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Abstract: This brief presents a hybrid of voltage- and current-mode line drivers for the turbo
controller area network (CAN). The current-mode scheme prevents signal attenuation caused by
source termination resistors, and it enhances signal power efficiency. On top of that, an adaptive
amplitude tuning is implemented to mitigate non-linearity and closed-loop gain variations against
load impedance variations. The proposed line driver achieves 87.0% power-efficiency and total
harmonic distortion, plus noise (THD+N) of −49.0 dB at an input frequency of 40 MHz and output
swing of 2.8 VPP differential. The adaptive amplitude tuning allows load impedance variations from
80 Ω to 160 Ω. The total power consumption is 37.6 mW with a 1.8 V supply voltage in 180 nm
CMOS, and it occupies 0.377 mm2.

Keywords: adaptive amplitude tuning; bus lines; current mode; line driver; turbo controller area network

1. Introduction

Line drivers (LDs) have been widely used in various wire-lined channels, such as
integrated service digital network (IDSN) transceivers, digital subscriber line (DSL), and
cable modems [1]. The LD acts as an analog buffer, which transmits sufficient output current
to drive the low-load impedances. The LD’s significant design aspects are high output
swing, low distortion, high signal power efficiency (ηpower), and appropriate impedance
matchings for line impedance variations over process variations [1]. Voltage-mode line
drivers (VMLDs) [2–4], Ref. [5] have been widely used due to their excellent linearity and
power consumption since they source fewer currents to the load than current-mode line
drivers (CMLDs) [6]. A fully differential difference VMLD with a dual common-mode
feedback (CMFB) circuit [7] allows a faster transient response, which results in an improved
linearity. Another VMLD assisted with an active termination circuit and dynamic power
supply control circuit [3] allows enhanced power efficiency. However, the series source
termination in the VMLDs attenuates the total signal power delivered to the channel
lines [8], as shown in Figure 1. In addition, the VMLD topologies typically require a
1-to-N transformer to increase its signal swings on the channel lines. Therefore, the VMLD
architecture features low ηpower and typically requires extra passive components.

On the other hand, CMLDs [8–10] consist of parallel source termination, and the signal
does not suffer from matching attenuation, which leads to higher ηpower. The higher signal
swing also guarantees improved robustness against external noise and electromagnetic
interference (EMI). The output stage of a current-mode H-bridge cascode, assisted with local
auxiliary loops [8], enhances mirroring accuracy to alleviate the signal linearity. However,
it requires additional circuits and power consumption for the auxiliary amplifiers, and
the cascode topology reduces the allowable output signal swings. Current-mirroring
topologies with an adaptive termination tuning [1,5,9] mitigate closed-loop variations and
unmatched termination against the transmission line variations. However, the tuning
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technique reduces the output signal swing due to the small series resistance between the
supply and the output nodes.
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Figure 1. Architecture of a voltage-mode line driver.

This paper presents a hybrid of closed-loop voltage-mode using an operational am-
plifier (OPAMP) and open-loop current-mode class-AB current replica cells with a digital-
based adaptive amplitude tuning (AAT). The AAT controls the current replica cells’ sizes
to prevent the closed-loop voltage gain and the signal linearity variations against the load
impedance variations in a range of 80 Ω to 160 Ω with a 32-bit tuning step. The tuning cir-
cuit reduces the two variations without degrading the ηpower and the output signal swings.
The proposed hybrid of a VMLD and CMLD achieves total harmonic distortion plus noise
(THD+N) of −49.0 dB at an input frequency of 40 MHz and an output swing of 2.8 VPP
differential. The proposed LD is designed for a turbo controller area network (CAN) [11]
for in-vehicle networks, as shown in Figure 2. The turbo CAN process modulates analog
data rather than binary signals to boost the data transmission speed from 10 Mbps to over
100 Mbps. Each end of the bus lines is terminated with 120 Ω.
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Figure 2. Block diagram of controller area network (CAN).

