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Abstract: Fractional calculus has found multiple applications around the world. It is especially
prevalent in the domains of control and electronics. One of the key elements of fractional applications
is the fractional integral (or integrator) which is a backbone of famous PIλD controller. It gives
advantages of traditional PID with a limited phase lag. The are, however, issues with implementation,
which will allow good low-frequency behavior. In this paper, we consider a diffusive realization of a
fractional integrator with the use of quadratures. We implemented this method in numerical package
SoftFrac, and we illustrate how different quadratures work for this purpose. We show superiority of
bounded domain integration with logarithmic transformation and explain issues with behavior for
extremely low frequencies.

Keywords: fractional integrator; approximation; SoftFrac; diffusive realization

1. Introduction

Non-integer (fractional) systems are becoming commonplace in control and theoretical
electronics areas. They offer potential advantages coming from no 90◦ phase shifts and
robustness properties, balanced by difficulties in their implementation. In control appli-
cations, the most important fractional system is the fractional integrator—generalization
of traditional integral. It is a basic building block for controllers, filters, and even more
advanced models. Integrator is especially useful in MATLAB® (The MathWorks, Natick,
MA, USA)/Simulink and similar frameworks, which allow using block diagrams for a
controller synthesis.

Popular methods for implementing fractional systems are the Oustaloup filter
method ([1]) and continuous fraction expansion (CFE; see, e.g., in [2,3]). Discretization of
those approximations causes numerical instability, especially at high sampling frequencies
or approximation orders [4]. The structural properties of the Oustaloup method allow for
improvements to be made. We discussed its sensitivity and stability problems during dis-
cretization in [5,6] and developed a new method—Time Domain Oustaloup approximation.
Other avenues for warranting numerical stability need different approximation methods.
One approach focused on using Laguerre functions to create an approximation of impulse
response [7,8], which was used among the others in [9–13].

The applications of the above methods in fractional integrator implementations are
manifold. PIλD controllers are popular application. As mentioned, stability and sensitivity
are important aspects of fractional system implementation. However, when considering
integrators, we need to analyze the low-frequency behavior. Major goal of integrating
control is compensation of steady-state errors and slowly varying disturbances. The cost
of this property is the −90◦ phase delay. Fractional integral in theory fulfills the same
role, but at reduced −α90◦ lag. However, capturing fractional low-frequency behavior is
hard. One method of approximation has arisen that allows for direct modeling of fractional
integrators. That method is the diffusive realization, which relies on numerical quadratures
and allows structurally stable discretization.
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We have conducted initial research of this technique in [14,15]. Monteghetti et al.
conducted an in-depth analysis of quadrature properties (see in [16]). Their analysis
focuses on theoretical side, leading to approximations with extremely negative poles. This,
in consequence, could lead to numerical instabilities when discretizing. They do not
consider how their method handles low-frequency behavior.

In this paper, we try to remedy those issues with a constructive method based on
SoftFrac package [17]. We analyze possible practical approximations using quadratures
and illustrate the source of the complications with low frequencies. Our contributions
include a systematic investigation of approaches, implementation, and interpretation with
Bernstein theorem.

We organize the rest of the paper as follows. First, we give the formalism of diffusive
realization of fractional integrator. Then, we explain and analyze its approximations with
quadratures. We present how we implemented the more efficient finite interval quadrature
approximation and offer discussion. The paper ends with conclusions.

2. Diffusive Realization of Non-Integer Order Integrator

As the basis for diffusive realization, we consider the following theorem (see in [18])
which determines equivalent form for integrator of order α. We state this theorem with full
proof to make clear how the fractional order is being removed from the power of complex
variable s and moved into the integrated function.

