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Abstract: In spite of the vast set of measurements provided by current mobile networks, cellular
operators have problems pinpointing problematic locations because the origin of such measurements
(i.e., user location) is usually not registered. At the same time, social networks generate a huge
amount of data that can be used to infer population density. In this work, a data-driven model is
proposed to deduce the statistical distribution of connections, exploiting the knowledge of network
layout and population density in the scenario. Due to the absence of GPS measurements, the proposed
method combines data from radio connection traces stored in the network management system and
geolocated posts from social networks. This information is enriched with user context information
inferred from data traffic attributes. The method is tested with a large trace dataset from a live Long
Term Evolution (LTE) network and a database of geotagged posts from social networks collected in
real-time.

Keywords: mobile network; localization; context; social networks; big data

1. Introduction

It is a fact that, in recent years, the evolution and growth of mobile networks have been
an unstoppable force. The constant development of new, cheaper, more accessible, and
powerful equipment has democratized access to cellular networks, triggering requests for
new and already established services, causing both the generation of network traffic and
the number of devices connected and transmitting simultaneously to grow exponentially,
with an increase of almost eight times the current traffic and a total of 31.4 billion active
mobile devices expected by 2023 [1].

This exponential growth phenomenon has resulted in complex and extensive cellular
networks making it impossible to manually perform management tasks, a fact that will
be increased with the solutions implemented in 5G. In this context, the concept of Self-
Organizing Networks (SON) was born to automate these tasks. SON techniques can be
divided into three blocks, Self-Planning, Self-Optimization, and Self-Healing, covering
all planning, deployment, monitoring, optimization, and troubleshooting processes. To
optimize the solutions offered by SON techniques, the traditional network-centric approach,
based on Quality of Service (QoS) parameters, has to step aside to a more novel end-user-
centric approach, based on Quality of Experience (QoE) [2] parameters.

User context (e.g., terminal type, indoor/outdoor location, time of day, geolocation)
is one of the most important factors influencing service perception [3]. Therefore, more
sophisticated QoE models consider the user context (e.g., time of day or location). To
recognize user activity, service providers can use active measurements from on-body
sensors through ensemble learning [4]. Alternatively, network operators can infer user
context by leveraging signaling events recorded by the network at each connection [5].
Once obtained, this information can be used to develop SON algorithms that use context in
their tasks [6].
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To meet the ambitious specifications of the new use cases, 5G operators will take
network performance to the next level by combining multiple techniques. For example,
network densification has been recognized as an efficient way to provide higher network
capacity and better coverage, combining macrocellular infrastructure with Small Cell (SC)
deployments. In these heterogeneous networks, discovering the best locations for new
SCs is the key to making the most of the new infrastructure. However, most current site
selection approaches are only based on signal quality indicators, due to the difficulty of
modeling the dynamic performance of the network. The Minimization Drive Test (MDT)
function can mitigate this difficulty, enabling the collection of geolocated measurements
that can be used to build accurate network performance maps (Radio Environment Map
(REM)). These maps can be used to detect coverage gaps [7]. Unfortunately, MDT is rarely
activated in live networks due to the workload involved in processing these measurements.
Therefore, network organizing tasks often have to be performed based on measurements
only positioned by cell identifier and Timing Advance (TA) statistics. This approach leads
to large localization errors, even more in areas with high TA, where the combination of
cell identifier and TA produces a large area location ring, which prevents estimating the
user context.

With recent advances in technology, which allows efficient processing of the vast
amount of continuously generated information, interest in data science has grown in both
the scientific and technical fields. As a result, many open data portals now offer direct
and automated access to valuable assets that can be used to improve cellular network
management. Some companies offer real metrics collected by anonymous users, which
can be used to evaluate current deployments [8]. In contrast, other companies and some
open data portals, usually governmental in nature, provide information on the main socio-
economic activity occurring in each area of land (referred to in the literature as land use),
which greatly influences how each person uses the network.