This paper is organized as follows. Section 2 introduces the architecture and analysis
of the proposed LD. Section 3 describes the analysis of the proposed AAT. Section 4 delivers
the measurement results of the driver, and Section 5 draws the conclusions.
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2. Proposed Hybrid of Voltage- and Current-Mode Line Driver
2.1. Architecture of the Hybrid of a Voltage- and a Current-Mode Line Driver

Figure 3 displays the overall block diagram of the proposed hybrid of a VMLD and
CMLD, including an AAT. The proposed LD consists of two different blocks: a unity-
gain closed-loop OPAMP and class-AB current replica cells. The unity-gain OPAMP
converts input differential voltage signals to currents. The signal currents flow through the
OPAMP’s output stage (MPO, MNO), and are replicated to the current replica cells (MPOR,
MNOR, MPORV, and MNORV). The mirroring ratio N represents the replication ratio between
MP(N)O and MP(N)OR + MP(N)ORV. The floating batteries MPBa,b and MNBa,b in Figure 4
define the shared gate-to-source voltage (VGS) of the OPAMP’s output stage and the replica
cells. The VGS is defined with VFBP, VFBN, and the supply in Figure 3. The feedback
resistor RFB should be set according to the mirroring ratio N and the output impedance RL,
the impedance seen at termination resistor RTERM and the impedance matching resistor
RMATCH in Figure 3. The OPAMP can drive the appropriate amount of signal currents by
matching the RFB value to the equivalent load impedance (RL). The required value of RFB
can be derived with the LD’s ideal closed-loop voltage gain (AV) as in Equation (1):

AV =
VOUTP −VOUTN

VINP −VINN
= − N

2RFB

(
RTERM·RMATCH

RTERM + 2RMATCH

)
. (1)
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If N = 4, then RFB should be 60 Ω to guarantee a unity-gain (AV =−1) since RTERM = 120 Ω
and RMATCH = 60 Ω.

2.2. Architecture of the Operational Amplifier

Figure 4 describes the schematic of the OPAMP and its CMFB circuit. The two-
stage OPAMP is designed with a recycling folded cascode architecture for the first input
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stage. Compared to the conventional folded cascode architecture, the recycling folded
cascode can further improve slew-rate and input equivalent trans-conductance [12]. The
improvements result in enhanced loop-gain and unity-gain frequency (UGF). In addition,
the class-AB output stage with floating batteries guarantees better power-efficiency for
the output stage. The CMFB is designed with local CMFB resistors RCMFB and null-
resistor compensation. The null-resistor RC generates a left-half-plane (LHP) zero, which
guarantees an enhanced common-mode phase margin (PM) [13]. In addition, two different
CMFB loops are implemented in the proposed hybrid LD to set appropriate common-
mode levels for both the closed-loop OPAMP and the current replica cells. VLOOP,CM
and VOUT,CM are the common-mode voltages of the closed-loop OPAMP and the bus line
voltages, respectively. The dual CMFB topology also allows a faster transient common-
mode signal response, which results in enhanced signal linearity [5]. The OPAMP achieves
differential-mode (DM) DC loop-gain, PM, and UGF of 64.1 dB, 57.2 degrees, and 517 MHz,
respectively, in the nominal case. Table 1 displays the summary of the OPAMP’s DM AC
performances over PVT variations and device mismatches.

Table 1. The OPAMP’s AC Performances over PVT Variations and 1000-Run Monte-Carlo Simulation
Results over Device Mismatches.

