

presented in [24,43] can be derived. At iteration 0, we may take

ĥ(0)
2,p =

[
ε 0 · · · 0

]T , p = 1, 2, . . . , P,

where 0 < ε ≤ 1. Then, we may form Ĥ(0)
2,p = ĥ(0)

2,p ⊗ IML1 and
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p(0)
2

=
[

pTĤ(0)
2,1 pTĤ(0)

2,2 · · · pTĤ(0)
2,P

]T
,

R(0)
2 =



(
Ĥ(0)

2,1

)T
RĤ(0)

2,1

(
Ĥ(0)

2,1

)T
RĤ(0)

2,2 · · ·
(

Ĥ(0)
2,1

)T
RĤ(0)

2,P(
Ĥ(0)

2,2

)T
RĤ(0)

2,1

(
Ĥ(0)

2,2

)T
RĤ(0)

2,2 · · ·
(

Ĥ(0)
2,2

)T
RĤ(0)

2,P
...

...
. . .

...(
Ĥ(0)

2,P

)T
RĤ(0)

2,1

(
Ĥ(0)

2,P

)T
RĤ(0)

2,2 · · ·
(

Ĥ(0)
2,P

)T
RĤ(0)

2,P


.

By substituting the quantities above into the MSE from (69), we get at iteration 1:

Jĥ2

(
ĥ
(1)
1

)
= σ2

d − 2
(

ĥ
(1)
1

)T
p(0)

2
+

(
ĥ
(1)
1

)T
R(0)

2 ĥ
(1)
1 , (71)

which can be minimized with respect to ĥ
(1)
1 , thereby yielding

ĥ
(1)
1 =

(
R(0)

2

)−1
p(0)

2
. (72)

Next, using ĥ
(1)
1 , we can construct Ĥ(1)

1,p = IL2 ⊗ ĥ(1)
1,p and

p(1)
1

=
[

pTĤ(1)
1,1 pTĤ(1)

1,2 · · · pTĤ(1)
1,P

]T
,

R(1)
1 =



(
Ĥ(1)

1,1

)T
RĤ(1)

1,1

(
Ĥ(1)

1,1

)T
RĤ(1)

1,2 · · ·
(

Ĥ(1)
1,1

)T
RĤ(1)

1,P(
Ĥ(1)

1,2

)T
RĤ(1)

1,1

(
Ĥ(1)

1,2

)T
RĤ(1)

1,2 · · ·
(

Ĥ(1)
1,2

)T
RĤ(1)

1,P
...

...
. . .

...(
Ĥ(1)

1,P

)T
RĤ(1)

1,1

(
Ĥ(1)

1,P

)T
RĤ(1)

1,2 · · ·
(

Ĥ(1)
1,P

)T
RĤ(1)

1,P


.

Consequently, the MSE from (70) is

Jĥ1

(
ĥ
(1)
2

)
= σ2

d − 2
(

ĥ
(1)
2

)T
p(1)

1
+

(
ĥ
(1)
2

)T
R(1)

1 ĥ
(1)
2 . (73)

The minimization of the previous expression with respect to ĥ
(1)
2 gives

ĥ
(1)
2 =

(
R(1)

1

)−1
p(1)

1
. (74)

By iterating further, we obtain at iteration n

ĥ
(n)
1 =

(
R(n−1)

2

)−1
p(n−1)

2
, (75)

ĥ
(n)
2 =

(
R(n)

1

)−1
p(n)

1
, (76)

where R(n−1)
2 , p(n−1)

2 , R(n)
1 , and p(n)

1 are constructed similarly to R(0)
2 , p(0)

2 , R(1)
1 , and p(1)

1 ,
respectively. In the end, the Wiener filter at iteration n results as

ĥ
(n)
W =

P

∑
p=1

ĥ(n)
2,p ⊗ ĥ(n)

1,p . (77)

The multichannel iterative Wiener filter is summarized in Table 1. For M = 1 (i.e.,
single-channel case), the problem is reduced to a regular SISO scenario, and the algorithm
becomes equivalent to the version developed in [43]. Additionally, if the system is perfectly
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separable/decomposable, we can obtain the optimal solution for P = 1. In this case, the
iterative Wiener filter for bilinear forms (proposed in [24]) is obtained.