The indoor context of users is a key factor in cellular network maintenance and
management tasks. It can be applied to several types of problems, such as connection clas-
sification for the application of different context-aware QoE models or the optimization of
geolocation methods in the mobile network. In this work, a data-driven model is proposed
to deduce the statistical distribution of connections, exploiting the knowledge of network
layout and population density in the scenario, instead of other classical fingerprinting or
triangulation positioning methods. Thus, the main contribution of this work is

• The finding of alternative data sources (i.e., social network information and user
context information) for user positioning.

• A complete methodology for user positioning merging classical (cell ID and Time
Advance statistics) and novel data sources.

User context is estimated from the connections Key Performance Indicators, KPIs,
while the population distribution in the scenario is obtained from geo-positioned informa-
tion of heavily used social networks.

This paper is composed of four sections. To contextualize the algorithm, different
contributions of interest in the field of user positioning are discussed in Section 2. Next,
Section 3 presents the statistical distribution model of users in the network, while Section 4
contextualizes the data used for testing the model, in addition to showing the obtained
results. To conclude the paper, Section 5 provides a series of conclusions drawn from
the work.

2. Related Work

Today, mobile networks include very sophisticated terminal-based and network-based
user positioning methods [9]. Classical network positioning methods can be based on
or assisted by both the network and the user equipment (UE). To summarize the main
positioning methods described in the bibliography, Table 1 presents a brief description of
the advantages and inconveniences of each method. Currently, in LTE, the main positioning
method is Assisted GPS (A-GPS) [10], in which the UE determines its location by processing



Electronics 2021, 10, 1782 3 of 16

GPS signals. This requires a line-of-sight connection to several satellites and knowledge
of the orbital parameters. These data are downloaded before the first position fix, which
can take several minutes (cold fix). To speed up the process, a network server can provide
assisting data (e.g., precise timing, satellite Doppler shift, approximate position of the
mobile device, or differential corrections) to obtain a faster and more reliable GPS fix (warm
fix). When the GPS signal is not available (e.g., in urban or indoor environments), other
positioning methods are used.

In the main alternative method, the user’s position can be derived by the network
from a combination of the Cell ID (CID) and the uplink Timing Advance (TA) (also known
as Enhanced CID (E-CID)), from which a server approximates the location of the equip-
ment. Other methods employed are multilateration techniques based on the Angle of
Arrival (AOA) or the Time Difference Of Arrival (TDOA), in which UE measures the
arrival angle/time of positioning reference signals from multiple cells, from which a server
obtains the user’s position by multilateration [11]. Similarly, other techniques employ RSS
measurements to perform distance estimation [12].

In contrast, mapping-based location methods capture signatures that are compared to
a set of geotagged measurements to identify the location of a device [13]. These techniques,
initially designed to locate the user on a 2D plane, have been extended with the introduction
of 3D MIMO technology for 3D indoor scenarios [14]. In addition, the use of different
sensors (e.g., barometric to determine indoor ground level [15], proximity [16], or inertial
sensors [17]) has recently become more standardized. Position estimations with these
techniques are affected by inaccuracies introduced by the radio channel (e.g., non-line-of-
sight, shadows, multipath). To reduce their impact, data filtering algorithms (e.g., least-
squares methods in overdetermined systems [11], Kalman filter [18], particle filter [19], or
machine learning [20]) are employed in commercial GPS chipsets and positioning solutions.

However, despite all positioning methods working in real-time, the information
recorded for network management is very limited. This problem was partly solved with
the MDT feature [21], whereby operators can request user equipment to report radio
measurements along with location information. Unfortunately, MDT is rarely activated for
all users and is continuous over time among other things, the battery consumption required
by the user, which means that the anonymous call traces provided by network equipment
often lack detailed location information. Therefore, network replanning and optimization
must be done based on E-CID geolocated traces, with location errors of hundreds of meters,
excessive for estimating the communication context.