Theorem 1. For α ∈ (0, 1) and s ∈ C we have

1
sα

=
∫ ∞

0

sin απ

π

1
xα

1
s + x

dx (1)

Proof. We use inverse Laplace transform, i.e.,

L−1(ĝ(s)) =
1

2πi

γ+i∞∫
γ−i∞

est ĝ(s)ds (2)

for function
ĝ(s) =

1
sα

(3)

We can calculate the integral from (2) using residue theorem and appropriate integra-
tion contour. As function (3) branches at the origin, we need Bromwich contour (Figure 1)
with T =

√
R2 − γ2. It is clear that function (3) does not have poles inside the contour, then

∮ est

sα
ds = 0 (4)

Therefore, (simplified for clarity)∫
AB

+
∫

BDE

+
∫

EH

+
∫

HJK

+
∫

KL

+
∫

LNA

= 0 (5)

If R→ ∞ then ∫
AB

est

sα
ds =

γ+i∞∫
γ−i∞

est

sα
ds (6)

Thus,

L−1
(

1
sα

)
= lim

R→∞
ε→0

− 1
2πi

 ∫
BDE

+
∫

EH

+
∫

HJK

+
∫

KL

+
∫

LNA


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For s = Reiθ , we have ∣∣∣∣ 1
sα

∣∣∣∣ = 1
Rα

(7)

then for R→ ∞, we have ∫
BDE

=
∫

LNA

= 0 (8)

O

D
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A

B

N

E

L

H

K

R

ε

γ − i T

γ + i T

Figure 1. Bromwich contour.

It is necessary to calculate the rest of the integrals.

1. Contour EH
We substitute

s = xeπi (9)

Then,

ds = − dx (10)

sα = xα(cos απ + i sin απ) (11)

and changing s from −R to −ε gives x from R to ε. Then

∫
EH

est

sα
ds =

−ε∫
−R

est

sα
ds = −

ε∫
R

e−xt

xα
(cos απ − i sin απ)dx =

=

R∫
ε

e−xt

xα
(cos απ − i sin απ)dx

2. Contour HJK
We substitute

s = εeθi, θ ∈ [−π, π] (12)
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Then,

ds = iεeiθdθ (13)

sα = εαeiαθ (14)

and

∫
HJK

est

sα
ds =

π∫
−π

exp(εeiθt)
εαeiαθ

iεeiθdθ = iε1−α

π∫
−π

exp(i(1− α)θ + εeiθt)dθ

3. Contour KL
We substitute

s = xe−πi (15)

the
ds = − dx (16)

sα = xα(cos απ − i sin απ) (17)

and for s from −ε to −R we have x from ε to R. Thus,

∫
KL

est

sα
ds =

−R∫
−ε

est

sα
ds = = −

R∫
ε

e−xt

xα
(cos απ + i sin απ)dx

After those calculations, we can take inverse Laplace transform, i.e.,

L−1
(

1
sα

)
= lim

R→∞
ε→0

− 1
2πi

 R∫
ε

e−xt

xα
(cos απ − i sin απ)dx+

+iε1−α

π∫
−π

exp(i(1− α)θ + εeiθt)dθ −
R∫

ε

e−xt

xα
(cos απ + i sin απ)dx

 =

= lim
R→∞
ε→0

 1
2πi

2i
R∫

ε

e−xt

xα
sin απdx− i

2π
iε1−α

π∫
−π

exp(i(1− α)θ + εeiθt)dθ

 =

=

∞∫
0

sin απ

π

e−xt

xα
dx

(18)

Taking Laplace transform of both sides of (18) implies thesis.

This theorem is one of the variants of similar approaches. Grabowski in [19] proved
the same result in a different way, generalizing to an entire class of diffusive realizations.
As we have mentioned, the advantageous aspect is that the complex variable s is no longer
explicitly raised to a non-integer power. We focus on this form of realization, as it gives the
integrated function in the simplest form.

Applications of diffusive realization until recent years were mostly focused on the-
orem proving. For example, in [19] it was used to show that fractional integrator can
stabilize an infinite dimensional system in a semigroup formalism. Moreover, it was
shown that stability is non-exponential which is a non-trivial result in infinite dimensional
system theory.

In the next section, we will show how to approximate diffusive realization using
quadratures, which gives a new class of fractional systems approximations.