Table 1. The multichannel iterative Wiener filter.

Data: R, p (estimated statistics based on N data samples),

P (decomposition parameter), δ > 0 (regularization constant)

Initialization:

Provide the initial coefficients of the filter ĥ(0)
2,p (for p = 1, 2, . . . , P):

ĥ(0)
2,p =

[
ε 0 · · · 0

]T , p = 1, 2, . . . , P (0 < ε ≤ 1)

Compute the initial statistics p(0)
2 and R(0)

2 :

Ĥ(0)
2,p = ĥ(0)

2,p ⊗ IML1 , p = 1, 2, . . . , P

p(0)
2

=
[

pTĤ(0)
2,1 · · · pTĤ(0)

2,P

]T

R(0)
2 =


(

Ĥ(0)
2,1

)T
RĤ(0)

2,1 · · ·
(

Ĥ(0)
2,1

)T
RĤ(0)

2,P
...

. . .
...(

Ĥ(0)
2,P

)T
RĤ(0)

2,1 · · ·
(

Ĥ(0)
2,P

)T
RĤ(0)

2,P


For n = 1, 2, . . . :

Compute the coefficients of the filter ĥ
(n)
1 based on (75):

ĥ
(n)
1 =

(
R(n−1)

2 + δIPML1

)−1
p(n−1)

2
=

[ (
ĥ(n)

1,1

)T
· · ·

(
ĥ(n)

1,P

)T
]T

Compute the statistics p(n)
1 and R(n)

1 :

Ĥ(n)
1,p = IL2 ⊗ ĥ(n)

1,p , p = 1, 2, . . . , P

p(n)
1

=
[

pTĤ(n)
1,1 · · · pTĤ(n)

1,P

]T

R(n)
1 =


(

Ĥ(n)
1,1

)T
RĤ(n)

1,1 · · ·
(

Ĥ(1)
1,1

)T
RĤ(1)

1,P
...

. . .
...(

Ĥ(n)
1,P

)T
RĤ(n)

1,1 · · ·
(

Ĥ(n)
1,P

)T
RĤ(n)

1,P


Compute the coefficients of the filter ĥ

(n)
2 based on (76):

ĥ
(n)
2 =

(
R(n)

1 + δIPL2

)−1
p(n)

1
=

[ (
ĥ(n)

2,1

)T
· · ·

(
ĥ(n)

2,P

)T
]T

Compute the statistics p(n)
2 and R(n)

2 :

Ĥ(n)
2,p = ĥ(n)

2,p ⊗ IML1 , p = 1, 2, . . . , P

p(n)
2

=
[

pTĤ(n)
2,1 · · · pTĤ(n)

2,P

]T

R(n)
2 =


(

Ĥ(n)
2,1

)T
RĤ(n)

2,1 · · ·
(

Ĥ(n)
2,1

)T
RĤ(n)

2,P
...

. . .
...(

Ĥ(n)
2,P

)T
RĤ(n)

2,1 · · ·
(

Ĥ(n)
2,P

)T
RĤ(n)

2,P


Compute the coefficients of the Wiener filter ĥ

(n)
W based on (77):

ĥ
(n)
W =

P

∑
p=1

ĥ(n)
2,p ⊗ ĥ(n)