In parallel, interest in data science has been increasing in recent years due to recent
advances in information technology. As a result, many open data initiatives have been
launched around the world. Open data portals now offer direct and automated access
to valuable assets that can be used to improve the management of cellular networks.
Some companies (e.g., OpenSignal [22] or WeFi [23]) offer real metrics collected by anony-
mous (also known as crowdsourced) users, which can be used to evaluate current cellular
deployments [8].

Social networks are gaining momentum in the interest of academia, due to the almost
ubiquity of the service. Due to this, it is considered as another source of information
for understanding user behavior. The work presented in [24] provides an analysis of the
tourist flows in a city, combining both social media information and mobile positioning.
At the same time, in Reference [25], Twitter information is applied to study home–work
urban mobility. In Reference [26], a collaborative positioning methodology is proposed,
employing social information to estimate position of all users based on the GPS information
of a subset of the devices.

The relation between social networks activity and mobile user positioning is a demon-
strated fact [27], and thus, it has been greatly studied. Some works aim to apply social
network information to provide context awareness to crowdsensing applications [28,29],
in order to improve the richness of the collected data. Other approaches are focused on
applying the social network data to model different aspects of cellular networks. For
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example, activity on social networks can be used to predict cellular traffic, regardless of
radio access technologies or network providers [30,31]. Similarly, areas of poor signal
coverage or service performance (i.e., black spots) can be detected by processing geotagged
text messages in social networks [32]. At the same time, social event information obtained
from browser results or open data repositories can be used to explain abnormal network
behavior during troubleshooting procedures [33], detect anomalies [34,35] or predict the
network performance [36].

From the network operators’ point of view, a users’ exact position is not as relevant
in maintenance tasks. Instead, accurate knowledge of the spatial distribution of UEs in
the scenario and how they perform is key in SON tasks (e.g., detecting areas with capacity
problems). For this purpose, geolocated information from social networks can be an
interesting data source. However, no study has been found in the literature that combines
social networks and users’ context information to estimate the spatial distribution of users
in the network.

Table 1. Positioning techniques.

Method Advantage Inconvenience

A-GPS High accuracy in positioning.
Information usually not
available for network op-
erators.

Enhanced CID Great simplicity, based on network
measurements.

Low accuracy, decreasing
with the distance to the
node.

Lateration Higher accuracy than E- CID. Based
on network measurements.

Requires equipment fea-
tures not typically avail-
able. Vulnerable to propa-
gation conditions.

Fingerprinting Localization with simpler measure-
ments.

Great complexity when
calibrating maps due to
the issues in obtaining
measurements. Vulnera-
ble to propagation condi-
tions variations.

Minimization
Drive Test

Communicate GPS position to net-
work operators. Enriched with net-
work measurements to ease maps
construction for fingerprinting tech-
niques

High consumption of re-
sources, such as terminals’
batteries.

Proposed model

Simplicity equivalent to enhanced
CID method with much higher accu-
racy. Less complex map calibration
comparing to fingerprinting, due to
the access of external data.

Dependent on the avail-
ability of external data.

3. Methodology

The knowledge of users aggregations areas that could, for example, represent a
bottleneck in the network is key for operators management tasks. Unfortunately, the only
way for terminals to report users’ position coordinates to the OSS is to activate the MDT
functionality, but it is not usually active due to the resource consumption involved, so the
GPS position of users in the network is rarely known. However, from a mobile network
management point of view, it is unnecessary to know the precise position of each UE in
the scenario, but it is essential to know their statistical distribution. E-CID can be a decent
approach to the problem of approximating the users’ position, mainly in rings close to the
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serving base station due to the small coverage area, but for other rings, the coverage area
is too wide to determine the UE location properly, thus improving the method is key to
optimize position-based processes.