3. Approximation of Diffusive Realizations

We see that formula (1) does not include the complex variable risen to a non-integer
power α. The only variable that has a non-integer exponent is the auxiliary integrated
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variable x. Obviously the integration cannot be done analytically, because it would defeat
the purpose—we would come back to a non-integer integrator. The main idea however is
that because quadratures, generally approximate integrals by a sum of weighted values of
integrated function at given points. In our case it would be

∞∫
0

sin απ

π

1
xα

1
s + x

dx ≈
n−1

∑
i=0

bi
s + xi

(19)

where

bi =
sin απ

π

wi
xα

i
(20)

and xi, wi denote nodes and weights of quadrature, respectively, for approximation of
other n.

This formulation is instantaneously advantageous for approximation, because the
fractional integrator is represented as a sum of first order lags. This is, a simple form in
the frequency domain but it is even better for time domain representation. State-space
equations for 19 are (assuming natural y as output and u as control)

ẋ(t) = Ax(t) + bu(t)

y(t) = cTx(t)
(21)

where A = −diag(a0, . . . , an−1), b = col(b0, . . . , bn−1) and c = col(1, . . . , 1). As a
continuous system is governed by a diagonal matrix, its discretization also will be diagonal,
as long as discretization method is structure preserving (most well used methods like Euler,
Tustin, and al-Alaoui have this property). Benefits of such structure are in detail explained
in our earlier works [5,6,20].

Choosing a quadrature for approximation is not easy. In [21], the authors used the
trapezoid rule. In [18], the rule of a rectangle with inhomogeneous nodes is considered.
Both approaches convert the integration interval from [0, ∞] to (0, ωmax] as xand are only
valid for high frequencies, but this causes integration errors, especially around ωmax. Even
though the integral (19) is defined over an infinite interval, many authors have considered
limiting this interval to only the one that contains the frequency band of interest.

In this paper, we want to consider the following approaches (expanding on our earlier
conclusions from [14,15]:

• Create approximation directly from integral on an unbounded domain using Gauss–
Laguerre quadrature.

• Create approximation from on an unbounded domain using variable change, which
results in Fourier–Chebyshev quadrature.

• Create approximation on a bounded domain, but on a logarithmic scale using Clenshaw–
Curtis and Gauss–Legendre quadratures.

The purpose of using a logarithmic scale is to provide balance frequency representation
for different orders of magnitude. We obtain that through substitution:

x = 10θ

Integration (1) for x ∈ [10a, 10b] reduces to

b∫
a

sin απ

π
log(10)10θ(1−α) 1

s + 10θ
dθ. (22)

In the following section, we describe quadrature formulas we use.
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4. Quadrature Formulas
4.1. Gauss–Laguerre Quadrature

Gauss–Laguerre quadrature computes integrals of form

∞∫
0

xαe−x f (x)dx (23)

with use of
N

∑
k=0

wL
k f (xL

k ) (24)

where nodes xL
j are poles of generalized Laguerre polynomial given by (see in [22])

Lα
N =

N

∑
m=0

(−1)m
(

N + α
N −m

)
xm

m!
(25)

and wL
j are defined as

wL
j =

Γ(N + α + 1)xL
j

N![(N + 1)Lα
N+1(xL

j )]
2

(26)

This quadrature is notoriously numerically fragile, and there are problems with com-
puting weights and nodes for high orders [23]. It is however one of the only quadratures
defined using orthogonal functions on L2[0, ∞].

4.2. Clenshaw Curtis and Fourier–Chebyshev Quadrature

Those quadratures are interpolating quadratures based on Chebyshev nodes of sec-
ond kind.