Process Variations

TT SS FF SF FS

Loop Gain at DC [dB] 64.1 68 61.3 64.9 63.4
Phase Margin [deg.] 57.2 57.2 57.9 55.1 59.3

Unity-Gain Frequency [MHz] 517 468 568 530 501

Temperature Variations [◦C]

−40 27 125

Loop Gain at DC [dB] 67.4 64.1 59.5
Phase Margin [deg.] 54.3 57.2 60.1

Unity-Gain Frequency [MHz] 622 517 395

Supply Voltage Variations [V]

1.62 1.8 1.98

Loop Gain at DC [dB] 62.4 64.1 65.2
Phase Margin [deg.] 57.6 57.2 55.9

Unity-Gain Frequency [MHz] 457 517 562

1000-Run Monte-Carlo Mismatch Simulation

Mean Standard Deviation

Loop Gain at DC [dB] 64.1 0.808
Phase Margin [deg.] 57.3 1.13

Unity-Gain Frequency [MHz] 516 16.0

3. Adaptive Amplitude Tuning for Load Impedance Variations
3.1. Effect of Load Impedance Variations on the Line Driver’s Performances

The OPAMP’s output stage and the current replica cells should ideally have equal
input (Vgs) and output (Vds) voltages to guarantee an accurate mirroring ratio N for
the signal currents and the enhanced signal linearity [8]. However, the equivalent load
impedance (RL) in Figure 3 is vulnerable to process, temperature, the number of turned-on
receivers, the input impedance of the receivers, and line lengths [1]. Figure 5 describes the
small-signal model of the current replica cells and the bus lines including those variations.
∆R1, ∆R2, and ∆R3 represent the variations in RMATCH and each RTERM, respectively. The
equivalent load variations generate different drain voltages between VLOOP and VOUT since
the sizes of the signal currents replicated to the replica cells are defined by the feedback
resistor RFB in the unity-gain closed-loop OPAMP block. Therefore, the variations result in
a degraded linearity and non-unity closed-loop voltage gain.
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3.2. Conventional Signal Linearity Enhancement and Signal Gain Control Techniques

Two different well-known LD techniques for load resistance variations are shown in
Figure 6. A tunable current mirror technique [1] is implemented in Figure 6a with variable
resistors R3 and R4. The OTA1–2, M1–4, and R1–2 are error amplifiers, class-AB output
transistors, and fixed resistors, respectively. The LD’s output resistance can be implemented
similarly to the load resistance RL if the variable resistors R3 and R4 are (n + 1)Rnom and
nRnom, respectively, where the n and Rnom are the MOSFET size ratio between M3–4 and
M1–2, and channel line resistance, respectively [1]. This technique enhances the LD’s signal
linearity performance by achieving proper line termination matching. In addition, the
voltage gain can be controlled by modifying the variable resistances R3–4 according to the
load resistance RL variations. However, the tunable current mirror technique limits the
LD’s maximum output voltage range due to the voltage drop on the resistors R1 and R2. A
large amount of output current is typically demanded for the LDs, which cannot alleviate
the voltage drop well by decreasing the variable resistances. In addition, the analogous
characteristic does not allow area scaling against the modern short-channel technologies.
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Figure 6. Conventional signal linearity enhancement and signal gain control techniques. (a) Line
driver using error amplifiers and tunable current mirrors [1]. (b) A current-mode H-bridge class-AB
output stage with auxiliary amplifiers [8].
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Another conventional LD technique [8] is shown in Figure 6b. A differential transcon-
ductance stage drives the differential class-AB output stage with slave current mirrors
M1,4,5,8,9,13,12,16. The LD’s signal linearity is enhanced with cascode MOSFETs M2–3,6–7,10–11,14–15
and auxiliary operational transconductance amplifiers OTA1–4 by effectively shielding the
slave current mirrors’ drain nodes [8]. Although the techniques can further improve the
signal linearity by boosting the LD’s output resistances, the cascode MOSFETs limit the
LD’s maximum output voltage level. In addition, the linearity enhancement techniques
increase the quiescent current consumption due to the auxiliary amplifiers and the cascode
stage’s extra bias circuit branches.