1,p
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6. Simulation Results

In this section, we evaluate the performance of the conventional and iterative Wiener
filters in two different scenarios. The first one is dedicated to the case of independent input
signals, xm(k), m = 1, 2, . . . , M. The second scenario is more challenging, since it considers
the case when the input signals are coming from the same source and they are linearly
related. In both cases, the performance measure used to evaluate the overall behavior is the
normalized misalignment (in dB), which is related to the spatiotemporal impulse response
of the system, h. In this framework, the solution provided by the conventional Wiener filter
is given in (58), so that the performance measure is evaluated as

M
(

h, ĥW

)
= 20log10

∥∥∥h− ĥW

∥∥∥
2

‖h‖2
. (78)

Similarly, for the iterative Wiener filter from (77), the performance measure results in

M
(

h, ĥ
(n)
W

)
= 20log10

∥∥∥∥h− ĥ
(n)
W

∥∥∥∥
2

‖h‖2
. (79)

Both the conventional and iterative Wiener filters rely on the estimation of the statistics,
i.e., the covariance matrix R and the cross-correlation vector p. Considering that N data
samples are available, these estimates result in

R̂ =
1
N

N

∑
k=1

x(k)xT(k), (80)

p̂ =
1
N

N

∑
k=1

x(k)d(k). (81)

Clearly, the value of N influences the quality of these estimates. Nevertheless, in practice,
only a small amount of data could be available, which makes the identification process
more challenging. In this case, the advantages of the iterative Wiener filter (which operates
with smaller data structures) become more apparent, as will be supported in the following
analysis.

The additive noise may also affect the accuracy of the Wiener solution. In relation to
(13) or (22), the signal-to-noise ratio (SNR) can be defined as

SNR =
σ2

y

σ2
w

, (82)

where σ2
y and σ2

w are the variances of the output signal and noise, respectively. In practice,
the Wiener solution is satisfactory with reasonable levels of the SNR, but it is not with
small values of the SNR. In our experiments, different values of the SNR were used, in
order to illustrate this behavior.

All the experiments were performed using MATLAB R2018b on an Asus GL552VX
device (Windows 10 OS), having an Intel Core i7-6700HQ CPU @ 2.60 GHz, with four cores,
eight logical processors, and 16 GB of RAM. In the first set of experiments, we considered
the case of M independent input signals, which were generated as AR(1) processes. These
were obtained by filtering white Gaussian noise through an AR(1) model with a pole at
0.9. Of course, different other inputs can be used instead of the AR(1) model. The most
common considerations are: (i) the input signal x(k) is wide-sense stationary, (ii) all of the
signals (i.e., x(k), d(k), and w(k)) have zero means, and (iii) usually, the noise w(k) is not
correlated with the input signal x(k).
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In our scenario, the number of channels was M = 4 and their impulse responses were
chosen from the G168 Recommendation [63]. They were network echo paths of length
L = 500, as depicted in Figure 3.

As mentioned before, the performance of the Wiener solution is influenced by the
value of N and the level of the SNR. This is supported in Figure 7, where the performance
of the conventional Wiener filter from (58) is illustrated for different values of N (from
2000 to 10,000 available data samples) and SNR levels (from 0 dB to 30 dB). As we can
notice, a larger value of N (i.e., N � ML) is required to obtain reasonable attenuation of
the misalignment. Additionally, as expected, a more accurate solution was obtained with
higher SNRs.

N
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conventional Wiener filter, SNR = 20 dB

conventional Wiener filter, SNR = 30 dB

Figure 7. Performance of the conventional Wiener filter for different values of N (number of available
data samples to estimate the statistics) and SNRs. The input signals were independent AR(1)
processes, M = 4, and L = 500.