In modern analysis Clenshaw–Curtis quadrature is an interpolation quadrature on
Chebyshev nodes. In certain aspects, it is also equivalent to discrete cosine transform,
and can be computed using FFT. In the Clenshaw–Curtis quadrature, the nodes have
the form

xCC
j = cosj

π

n
, j = 0, 1, ..., n (27)

wCC =
[
wCC

0 wCC
1 · · · wCC

n
]

(28)

w∗ = ifft(g + v) (29)

where: v = [vk]1×n+1, g = [gk]1×n+1
vk = 2

1−4k2 , k = 0, 1, ...,
[ n

2
]
− 1

v[n/2] = n−3
2[n/2]−1 − 1

vn−k = vk, k = 1, 2, ...,
[ n−1

2

] (30)


gk = −wCC

0 , k = 0, 1, ...,
[ n

2
]
− 1

v[n/2] = wCC
0 [(2−mod(n, 2))n− 1]

vn−k = gk, k = 1, 2, ...,
[ n−1

2

] (31)

and wCC
0 = (n2 − 1 + mod(n, 2))−1.

The advantage of this quadrature is a very low computational complexity of deter-
mining the coefficients, equal to the complexity of the fast Fourier transform.

Fourier–Chebyshev quadrature is generally equivalent to Clenshaw–Curtis. The main
differences are their derivation and integration interval ([−1, 1] for Clenshaw–Curtis
and [0, π] for Fourier–Chebyshev). In this section, we consider a variant of the Fourier–
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Chebyshev quadrature proposed by Boyd [24]. It extends the integration domain to an
unbounded one. It is done by transformation

x = Lctg2(t/2) (32)

which maps interval [0,π] to [0, ∞], where L is a given constant. This yields

∞∫
0

f (x)dx =

π∫
0

2L f (Lctg2(t/2))
sin t

(1− cos t)2 dt (33)

Therefore, the quadrature takes form of sum

N

∑
k=1

wFC
k f (xFC

k ) (34)

where

xFC
j = Lctg2

( tj

2

)
(35)

wFC
j =

2L sin tj

(1− cos tj)2
2

N + 1

N

∑
m=1

sin mtj(1− cos mπ)

m
(36)

tj =
π j

N + 1
(37)

4.3. Gauss–Legendre Quadrature

Gauss quadrature, also known as Gauss–Legendre quadrature, is a quadrature where
the nodes are the roots of Legendre polynomials.

The main advantage of the Gauss–Legendre quadrature comes from the orthogonality
of Legendre polynomials. In particular, let us consider a polynomial p(x) of order 2N + 1.
Such a polynomial can always be written as p(x) = q(x) · lN+1(x) + r(x), where q(x) is a
polynomial of degree N + 1, lN+1(x) is a Legendre polynomial of degree N + 1 and r(x) is
a polynomial of degree N. When considering interpolation quadrature of degree N + 1 on
nodes, we can easily see that

∫ 1
−1 q(x) · lN(x)dx = 0 because of orthogonality of Legendre

polynomials and the integral of r(x) is exact because of uniqueness of interpolation poly-
nomials. These facts give that Gauss–Legendre quadratures on N + 1 nodes are exact for
polynomials of order 2N + 1. In the case of Gauss–Legendre quadrature, these formulas
for weights are, respectively,

xGL
j = λ(T), wGL

j = 2v2
1j (38)

where:

T =
1
2



0 1√
1−2−2 0 · · · 0 0

1√
1−2−2 0 1√

1−3−2 · · · 0 0

0 1√
1−3−2 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1√
1−n−2

0 0 0 · · · 1√
1−n−2 0


= Vdiag(λ(T))V−1 (39)

and V = [vij]n×n.
Gauss quadratures, thanks to orthogonality, are exact for polynomials of twice higher

order than other interpolation quadratures. In practice Clenshaw–Curtis quadrature offers
very similar precision [25]. Moreover, it has much smaller computational complexity.
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It should be also noted, that while based on interpolation both of these quadratures are
immune to Runge’s phenomenon, as both Legendre and Chebyshev nodes have asymptotic
distribution of 1/

√
1− x2 for [−1, 1] interval.

5. SoftFRAC Library to Realization Fractional Order Dynamic Elements

We can easily implement quadrature-based approximations in SoftFrac library. Soft-
FRAC is metalanguage software to approximate non-integer dynamic elements in MATLAB®,
Python and C. Currently it offers functionality to create state-space fractional model and

transfer function fractional model of the non-integer dynamic element
1
sα

based on approx-
imations described in the previous section.