3.3. Proposed Signal Linearity Enhancement and Signal Gain Control Technique

The two major problems of the conventional LD’s linearity enhancement and signal
gain control techniques are output voltage range limitation and extra quiescent power
consumption. A digital-based adaptive amplitude tuning (AAT) technique is proposed to
guarantee robust signal linearity and closed-loop gain variations against the load varia-
tions without limiting the LD’s maximum output voltage level and without adding extra
quiescent current consumption. Figure 7 displays the connection between the OPAMP’s
cascode stage, the OPAMP’s output stage, and current replica cells. The replica cells consist
of two different class-AB current source/sink stages. MP(N)ORV represents a variable-size
stage while MP(N)OR is a fixed-size stage. The number of turned-on variable replica cells is
denoted as N in Figure 5. The closed-loop voltage gain can be controlled by controlling the
sizes of the variable replica cells MPORV and MNORV. When the load impedance increases
(=∆R2,3 is positive), then the output voltage increases without the AAT function since the
loop current (ILOOP) (in Figure 3) stays unchanged. However, the AAT turns off some of
the variable current replica cells (= decrease N) to deliver a reduced ILOOP to the bus lines.
When the load impedance decreases (=∆R2,3 is negative), the N increases, and vice versa,
to sustain the unity gain (AV = −1) as in Equation (2):

AV = − N
2RFB

[ro||(RMATCH + ∆R1)||(RTERM + ∆R2)||(RTERM + ∆R3)] (2)
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Figure 7. Schematic of the OPAMP’s output stage and current replica cell.

The replica cells’ output impedance ro is approximately a few mega-ohms, which is
comparably negligible in Equation (2). The unity-gain property not only mitigates the
close-loop gain variations, but also alleviates signal linearity variations since the proposed
AAT keeps the output voltages VLOOP and VOUT the same. In addition, the current replica
cells prevent the OPAMP’s stability, bandwidth and loop-gain variations against the RL
variations since the current replica cells act as buffers between the OPAMP and the bus
lines. The 32-bit thermometer digital code EN_REP controls the number of turned-on
variable replica cells. In this design, the number of gate fingers for MP(N)O, MP(N)ORV, and
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MP(N)OR are 32, 32, and 112, respectively, with an identical unit finger MOSFET size. The
mirroring ratio N is set at 4 when EN_REP is set at mid-code.

The overall block diagram of the proposed AAT is shown in Figure 8. One peak-to-
peak detector determines the peak of the OPAMP loop voltage VPK1 with the loop voltages
VLOOPP and VLOOPN. Another peak-to-peak detector determines the peak of the channel
voltage VPK2 with two line output voltages VOUTP and VOUTN. A double-tail dynamic
comparator called COMP then compares the two peaks. The differential output of the
comparator passes through a set–reset (SR) latch and enables each binary datum in the
thermometer-based bi-directional shift register (BDSR). Each flip-flop (FF) in the BDSR
is reset with an RST signal in the beginning. A decrease in the load impedance implies
VPK1 < VPK2. The output of the comparator then becomes low, and the BDSR outputs
(EN_REP) increase; this increases VPK1 and VOUT. When VPK1 > VPK2, the comparator’s
output becomes high and EN_REP decreases. Afterward, the comparator’s output repeats
low and high since VPK1 and VPK2 are crossing each other in the settled calibration region.
The time-domain waveform is demonstrated in Figure 9 with a clock frequency of 5 MHz.
In addition, the comparator features 6.32 mV for maximum offset voltage according to
1000-run mismatch Monte Carlo simulation. According to simulation results, the offset
induces 1–2 bit errors in the BDSR output EN_REP, which results in approximately 0.7 dB
THD degradation. The offset issue can be further alleviated with an offset calibration.
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bus lines.
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4. Measurement Results