In this context, let us first compare the performance of the conventional and iterative
Wiener filters in “favorable” conditions, using a large amount of data to estimate the
statistics (i.e., N = 10,000), in a high SNR environment (i.e., SNR = 30 dB). The iterative
Wiener filter from (77) uses L1 = 25, L2 = 20, and different values of the decomposition
parameter P (from 3 to 6). These values are much lower than L2, which represents an
important advantage, as discussed in Section 5. We should also note that for the scenario
considered in this first set of experiments (using the setup from Figure 3), the rank of the
matrix H (or Hst) was equal to R = 5. As we can notice in Figure 8, the iterative Wiener
filter was able to outperform the conventional Wiener filter for most of the values of P.
Even the case of P = 3 < R � L2 led to reasonable attenuation of the misalignment.
Moreover, all these iterative solutions were obtained in only a few iterations.
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Figure 8. Performances of the conventional and iterative Wiener filters, using N = 10,000. The input
signals were independent AR(1) processes, M = 4, L = 500, and SNR = 30 dB.

The advantages of the iterative Wiener filter became more apparent when less data
were available to estimate the statistics. The previous simulation was repeated, but using
N = 2500 (Figure 9). According to the results shown in Figure 7, the performance of the
conventional Wiener filter was affected in this case (even for SNR = 30 dB); its misalign-
ment level was close to −15 dB. This result is also confirmed in Figure 9. Most importantly,
the iterative Wiener filter outperformed the conventional solution for all the values of P,
thereby being more robust in this case due to the low-dimensional data structures used in
its development.
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Figure 9. Performances of the conventional and iterative Wiener filters, using N = 2500. The input
signals were independent AR(1) processes, M = 4, L = 500, and SNR = 30 dB.
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For the scenario considered in this first set of experiments, the length of the spa-
tiotemporal impulse response was ML = 4× 500 = 2000. Therefore, the case N = 2000
represents a limit in terms of the available amount of data. As we can notice in Figure 7, the
conventional Wiener filter could not cope with this limit. On the other hand, the iterative
Wiener filter was still able to obtain good performances, for P � L2, as supported in
Figure 10.
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Figure 10. Performance of the iterative Wiener filter with different values of P, using N = 2000. The
input signals were independent AR(1) processes, M = 4, L = 500, and SNR = 30 dB.

Furthermore, using N < ML is a significant challenge in terms of system identification,
since apparently we deal with an "incomplete" scenario, when trying to estimate ML coeffi-
cients using less data. Clearly, the conventional Wiener filter cannot be used in this case.
However, the iterative Wiener filter reformulates the original system identification problem
(of size ML) as a combination of low-dimension solutions of size PML1 and PL2, with
P � L2. Hence, it could overcome this limit of N < ML. This is supported in Figure 11:
only N = 1000 data samples were available for the estimation of the statistics. Even in
this challenging case, the iterative Wiener filter was able to provide a good attenuation of
the misalignment, in a relatively small number of iterations. This represents an important
feature and a significant advantage when dealing with small amounts of data. In other
words, the iterative Wiener filter exploiting the decomposition-based approach can be used
to solve system identification problems with highly incomplete information, which is a
condition imposed in many important applications.
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Figure 11. Performance of the iterative Wiener filter with different values of P, using N = 1000. The
input signals were independent AR(1) processes, M = 4, L = 500, and SNR = 30 dB.

The SNR is also a critical factor in system identification problems. As shown in
Figure 7, the performance of the conventional Wiener filter is highly influenced by the SNR
level. In the following simulations from this first set of experiments, we considered a more
challenging environment, by setting SNR = 10 dB. In this case, even for a large amount of
data (i.e., N = 10,000), the conventional Wiener filter was outperformed by the iterative
version, as supported in Figure 12.
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Figure 12. Performances of the conventional and iterative Wiener filters, using N = 10,000. The input
signals were independent AR(1) processes, M = 4, L = 500, and SNR = 10 dB.

The gain becomes more apparent when fewer data are available to estimate the
statistics. Such a case is considered in Figure 13, where SNR = 10 dB and N = 2500. As
we can see, the conventional Wiener filter could not provide an accurate solution (as also
indicated in Figure 7), whereas its iterative counterpart still attenuated the misalignment
to an acceptable degree.
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Figure 13. Performances of the conventional and iterative Wiener filters, using N = 2500. The input
signals were independent AR(1) processes, M = 4, L = 500, and SNR = 10 dB.