Either low accuracy or lack of numerical stability characterizes competing (and avail-
able in open source form) software. SoftFRAC relies on algorithms developed as part of
the completed project, which are characterized by high numerical robustness and scalable
accuracy. We identified the initial potential recipients as academic entities (supporting
research on fractional differential equations and methods of designing control systems)
and innovative industry (new methods of signal processing and robust control).

State-space fractional model class (ssf) inherits from the MATLAB® Control Systems
ToolboxTM state-space model class (ss) and has all functionality of this class. Similarly,
transfer function fractional model class (ssf) inherits form transfer function model. In both
cases variables describing approximation extend standard object properties:

• ss - base MATLAB® object,
• A, B, C, D - matrix containing approximation parameters
• alpha - derivative order,
• omega_min - approximation frequency lower band,
• omega_max - approximation frequency upper band,
• approximation_order - approximation order
• method - name of approximation method

The Object-oriented programming (OOP) paradigm ensures the best quality of soft-
ware and the possibility of its further development. OOP refers to a computer programming
in which programmers define not only the data type of data structure, but also the op-
erations (functions) that can apply to the data structure. This approach improves the
ability to manage software complexity, which is particularly important when developing
and maintaining large applications and data structures. The concepts and rules used in
object-oriented programming provide these important benefits:

• Inheritance is the concept allowing defining subclasses of data objects that share some
or all of the main class characteristics. This property of OOP reduces development
time and ensures more accurate coding.

• Class defines only the data it needs to be concerned with. This protects running
instance of the class (an object) from accidentally accessing other program data.

• The concept of data classes allows the programmer to create any new data type that is
not already defined in the language itself.

OOP capabilities of the MATLAB® language enable developing complex technical
computing applications. In the MATLAB® environment we can define classes and apply
standard object-oriented design patterns, inheritance, encapsulation, and reference behav-
ior without engaging in the low-level housekeeping tasks required by other languages.

In SoftFRAC classes we implemented the method of conversion between different
the approximation methods described in the previous. Because we used inheritance
mechanism in the implementation. The user can use all functionalities of parent classes
ss and tf. In particular, the user can use this realization to Simulink® simulation, system
behavior analysis, and easy plotting of dynamic characteristics. We have added to the
classes a construction method for easy conversion between those types, from ssf to tff,
and vice versa. We present the UML diagram of the ssf class implementation in Figure 2.
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Figure 2. ssf class inherits from MATLAB® Control Systems ToolboxTM ss. Its methods allow model
conversion and typical functions.

Implementation Analysis

Table 1 presents a comparison of the time and memory needed to calculate the dis-
cussed approximations in MATLAB®.

For low orders of approximation, the memory needed to represent them does not
differ significantly from each other. Here, the main memory user is the environment.
With high orders, the differences in memory are noticeable and result from the number of
elements describing the approximation. Both methods need the same amount of memory
to function. Because of the execution time, the Clenshaw–Curtis quadrature method is
much faster in all cases.

Finally, the system generated by these methods generates a diagonal matrix. This
means that the use of such systems in control or filtering processes to calculate the next step
requires only O(n) (approximation order) operations, advantageous compared to typical
O(n2).

Table 1. Time run and memory performance comparison for proposed methods.

Approximation Order 10 100 1000 10,000

Gauss–Laguerre quadrature
time [s] 0.40 0.44 11.04 869.73

memory [Kb] 3,162,112 3,158,016 8,019,968 801,566,720

Clenshaw–Curtis quadrature
time [s] 0.03 0.007 0.028 1.90

memory [Kb] 3,162,112 3,158,016 8,019,968 801,566,720

6. Approximation Analysis

In order to analyze the approximation performance, we conducted error analysis
using H∞ norm. We considered the difference

e(s) =
1
sα
−

n

∑
i=0

bi
s + xi

for frequency [10−5, 105] rad/s. We increased the order of quadrature in order to observe
the change of norm of ‖e‖∞. We illustrate tests for α = 1/2 but there are systematic for all
orders α ∈ (0, 1).
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In the following subsections, we will discuss exemplary results of the approximation
analysis. We divided them into infinite and finite intervals.