One way to reduce this imprecision in the localization process is to add information
about the users’ context. In particular, users’ location in indoor/outdoor environments
is especially interesting, locating the user in the buildings served by the ring or in the
streets/parks in that area, thus greatly reducing the area of imprecision.

On the other hand, social applications are in the spotlight, leading users to generate a
constant traffic flow, sharing their experiences and impressions with the rest of the world.
In this situation, social networks play a fundamental role, providing the general public
with access to a portal where they can publish their ideas, photos, or videos on a massive
scale and, in many cases (such as Twitter or Flickr), allowing the addition of metadata about
the place, as the GPS coordinates where the publication was created. Thus, the inclusion of
context information, as well as other information from outside the mobile network (e.g.,
geolocated data from social networks), is of great interest to provide granularity to the
process of spatial distribution of users, thus increasing its overall accuracy and, mainly, in
distant rings.

In order to estimate where the connections are located in the scenario, inputs described
above must first be preprocessed. In this section, the processing applied to the input data
is first described to learn the spatial characteristics of the scenario. Later, the process of
statistical distribution of connections is explained. The flow diagram of the proposed
algorithm is shown in Figure 1.

Figure 1. Flow diagram of the spatial distribution model.

The model receives 4 inputs: (a) the information recorded in the radio connection
traces, (b) data of land uses in the scenario, (c) information on the location and orientation
of the cells in the scenario and (d) posts obtained from social networks that have associated
geopositioning metadata. These data sources have been selected because of the important
information they provide. On the one hand, the location and orientation of the cells in
the scenario allows to delimit the area in which the user can be found, while, on the other
hand, both the connection traces and the types of land use provide information about the
user and its context. Finally, the geopositioned publications from social networks are used
as an approximation of the spatial distribution of the population. Due to the increasing
interest in the exploitation of huge amounts of data, privacy concerns have become highly
significant. Data processing must ensure user privacy during the whole process of data
management. This is usually achieved through anonymizing methods run at the very first
stage by social network owners. The anonymizing process substitutes end-user data with
some unique user ID. Client and user ID association is only available for social network
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managers, but not for positioning engineers, including all researchers involved in this
work. A map with the statistical distribution of users in the scenario is obtained with these
inputs, where each tile corresponds to an aggregation of the percentages of connections
occurred in the rings that cover it.

In this work, the positioning process is based on the spatial context of the users in
the scenario (i.e., indoor/outdoor), instead of the traditional measurement-based methods,
which are susceptible to radio propagation conditions. Three main steps can be established.
First, a delimitation of the area where the connection occurs is obtained from the network
layout and the cell ID and TA statistics. Secondly, this area is further reduced, matching the
user indoor context with the indoor/outdoor locations in the topology of the scenario. The
user indoor context is obtained from the KPIs registered on radio traces. At the same time,
the indoor/outdoor locations are obtained from the data of land uses. Finally, network
population distribution, estimated from the social media posts, is applied to weight which
parts of the limited area are more likely to embrace the studied connection.

3.1. Preprocessing

Although the E-CID method does not rely on users’ GPS coordinates, it makes use
of data precisely located (e.g., server cell GPS coordinates), and, thus, this data supports
the positioning process. This approximation of users’ location has great inaccuracies, so it
is optimized applying other data, such as Timing Advance measurements. This is the ap-
proach followed in this work, where users’ environment information (e.g., indoor/outdoor
labeling or population density) is determined through external data sources (i.e., land uses
or posts from social networks) precisely located with geopositioning metadata and applied
to enhance the optimization of users positioning.

The first essential element for the development of this work is to know the context
of each user. As this information is not recorded in the OSS, operators need to estimate it.
This is achieved with the algorithm described in [37], where the probability that a user has
established the connection indoors (i.e., Pindoor(k)) or outdoors (i.e., Poutdoor(k) = 1− Pindoor(k))
is estimated from its radio indicators.