As previously explained (related to Figures 10 and 11), using N ≤ ML represents a
critical scenario for the conventional Wiener filter. In this context, a lower SNR level made
the situation even more challenging. Nevertheless, the iterative Wiener filter is reasonably
robust even in these adverse conditions. This behavior is supported in Figures 14 and 15,
where N = 2000 and 1500, respectively. The same noisy conditions were considered, with
SNR = 10 dB. As we can see in these figures, the best behavior was obtained for P = 3,
which is significantly lower than L2 = 20.
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Figure 14. Performance of the iterative Wiener filter with different values of P, using N = 2000. The
input signals were independent AR(1) processes, M = 4, L = 500, and SNR = 10 dB.
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Figure 15. Performance of the iterative Wiener filter with different values of P, using N = 1500. The
input signals were independent AR(1) processes, M = 4, L = 500, and SNR = 10 dB.

Finally, the last simulation of the first set of experiments was performed in "extreme"
SNR conditions, using SNR = 0 dB. As we already know from Figure 7, the conventional
Wiener filter cannot provide an accurate solution in this case, despite the value of N. In
Figure 16, N = 10,000, and SNR = 0 dB. As expected, the conventional Wiener filter failed
to provide an accurate estimate. On the other hand, the iterative Wiener filter was able to
reach a much lower misalignment level, using P� L2. Therefore, it is much more robust
in noisy conditions, which are frequent in practice.
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Figure 16. Performances of the conventional and iterative Wiener filters, using N = 10,000. The input
signals were independent AR(1) processes, M = 4, L = 500, and SNR = 0 dB.
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The second set of experiments was performed in a more challenging situation that
appeared in the context of stereophonic acoustic echo cancellation (SAEC) [65–68]. There
were two acoustic echo paths to identify (for each microphone); i.e., M = 2. Consequently,
the reference (or microphone) signal resulted in

d(k) = hT
RxR(k) + hT

LxL(k) + w(k)

=
[

hT
R hT

L
][ xR(t)

xL(k)

]
+ w(k), (83)

where hR and hL correspond to the loudspeaker-to-microphone acoustic impulse responses
(right and left, respectively), and xR(k) and xL(k) comprise the loudspeaker signal samples
(right and left, respectively).

At first glance, from a system identification perspective, we need to identify the global
impulse response

[
hT

R hT
L
]T . Nevertheless, in an SAEC scenario, the difficulty is many-

fold. One of the main challenges is the so-called nonuniqueness problem [66,67], which
comes from the fact that the loudspeaker (input) signals are linearly related. This issue can
be addressed by manipulating the signals transmitted to the receiving room, e.g., using a
preprocessor on the loudspeaker signals to make them less coherent, without affecting the
stereo perception and the signal quality much. A simple but efficient nonlinear method
uses positive and negative half-wave rectifiers on each channel, respectively [67]. In this
case, the nonlinearly transformed signals become

x′L(k) = xL(k) + α
xL(k) + |xL(k)|

2
, (84)

x′R(k) = xR(k) + α
xR(k)− |xR(k)|

2
, (85)

where α is a parameter used to control the amount of nonlinearity; the recommended
interval for this parameter is 0 < α ≤ 0.5 [67]. The distortion parameter α (which controls
the amount of nonlinearity) is provided a priori. Clearly, this distortion must be performed
in such a way that the quality of the signals and the stereo effect are not degraded. Experi-
ments reported in [67] (and also in many subsequent works) show that stereo perception
is not affected even with an α as large as 0.5. Additionally, the audible distortion is small
because of the psychoacoustic masking effects [69].

However, we should note that other methods can be used to address the nonunique-
ness problem; e.g., see [70,71] and the references therein. An analysis of their influences
on the overall performance of the decomposition-based approach is beyond the scope of
this paper.