6.1. Infinite Intervals

We increased the order of quadrature in order to observe the change of norm of ‖e‖∞.
In the Figure 3 we depicted this analysis. In the figure, we see quite slow convergence
(especially linear). We computed Laguerre–Gauss quadrature only up to 180 order because
of its numerical instability. Calculating the poles of Laguerre polynomials is also a known
problem [26].

10
1

10
2

10
3

Quadrature order

0

50

100

150

200

250

300

350

H
 n

o
rm

 o
f 

e
rr

o
r

Fourier Chebyshev

Gauss-Laguerre

Figure 3. Analysis of ‖e‖∞ norm with increasing order of quadrature, for methods defined on
unbounded domain. Gauss–Laguerre quadrature rules for order >180 could not be obtained because
of ill conditioning of that problem. Convergence of both methods is very slow.

We conducted also a detailed analysis of Bode plots for both types of quadratures.
In Figures 4 and 5, we depicted the characteristics for frequency [10−5, 105] rad/s and
approximation order ranging from 25 to 100. We can see that both approximations show
good fitness in the middle of frequency interval and errors on both ends. The error for low
frequencies in natural because it is impossible to get infinite gain with a finite number of
first-order lag systems. Similarly, the error for higher frequencies results from the difference
between order of numerator and denominator of approximation. Because transfer function
is strictly proper, it damps high frequencies at least 20 db/dec. Note that for Fourier–
Chebyshev quadrature, the interval of fitness is wider.
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Figure 4. Bode plot for approximation order 25 to 100 for Fourier–Chebyshev quadrature.
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Figure 5. Bode plot for approximation order 25 to 100 for Gauss–Laguerre quadrature.

We can observe the cause of such fit in Figures 6 and 7. Their (for various orders) gains
are presented as a function of time constant for the terms of approximating sum (19). We
can see that for Fourier–Chebyshev we have the most time constants between 1/10 and 10
s (it increases with increasing approximation order). In case of Gauss–Laguerre quadrature,
the time constants are gathered around 0.01 s. Moreover, for Fourier–Chebyshev the time
constants cover wider range of frequencies for the same approximation order. The differ-
ence between the smallest and largest time constant is 4 decades in comparison with 8 for
Fourier–Chebyshev. It can be also seen that the biggest gain is for the longest time constant.
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Figure 6. Comparison of time constants and gains of elements of approximating sum for Fourier–
Chebyshev approximation.
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Figure 7. Comparison of time constants and gains of elements of approximating sum for Gauss–
Laguerre approximation

6.2. Finite Intervals

For finite interval quadratures, we have tested both Gauss–Legendre and Clenshaw–
Curtis simultaneously. We did our testes for the integration intervals of [−5, 5] and [−7, 7],
which correspond to frequency ranges of [10−5, 105] and [10−7, 107], respectively.

For initial analysis we have considered the integration interval of [−5, 5] for (22)
corresponding to [10−5, 105] rad/s for original integral. In Figure 8, we depicted this
analysis. After initial convergence, the error stops decreasing and fixes on a certain value.
The limitation of an infinite interval causes this error into a finite one. Indeed, one can
observe in the Figure 9 that increasing the interval to [−7, 7] results in dropping of error
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by an order of magnitude. For both intervals we can observe rather quick stabilization of
approximation error. The low error for Clenshaw–Curtis quadrature of low order is caused
by an artifact of oscillating phase error for high gains.
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Figure 8. Analysis of ‖e‖∞ norm with increasing order of quadrature for the integration interval of
[−5, 5]. Isolated low error is an artifact of phase oscillation.
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Figure 9. Analysis of ‖e‖∞ norm with increasing order of quadrature for the integration interval of
[−7, 7].