After this, the next thing is to know the information of where the buildings are located
(i.e., indoor) and which areas of the scenario are uncovered (i.e., outdoor). To do this,
a land use map, Mlu(x, y), is constructed from information obtained either from data
portals provided by official sources or from open data platforms (e.g., OpenStreetMap).
The information from these platforms is usually composed of a list of geometric elements
(i.e., polygons, lines and points), each with a label defining its main social activity and a
list with the GPS coordinates of the element vertices. Due to the large range of values that
these labels can adopt, they are classified into different types of land use, while the vertices
of each element determine the area of land that is classified.

In this work, the E-CID is used to determine in which area of the scenario the con-
nection is likely to occur. Using the E-CID, the possible area of establishment can be
reduced to that area covered by the ring defined by the value of TA (i.e., NTA) that ob-
tains the connection within the serving cell. In this work, the ring area in a cell, Rta(c), is
defined as all those tiles where its distance to the serving cell, dsc, is in the range of the
ring (i.e., 78 · (NTA − 1) ≤ dsc < 78 · NTA). This is because the length of a ring in LTE is
approximately 78 m.

Finally, to estimate the spatial dispersion of the population, a matrix is constructed
with equivalent dimensions to the land use map and, from the location information pro-
vided by the social networks, the number of geolocated posts per tile is added, generating
a post distribution map, Mp(x, y). This matrix has the problem that, in areas of low pop-
ulation density (e.g., in open country), the average number of posts per tile is much less
than one, causing most grids to have no posts or, in some cases, only a few appear. For
better estimation of these small density values, a Kriging process is applied to obtain
the underlying spatial distribution of publications, M′p(x, y). Kriging is a geostatistical
interpolation process that, starting from reference points on a map, uses a variogram model
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to estimate the intermediate points. In simple Kriging processes, one of the most commonly
used variogram models is the spherical variogram, defined as,

v =

 ω

[
3
2

(
|h|
a

)
− 1

2

(
|h|
a

)3
]

i f h < a

ω i f h > a
(1)

where ω is the threshold and a is the range of the variogram, while h is the vector of
reference points.

3.2. Spatial Distribution

Once the input data have been processed, a map is constructed with the location of
the connections. Unfortunately, traces are rarely geolocated, so they have to be located
by the E-CID method. This leads to large positioning errors in rings far from the serving
cell. To circumvent this problem, the spatial distribution of users within a ring can be
inferred from the distribution of geotagged messages obtained from social networks since
the transmission of short messages is not conditional on a good radio link [30].

The geolocation process starts with creating a grid with the same dimensions as
the land use map, Mlu(x, y). Hereafter, the (x, y) indices refer to the horizontal and
vertical indices of the grid. A user context matrix of the same size, Mcontext(x, y), is
obtained from the land uses, indicating whether each tile is indoor or outdoor (i.e.,
Mcontext(x, y)∈{indoor, outdoor}). With this map, together with the ring area where each
connection occurs (i.e., (x, y) ∈ r), connections are distributed in their context within that
ring, based on the probability that each connection occurred in an indoor/outdoor context.
In combination with this, the underlying spatial distribution of publications, M′p(x, y), is
used as an estimate of the population distribution in the scenario, and can be applied to
weight which areas of the ring are more likely to embrace a connection (i.e., areas with
higher population).

Thus, the data described above is used to compute the probability of a connection
occurring in a tile (x, y) labeled as context ct (i.e., ct∈{indoor, outdoor}) in the ring r as

P(r, x, y) =
1 + M′p(x, y)

Nct(r) + ∑(x,y)∈r M′p(x, y)
∀(x, y) ∈ r , (2)

where Nct(r) is the number of tiles labeled as context ct (i.e., indoor or outdoor) in the
ring r, and M′p(x, y) is the underlying spatial distribution of publications. Note that the
same grid index (x, y) can be served by rings of different cells and, thus, have different
values of P(r, x, y), associated with more than one ring. Further analysis of (2) shows
that, in rings where the number of geotagged posts is 0 (as it could be in unpopulated
areas), the connections recorded in the traces are evenly distributed over the ring context
ct area (i.e., P(r, x, y) = 1/Nct(r)). In contrast, in rings with a large number of geotagged
publications, connections are distributed following the distribution of posts in the ring (i.e.,
P(r, x, y) ≈ (M′p(x, y))/sum(x,y)∈r M′p(x, y)).