The proposed hybrid of a VMLD and CMLD, and a conventional VMLD were fab-
ricated in CMOS 180 nm to compare their performances. The microphotograph of the
manufactured chip is shown in Figure 10a. The drivers are measured with a 1:1 impedance
transformer to convert the differential output to single-ended for a signal analyzer [5]. A
low-distortion high-speed analog buffer (OPA653) is implemented to prevent the chip’s
load condition from being distorted with a signal analyzer’s (Keysight N9010A) 50 Ω
input resistance. A vector signal generator (Agilent N5182A) generates an input signal.
Figure 10b displays the manufactured printed circuit board (PCB) for testing the fabricated
integrated circuits (ICs). The left and right sides of the PCB are designed to test the hybrid
LD and VMLD, respectively. Each termination resistor is realized with discrete variable
components (RTERM in Figure 10b) to alter its value to validate how well the ATT block pre-
vents the proposed line driver’s performance from the channel load impedance variations.
The channel lines are designed differentially, and they are designed to have the same line
width and length on the positive and negative channels. The output stages of the proposed
drivers are matched with the channel lines using series and parallel matching resistors for
the VMLD and the hybrid LD, respectively.
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The VMLD is designed with the conventional topology in Figure 2. The VMLD’s
OPAMP architecture is the same as the one in Figure 4 for a fair comparison. The sizes of
both class-AB output stages in both topologies are designed identically. Figure 11 displays
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the FFT of the proposed hybrid LD, and it achieves THD+N of −49.0 dB with an input
frequency of 40 MHz and the maximum allowable output swing of 2.8 Vpp differential.
The hybrid LD achieves a competitive THD+N of −59.2 dB against the VMLD, which
achieves −62.4 dB THD+N with the same supply voltage of 1.8 V, as shown in Figure 12.
They are measured with the same input frequency of 40 MHz and 930 mVpp differential
signal swing on the bus lines, which is the maximum allowable channel swing for the
VMLD. The VMLD features slightly enhanced linearity because the equivalent load (eq.
RLOAD) for the hybrid LD is 30 Ω while the VMLD has 60 Ω due to the series source
terminations. Lower load impedance requires a better current driving capability to source
a larger amount of currents. However, the VMLD suffers from the series matching signal
attenuation; therefore, the hybrid LD allows enhanced signal power to be delivered to
the load with the same power supply voltage. The proposed LD achieves ηpower of 87.0%,
while the VMLD achieves ηpower of only 7.22%.
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Figure 12. Measured THD+N of the proposed hybrid line driver, and the conventional voltage-mode
line driver at FIN = 40 MHz and 930 mVPP differential of signal swing on the bus lines.

Figure 13a describes the measured closed-loop voltage gain against the equivalent
load impedance variations according to both simulation and measurement results. The
load impedance variations change the closed-loop gain since the feedback resistors define
the proposed hybrid LD’s output signal current levels. Without the ATT, the closed-loop
gain varies from −1.87 dB to 1.21 dB. On the other hand, the calibration allows reduced
closed-loop gain variations, which range from −0.38 dB to 0.05 dB. The calibration logic
also prevents the driver’s linearity variations against the load variations, as shown in
Figure 13b. The THD+N varies from −37.2 dB to −49.2 dB without the AAT. However,
the AAT mitigates the THD+N variations from −45.2 dB to −49.0 dB by adjusting the
variable replica cells in a range of 80–160 Ω load impedance variations. The AAT con-
sumes 12.6 µW at FCLK = 5 MHz, which is almost negligible compared to the hybrid LD’s
power consumption. This dynamic power can be further reduced by decreasing the clock
frequency since the AAT does not have to operate quickly, depending on the required
maximum calibration time.
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Figure 13. Simulated and measured closed-loop voltage gain (AV) and THD + N of the hybrid line
driver against load resistance variations at FIN = 40MHz and output swing of 2.8 VPP differential.