The cause of the fixed error is the phase errors at low frequencies. We can observe
it on the Bode plots in Figures 10–13. Bounded domain approximations are much better
than unbounded ones, and for high orders on wider domains are practically indistinguish-
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able, with phase errors of ±2◦. We can however see that these errors are not vanishing,
and because of large low-frequency gains are dominating.
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Figure 10. Analysis of frequency responses approximations with Clenshaw–Curtis quadrature and
the integration interval of [−5, 5].
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Figure 11. Analysis of frequency responses approximations with Clenshaw–Curtis quadrature and
the integration interval of [−7, 7].
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Figure 12. Analysis of frequency responses approximations with Gauss–Legendre quadrature and
the integration interval of [−5, 5].
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Figure 13. Analysis of frequency responses approximations with Gauss–Legendre quadrature and
the integration interval of [−7, 7].

To consider the differences between quadratures, we can compare the gain-time
constant pairs illustrated in the Figure 14. Both quadratures generate practically indistin-
guishable approximations for higher orders. Gains and time constants are also similarly
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distributed. This, however, does not explain the issues with low-frequency behavior, which
we will address in the next section.
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Figure 14. Comparison of time gains and time constants for bounded domain quadratures. For
both methods distribution of gain-time constant pairs is similar with concentration of time constants
ant the integration interval boudary (a) Clenshaw–Curtis quadrature on the [−5, 5] interval; (b)
Gauss–Legendre quadrature on the [−5, 5] interval; (c) Clenshaw–Curtis quadrature on the [−7, 7]
interval; (d) Gauss–Legendre quadrature on the [−7, 7] interval.

7. Discussion of Low Frequency Behavior

We can trace the issues with problems of uneven approximation over the frequency
interval to Bernstein theorem.

Theorem 1 (Bernstein). Let a function f analytic in [−1, 1] be analytically continuable to the
open Bernstein ellipse Eρ, where it satisfies | f (x)| ≤ M for some M. Chebyshev interpolants pn of
f satisfy

‖ f − pn‖ ≤
4Mρ−n

ρ− 1

where ρ is the length of the semi-major axis of Eρ plus the length of the semi-minor axis.

For Chebyshev polynomial projections, the bound is twice smaller, and for Legendre
polynomial projections, the result is similar.

We can observe that we compute definite integral of analytic function for each fre-
quency value. For all frequencies, in the bounded domain that function is analytic in certain
Bernstein ellipse, i.e., ellipse with foci in edges of integration interval. However, while
frequencies are approaching towards zero the analyticity ellipse shrinks. Because of that ρ
constant is rapidly approaching 1, reducing order of convergence. We can observe it in the
Figure 15, where we can see that while there is no problem for high and mid frequencies
(Figure 15b,c) for frequencies such as 10−5 rad/s ellipse shrinks to the interval itself.
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Figure 15. Bernstein ellipses for different points at the frequency response. According to Bernstein
theorem convergence speed of analytic functions is controlled by the ρ coefficient which is the sum of
lengths of both semiaxes. Approximated function is analytic for all frequencies in the integration
interval, but for low frequencies analyticity region is vanishingly small. (a) Bernstein ellipse for
integrated function in (22) for the frequency ω = 105 rad/s. ρ coefficient is approximately 3 ensuring
fast convergence. (b) Bernstein ellipse for integrated function in (22) for the frequency ω = 1 rad/s.
ρ coefficient is approximately 2, which is still fast converging. (c) Bernstein ellipse for integrated
function in (22) for the frequency ω = 10−5 rad/s. ρ coefficient is approximately 1, which causes
convergence to be very slow.

8. Conclusions

In this paper, we have presented results considered practical application of diffusive
realization of fractional order integration. With no doubt, the bounded domain methods
are more efficient, however they introduce a fixed approximation error. That error arises
from the problems with analyticity of integrated function around zero. In SoftFrac, we
implement the entire approximation scheme with both Gauss–Legendre and Clenshaw–
Curtis methods. If however we will determine more efficient quadrature rule, extensions
are readily available. Moreover, the open license for academic users will allow introducing
it also easily. We can find all the details about SoftFrac on the package website: http:
//non-integer.pl (accessed on 23 July 2021).
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