Once the probabilities of the ring connections in each tile have been calculated, these
probabilities are projected on the map. To do so, they are distributed over the inner/outer
tiles within the ring according to the probabilities in (2) and then aggregated among the
rings serving the same tiles as

MUE(x, y) = ∑
r/(x,y)∈r

∑
k∈r

Pct(k)P(r, x, y) (x, y) ∈ ct, (3)

where MUE is the statistical distribution map of connections in the scenario, and Pct(k) is
the probability of connection k to have occurred in context ct.
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4. Model Assessment

In this section, the validity of the model created is assessed. First, the data and scenario
used for the development of the model are explained. Then, results of users’ statistical
distribution are shown (referred to as social model). Results are compared with the other
two preliminary models using, first, only the E-CID positioning (E-CID model) and, second,
using only E-CID and context information (context model). Finally, the computational
complexity of the model is evaluated.

4.1. Validation Scenario

The scenario used to develop the proposed model corresponds to a city of 800,000
inhabitants and its suburbs, covering a geographical area of approximately 125 km2. In this
area, 400 LTE cells are located, grouped in 175 trisectorized sites, with a carrier frequency
of 2325 MHz and a system bandwidth of 15 MHz. In these cells, traces are collected for 2 h,
obtaining 166,561 connections. To present the indoor context of these connections, Figure 2
shows the Cumulative Distribution Function (CDF) of the probabilities of each connection
to have occurred indoors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Figure 2. CDF of indoor connections probabilities, Pindoor(k), in the scenario.

The land use map and the geolocated publication distribution map are defined as a
grid, with 10 × 10 m2 tiles for sufficient resolution. Table 2 shows a breakdown of the land
use types, their description, indoor/outdoor classification and percentage of occupancy in
the scenario.

Table 2. Land use types in the scenario.

Land Use Description Indoor/Outdoor Share

Services Areas for institutional, cultural,
medical or academic use. Indoors 10%

Offices Management, information or work
offices. Indoors 3%

Mixed use Areas with no defined primary land
use. Indoors 11%

Residential Homes, hotels and lodging. Indoors 15%
Entertainment Retail and entertainment. Indoors 4%

Industrial Industrial or manufacturing work
areas. Indoors 3%

Open space Fields, parks and green areas. Outdoors 22%
Roads Roads, highways and footpaths. Outdoors 30%
Rivers/Lakes Water areas on the ground. Outdoors 2%
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The geotagged social media posts in the area are collected in real-time for 16 months
for Twitter and 12 months for Flickr, resulting in 785,515 and 33,519 posts, respectively.
Figure 3 shows the CDF of the number of posts in each tile of the scenario, Mp(x, y), broken
down by application (dashed line for Twitter, and dotted line for Flickr). It can be seen
that most of the messages come from Twitter posts (coinciding in their CDF with the
distribution of total posts), so it will be the main source of information, leaving Flickr posts
as an auxiliary source, to reinforce certain points in the scenario.

10
0

10
2

10
4

10
6

0

Twitter + Flickr

Twitter

Flickr

0.8

0.6

1

0.4

0.2

Figure 3. CDF of geotagged posts in the scenario.

To observe the resolution of the spatial distribution of publications, M′p(x, y), Figure 4
presents two sections of M′p(x, y) in the scenario, one with high population density per
square meter (i.e., city center, Figure 4a) and one that is relatively unpopulated (i.e., the
suburbs of the city, Figure 4b).