In our simulations, the source signal (in the transmission room) was white Gaussian
noise. The acoustic impulse responses in the transmission room had 2048 coefficients. The
acoustic impulse responses in the receiving room had L = 1024 coefficients, as depicted
in Figure 4. The background noise w(k) (in the receiving room) was white and Gaussian,
with SNR = 30 dB.

The influence of the preprocessing technique from (84) and (85) on the loudspeaker
signals can be seen in Figure 17, where the performance of the conventional Wiener filter is
evaluated for different values of N (i.e., the available amount of data used to estimate the
statistics) and using different values of α, which acted as a distortion parameter. First, we
can notice that the performance was clearly improved when preprocessing the input signals
using positive and negative half-wave rectifiers with larger values of α. Additionally, even
with preprocessing, a large amount of data (i.e., N � ML) is required for the conventional
Wiener filter, in order to obtain reasonable misalignment attenuation.
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Figure 17. Performance of the conventional Wiener filter for different values of N (number of
available data samples to estimate the statistics) and different values of α (the distortion parameter).
The source signal (white Gaussian noise) was preprocessed with positive and negative half-wave
rectifiers. The numbers of channels were M = 2 (stereophonic scenario), L = 1024, and SNR = 30 dB.

In the following simulations, the identification problem was addressed using the
conventional and iterative Wiener filters. The length of the global impulse response was
L = L1L2 = 1024, so that we set L1 = L2 = 32. Due to the nature of acoustic impulse
responses, the matrix H (or Hst) was closer to full rank, so a higher value of P was required.
In this context, the iterative Wiener filter involved in the experiments used P = 6, 8, 10, and
12. Nevertheless, these values are lower than L2 = 32.

For the results shown in Figure 18, N = 10,000 data samples were used to estimate the
statistics, and the input signals were preprocessed using positive and negative half-wave
rectifiers, with α = 0.5. These represent favorable conditions for the identification, so
the conventional Wiener filter had good accuracy (as also indicated in Figure 17). The
performance of the iterative Wiener filter was improved for a larger value of P and even
outperformed the conventional filter in the case of P = 12.
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Figure 18. Performances of the conventional and iterative Wiener filters, using N = 10,000. The source
signal (white Gaussian noise) was preprocessed with positive and negative half-wave rectifiers, using
α = 0.5. The numbers of channels were M = 2 (stereophonic scenario), L = 1024, and SNR = 30 dB.
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Reducing the value of the distortion parameter influenced the performance for the
conventional and the iterative Wiener filters, as shown in Figure 19, where N = 10,000
and α = 0.3. However, the iterative Wiener filter is more robust to this modification,
since for P = 12 it outperformed the conventional benchmark, and for P = 8 it reached a
misalignment level close to the conventional Wiener solution.
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Figure 19. Performances of the conventional and iterative Wiener filters, using N = 10,000. The source
signal (white Gaussian noise) was preprocessed with positive and negative half-wave rectifiers, using
α = 0.3. The numbers of channels were M = 2 (stereophonic scenario), L = 1024, and SNR = 30 dB.

Next, for the simulations shown in Figures 20 and 21, less data were used to estimate
the statistics—i.e., N = 2500. The other conditions were the same as in Figures 18 and 19,
respectively. As we can notice, the conventional Wiener filter could not obtain an accurate
solution in these cases, despite the value of the distortion parameter. On the other hand,
the iterative Wiener filter was still able to achieve reasonable results (for P < L2), thereby
far outperforming the conventional solution. The difference was even more apparent for a
lower value of α, as supported in Figure 21.
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Figure 20. Performances of the conventional and iterative Wiener filters, using N = 2500. The source
signal (white Gaussian noise) was preprocessed with positive and negative half-wave rectifiers, using
α = 0.5. The numbers of channels were M = 2 (stereophonic scenario), L = 1024, and SNR = 30 dB.
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Figure 21. Performances of the conventional and iterative Wiener filters, using N = 2500. The source
signal (white Gaussian noise) was preprocessed with positive and negative half-wave rectifiers, using
α = 0.3. The numbers of channels were M = 2 (stereophonic scenario), L = 1024, and SNR = 30 dB.