Table 2 compares the proposed LD with the prior arts. The comparison table is filled
with the prior arts that are tested with similar megahertz bandwidth levels and resistive
load conditions to keep the fairness against the signal bandwidth and the load condition.
The proposed hybrid LD features the best ηpower, which stands for a ratio between the
signal power delivered to the load (PL) compared to the consumed quiescent power (PQ).
This is because the current mode prevents signal attenuation with the parallel termination
impedance matching. The proposed hybrid LD and VMLD consume 37.6 mW and 25.2 mW
while delivering PL of 32.7 mW and 1.82 mW, respectively. A figure of merit (FoM) from
reference [14] is used to evaluate the line drivers’ performances as follows in Equation (3):

FoM =
PL

PQ × (THD + N[%])
(3)

Table 2. Proposed Line Driver’s Performance Comparison with Prior Art.

This Work
(Hybrid LD)

This Work
(VMLD) [1] [7] [9] [10]

Process 180 nm 180 nm 500 nm 180 nm 350 nm 180 nm
Supply [V] 1.8 1.8 ±1.65 2.5 3.3 1.8

VOUT [VPP,rms] 0.99 0.33 0.85 1.06 1.41 1.24
Eq. RLOAD [Ω] 30 60 75 75 75 100

PQ [mW] 37.6 25.2 26.4 130 155 38.6
Driving Mode 1 I+V V I V I I

PL [mW] 32.7 1.82 19.2 15.6 26.6 30.6
ηpower [%] 87.0 7.22 36.5 12 17.2 39.8

THD+N [dB] −49.0 −62.4 −42 −51.2 −42 −48
THD+N [%] 0.55 0.0759 0.794 0.275 0.794 0.398
FIN [MHz] 40 40 5 10 30 100

Area [mm2] 0.377 0.133 0.22 0.094 0.210 0.48
FoM 1.58 0.95 0.46 0.42 0.22 1.00

1 I: current-mode LD, V: voltage-mode LD, I + V: hybrid of voltage- and current-mode LD.

The FoM features the power efficiency and signal linearity of the line driver. The
hybrid LD in this work achieves an FoM of 1.58, which is the best FoM among the table.
The VMLD features a lower FoM of 0.95. The proposed hybrid LD allows a wide output
swing on the output channels, and features the best ηpower. The comparably large area
consumption is one of the noticeable weaknesses of the proposed hybrid line driver.
Fortunately, this issue can be alleviated by using more recent short-channel technologies.
This is because the AAT logic is digital, whose area decreases as the technology shrinks,
while the previous analog mechanisms typically do not.

5. Discussion and Conclusions

In this paper, a hybrid of a voltage-mode and a current-mode line driver with adap-
tive amplitude tuning for a turbo controller area network is presented. The hybrid line
driver consists of a unity-gain closed-loop OPAMP and class-AB current replica cells.
The proposed line driver prevents the signals from impedance matching attenuation by
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implementing parallel source termination. In addition, the adaptive amplitude tuning
controls the sizes of the current replica cells to alleviate closed-loop voltage gain and signal
distortion variations against the load impedance variations. The proposed tuning mecha-
nism does not cause any extra quiescent current consumption but rather a small amount
of dynamic power, and it also does not degrade the maximum allowable output voltage
range, which are major problems on conventional signal linearity enhancement and voltage
gain control techniques. The proposed hybrid driver is manufactured in CMOS 180 nm,
and it achieves −49.0 dB THD+N at an input frequency of 40 MHz and 0.99 peak-to-peak
rms output voltage with 32.7 mW power consumption from 1.8 V supply voltage. The
conventional voltage-mode driver is also manufactured with the same technology, and it
features −62.4 dB THD+N at the same input frequency and 1/3 attenuated output rms
voltage range with 25.2 mW power consumption from the same 1.8 V supply voltage. In
the manner of signal linearity, power consumption, output signal swing, and the resis-
tive load condition, the proposed hybrid driver achieves 1.58 figure-of-merit (FoM) while
the conventional voltage-mode driver and the best FoM among prior arts are 0.95 and
0.46, respectively.
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