(a) High population density in M′p(x, y). (b) Low population density in M′p(x, y).
Figure 4. Sections of M′p(x, y) in the scenario.
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4.2. Results

The proposed method aims to solve the lack of the precise location of the users in
the network, by means of exploiting the spatial context of both the connections and the
scenario. The only way to obtain GPS measurements from the users is using the MDT
functionality, which is rarely active and never to all the connections in the network. This
missing information makes it impossible to estimate the error in the processing process, so
a more exploratory evaluation is needed. For this, the results obtained with the proposed
model are compared with the traditional E-CID method and an intermediate version, only
adding the context dimension in the positioning. Thus, performance comparison assesses
the inclusion of social data. First, a statistical comparison of the number of connections
per tile is presented in Figure 5 and Table 3. Then, the spatial performance is checked in
the two cases shown in Figure 4, to illustrate the resolution of the proposed method, in
comparison to the other two models, presented in Figure 6.

Figure 5 shows the number of connections per tile in the full scenario with a boxplot
for the three models assessed (E-CID, context and social model). The ordinate axis is in
logarithmic scale aiming to optimize the graphical representation.

Figure 5. Number of connections per tile by model.

Table 3. Statistics of the number of connections per tile with the compared models.

Method Minimum 25th perc. 50th perc. 75th perc. Maximum

E-CID model 1.79× 10−4 8.69× 10−3 3.60× 10−2 9.81× 10−2 36.29
Context model 4.06× 10−5 1.86× 10−2 4.87× 10−2 1.17× 10−1 45.99
Social model 1.82× 10−6 1.03× 10−2 3.03× 10−2 8.68× 10−2 175.19

The figure illustrates how context and social models (i.e., those models using addi-
tional information) can improve user positions in the ring area. In particular, by adding
the indoor context of the connections (i.e., context model), clusters of users are detected,
thus emptying areas where there were no connections and, then, diminishing the amount
of connections in those tiles widening statistical distribution in the figure compared to
E-CID model. This is greatly enhanced by the inclusion of geopositioned posts from social
networks (i.e., social model), which allows the identification of tiles with high connection
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densities and unpopulated areas, masked in previous models. As a consequence, the
statistical distribution for the social model is additionally widened.

Moreover, and with the aim of checking the resolution for user distribution in the
network, Figures 6–8 show, respectively, a heatmap with the number of connections per
tile in the three E-CID, Context and Social models with high and low population densities
each (i.e., six subfigures in three figures), presented previously in Figure 4.

(a) High population density. (b) Low population density.
Figure 6. Results of MUE with the E-CID model in the sections presented in Figure 4.

(a) High population density. (b) Low population density.

Figure 7. Results of MUE with the Context model in the sections presented in Figure 4.
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(a) High population density. (b) Low population density.

Figure 8. Results of MUE with the Social model in the sections presented in Figure 4.

These figures highlight that the information provided by geolocated posts, when
available, significantly improves the connection location process. Specifically, for high
population density scenarios (Figures 6a, 7a and 8a), where the activity in social net-
works is high enough to generate a significant number of geolocated publications, the
social model achieves a significant increase for the resolution of connection distribution.
Granularity for the social model (Figure 8a) is not observed in either E-CID or context
models (Figures 6a and 7a). In contrast, context and social models behave similarly with
a low population density (Figures 7b and 8b), due to the lack of geopositioned publica-
tions. These subfigures also point out that, as expected, high population density scenarios
(Figures 6a, 7a and 8a) embrace a greater number of connections than areas relatively de-
populated, thus the use of population density to weigh the more probable areas is justified.

More specifically, Figure 6a,b shows the spatial distribution of the users applying
the traditional E-CID method in both density cases. These subfigures evidence that the
method equally distributes all the connections in the area covered by the serving ring,
independently of the topology of the field or the high (Figure 6a) or low (Figure 6b)
population density. The only variability is observed in Figure 6a, where the greater number
of connections and overlapped rings of TA show some irregularities in ring areas.