A challenging case N < ML was considered in the following two simulations, where
we set N = 2000 (while ML = 2048). Two values of the distortion parameter were consid-
ered, i.e., α = 0.5 and 0.3, and the results are depicted in Figures 22 and 23, respectively.
The conventional Wiener filter was not included in these experiments, since it could not
provide an accurate solution (as indicated in Figure 17). As we can notice in both cases,
despite the adverse conditions, the iterative Wiener filter was still able to attenuate the
misalignment to a reasonable extent and provide a robust solution, for a value of P smaller
than L2.

Iterations (n)

0 10 20 30 40 50 60 70 80 90 100

M
is

a
lig

n
m

e
n
t 
(d

B
)

-12

-10

-8

-6

-4

-2

0

2

4

iterative Wiener filter, P=6

iterative Wiener filter, P=8

iterative Wiener filter, P=10

iterative Wiener filter, P=12

Figure 22. Performance of the iterative Wiener filter with different values of P, using N = 2000.
The source signal (white Gaussian noise) was preprocessed with positive and negative half-wave
rectifiers, using α = 0.5. The numbers of channels were M = 2 (stereophonic scenario), L = 1024,
and SNR = 30 dB.
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Figure 23. Performance of the iterative Wiener filter with different values of P, using N = 2000.
The source signal (white Gaussian noise) was preprocessed with positive and negative half-wave
rectifiers, using α = 0.3. The numbers of channels were M = 2 (stereophonic scenario), L = 1024,
and SNR = 30 dB.

As shown in Figure 17, the conventional Wiener filter could not obtain an accurate
solution for small values of the distortion parameter α (i.e., closer to 0). For example,
when using α = 0.1, its misalignment could not reach −5 dB even with a large amount of
data (i.e., N = 10,000); and for less data (e.g., N = 2500), it provided a far from accurate
solution. These cases are considered in Figures 24 and 25, using α = 0.1; N = 10,000
and 2500, respectively. For N = 10,000 (Figure 24), the iterative Wiener filter outperformed
the conventional solution for P = 10 and 12. The decomposition using P = 8 � L2
reached the misalignment level provided by the conventional Wiener filter. However, the
differences (in favor of the iterative version, for all the values of P) were significant when
N = 2500, as supported in Figure 25.
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Figure 24. Performances of the conventional and iterative Wiener filters, using N = 10,000. The source
signal (white Gaussian noise) was preprocessed with positive and negative half-wave rectifiers, using
α = 0.1. The numbers of channels were M = 2 (stereophonic scenario), L = 1024, and SNR = 30 dB.



Electronics 2021, 10, 1790 29 of 33

Iterations (n)

0 10 20 30 40 50 60 70 80 90 100

M
is

a
lig

n
m

e
n
t 
(d

B
)

-5

0

5

10

15

20

conventional Wiener filter

iterative Wiener filter, P=6

iterative Wiener filter, P=8
iterative Wiener filter, P=10

iterative Wiener filter, P=12

Figure 25. Performances of the conventional and iterative Wiener filters, using N = 2500. The source
signal (white Gaussian noise) was preprocessed with positive and negative half-wave rectifiers, using
α = 0.1. The numbers of channels were M = 2 (stereophonic scenario), L = 1024, and SNR = 30 dB.