Similarly, Figure 7a,b presents the results obtained in the same areas with the context
model (i.e., adding indoor context to the E-CID method). This positioning methodology
takes advantage of the indoor context to segregate connections between buildings and
open space. Although this behavior can be observed in areas with peaks of connections
of both subfigures, this is more evident in Figure 7a, where the amount of connections
allowed to observe this effect, being able to clearly differentiate between connections on
streets and inside buildings.

Finally, Figure 8a,b illustrates the results of the Social model, where the E-CID method
is improved with both indoor context and social networks spatial information. With the
inclusion of the social information, the context model is greatly improved in high populated
areas (Figure 8a), enabling to obtain a much higher resolution in the location process. On
the contrary, areas relatively depopulated (Figure 8b) are much less improved by the social
information, performing similarly to the context model (Figure 7b).

4.3. Computational Complexity

As a preliminary process, previous to the statistical positioning methods, firstly, input
data collection and preprocessing are required. The execution time of trace preprocessing
grows linearly with the number of connections and data fields, while map construction
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grows linearly with the number of map tiles. In this preliminary stage, the task demanding
the highest computational load is the kriging process. Its time complexity is O(N3) [38] to
solve N + 1 linear equations for N source points.

Once the input data are available, the computational complexity of the social method
is given by the algorithm constructing the spatial connection distribution. The algorithm
distributes Nconn(r, c) connections originating in the area Rta(c) covered by an r ring out of
the Nr rings in the scenario. Thus, the worst-case time complexity is O(Nr ∗ Rta ∗ Nconn).

Trace processing is performed by complex event processing with Esper routines, land
uses are processed with Matlab, and social network data is obtained with the Twitter
Streaming API using Java (Twitter4j library) and the Flickr API using Python [39–41], both
processed with Matlab. Finally, the social model has been implemented using the image
processing toolbox in Matlab.

All these processes have been tested on a server with a 2.4 GHz octa-core processor
and 64 GB of RAM. To decode and process the connection traces (400 cells, 2 h of traces,
166,561 connections), the time required is 282 s. Likewise, the times to construct Mlu(x, y)
and M′p(x, y) (125 km2, 1,222,787 tiles) are 50,444 and 57,743 s, respectively. To conclude,
the time spent in positioning connections is 159.46 s.

5. Conclusions

Knowledge of the spatial distribution of user equipment in the scenario is key when
performing management of cellular networks. In this work, the distribution of connections
is achieved by means of an algorithm that, relying on user context information and knowl-
edge of the agglomeration of social network posts, determines in which tiles of the scenario
a connection is most likely to occur.

The results obtained indicate that the spatial distribution of social network posts
provides highly relevant information of the user agglomerations, bringing a granularity
to the connection positioning process that is not seen with a classic E-CID method. In
addition, the context information of the users, although to a lesser extent, also increases the
accuracy in the positioning, being able to segregate connections in buildings or open spaces.
This makes the inclusion of both data sources interesting when it comes to understanding
the distribution of users in the network.

The analysis of publications in the scenario reflects that, as expected, the spatial
information provided by each social network is highly dependent on its popularity. In
the case studied, the distribution of publications is almost entirely determined by Twitter.
It remains to be tested whether, by adding social networks of similar popularity (e.g.,
Instagram or Facebook), granularity is improved.

The model presented in this work serves as a support in network management tasks
where the position of users is a relevant factor, such as the planning of new cells or
the management of areas with capacity problems. The construction of land use and
publications maps are the most computationally intensive tasks, but, once performed,
the results obtained can be stored for future applications. On the other hand, the low
computational complexity of the method allows easy integration into radio planning tools.
By combining different data sources, the method can take full advantage of the latest
network management systems based on big data.
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