Finally, as shown in Figure 26, N = 10,000 data samples are used to estimate the
statistics, but the input signals were not preprocessed (i.e., α = 0). Even if N � ML, the
conventional Wiener filter could not obtain an accurate solution in this case. On the other
hand, the iterative Wiener filter with P � L2 was able to outperform the conventional
Wiener solution, even in this extremely difficult scenario. In other words, the influence of
the nonuniqueness problem is less significant for the iterative Wiener filter. This is probably
due to the fact that the matrices within the iterative Wiener filter are smaller as compared
to the full matrix of size ML×ML within the conventional Wiener filter.
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Figure 26. Performances of the conventional and iterative Wiener filters, using N = 10,000. The
source signal (white Gaussian noise) was not preprocessed (no distortion, i.e., α = 0). The numbers
of channels were M = 2 (stereophonic scenario), L = 1024, and SNR = 30 dB.

Summarizing, the main feature of the multichannel iterative Wiener filter is that it
operates with smaller data structures, i.e., of size PML1 and PL2, with P values far smaller
than L2. On the other hand, the conventional Wiener filter addresses a system identification
problem of size L = L1L2. In our experiments, we tried to cover a wide range of scenarios,



Electronics 2021, 10, 1790 30 of 33

in order to properly assess the performance of the multichannel iterative Wiener filter, as
compared to its conventional counterpart. Consequently, we used different values of N
(the available data to estimate the statistics), different noise levels (SNR), and different
values of the decomposition parameter P. Moreover, in the SAEC scenario, we also used
different values of the distortion parameter α. As an overall conclusion, the iterative version
significantly outperformed the conventional Wiener filter, especially in difficult conditions
and environments, e.g., when using small amounts of data or low SNRs. These scenarios
are of great importance in practice, as in real-world applications, only small amounts of
data may be available (to estimate the statistics) or the filters may need to operate in noisy
environments.

7. Conclusions and Perspectives

In this review paper, we have addressed the system identification problem from an
efficient decomposition-based perspective. The contributions are threefold. First, we have
shown how the main categories of linear SISO and MISO systems can be interpreted and re-
lated in a unified framework, taking advantage of the bilinear form representation. Second,
we have demonstrated that the resulting spatiotemporal impulse response of the MISO
system can be efficiently identified using the nearest Kronecker product decomposition,
followed by low-rank approximations. Third, we have developed an iterative Wiener filter
based on these techniques which outperforms the conventional Wiener filter in terms of
accuracy and robustness of the solution. The main feature of the overall approach consists
of an efficient (re)formulation of a high-dimension system identification problem (e.g., iden-
tification of a long spatiotemporal impulse response) as a combination of low-dimension
solutions, which result from the optimization of shorter component filters.

In this study, we have illustrated the performance of the decomposition-based ap-
proach only in terms of the Wiener filter, which represents a benchmark tool for system
identification problems. Simulation results have indicated that the iterative version is able
to outperform the conventional Wiener filter, especially when a small amount of data is
available for the estimation of the statistics. This represents an important performance
feature, taking into account that in many real-world applications we deal with incomplete
information related to the inputs/outputs of the system.

In perspective, improved solutions based on adaptive filtering should also be devel-
oped, which could further extend the applicability of the decomposition-based approach.
For example, several preliminaries toward this goal can be found in [44,45]. Furthermore,
a rigorous convergence analysis of these algorithms could reveal the influence of the de-
composition parameters, which could be further exploited in order to improve the overall
behavior. In addition, finding a practical method to determine the optimal value of the
decomposition parameter P represents one of our main tasks for future works. Neverthe-
less, this is not a straightforward task, since the decomposition parameter depends on the
nature of the system to be identified (which is unknown in practice). However, we can
take advantage on some a priori knowledge of the system. For example, in the case of
network echo paths (which are usually very sparse), the value of P is much smaller than
L2. For acoustic impulse responses, the value of P should be increased, but it must still be
considerably lower than L2. A preliminary study on the influence of the decomposition
parameter can be found in [43].
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identification of bilinear forms. Digit. Signal Process. 2018, 83, 280–296. [CrossRef]
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