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Abstract: Methods for evaluating low-frequency noise, such as 1/f noise and random telegraph
noise, and evaluation results are described. Variability and fluctuation are critical in miniaturized
semiconductor devices because signal voltage must be reduced in such devices. Especially, the
signal voltage in multi-bit memories must be small. One of the most serious issues in metal-oxide-
semiconductor field-effect-transistors (MOSFETs) is low-frequency noise, which occurs when the
signal current flows at the interface of different materials, such as SiO2/Si. Variability of low-
frequency noise increases with MOSFET shrinkage. To assess the effect of this noise on MOSFETs, we
must first understand their characteristics statistically, and then, sufficient samples must be accurately
evaluated in a short period. This study compares statistical evaluation methods of low-frequency
noise to the trend of conventional evaluation methods, and this study’s findings are presented.

Keywords: MOSFET; low-frequency noise; random telegraph noise; evaluation method; array
test pattern

1. Introduction

Semiconductor devices have been basically progressed with the shrinking of MOSFETs
(metal-oxide-semiconductor field-effect-transistors), which are used as the key component
in them. The shrinkage has been performed following the rule of the constant electric
field in MOSFETs, which decreases signal voltage [1,2]. In addition, power consumption
of electronic devices has skyrocketed because the amount of digital data generated is
growing at a rate faster than Moor’s law [3,4]. The reduction of power consumption
strongly requires decreasing supply voltage of MOSFETs because power consumption (P)
is proportional to the square of the supply voltage (Vdd) as follows [5].

P = CLV2
ddf (1)

where CL represents the load capacitor and f represents the switching frequency of the
circuit. The growth of clock frequency in the leading edge logic devices has stopped by
exceeding the heat extraction capability. However, the downscaling has been continued
to reduce the cost. In the other devices, the downscaling the device size has also been
continued to reduce the power consumption and the other reasons. As a result, as the
device size is reduced, the signal voltage of MOSFETs decreases. Memory devices’ power
consumption and supply voltage also have to be reduced [6–9] because of the same reasons
as the logic devices and reducing a leakage current. On the other hand, a decrease in signal
voltage degrades the reliability of electronic circuits, including analog and digital devices.

The logic (bit) error rate (LER) is given by the following equation.

LER = P0

∫ α

−∞
f0(x)dx + P1

∫ ∞

α
f1(x)dx (2)

where P0 and P1 represent the probabilities of signals “0” and “1”, respectively, α represents
the identification level between “0” and “1”, and f0(x) and f1(x) represent noise amplitude
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densities superimposed on “0” and “1”, respectively. If f0 and f1 are Gaussian noise, the
following equations apply.

f0(x) =
1√

2πσ2
e−

x2

2σ2 , f1(x) =
1√

2πσ2
e−

(x−AS)
2

2σ2 (3)

where AS represents the signal amplitude and σ represents the standard deviation of the
noise. When P0 = P1 = 1/2 and α = AS/2 are assumed, the LER is given by the following
equation from Equations (2) and (3).

LER =
1
2

erfc
(

AS

2
√

2σ2

)
(4)

erfc(x) = 1− erf(x) = 1− 2√
π

∫ x

0
e−t2

dt =
2√
π

∫ ∞

x
e−t2

dt (5)

When Nyquist transmission rate is the same as the signal band, the signal to noise
(S/N) ratio (dB) is given by the following equation.

S
N

=
Eb
N0

= 20 log
(

AS

σ

)
(6)

where Eb and N0 represent signal and noise energy per second, respectively. From Equa-
tions (4) and (6), the LER is given by the S/N ratio as follows [10].

LER =
1
2

erfc
{

1
2
√

2
10

1
20 (

S
N )

}
(7)

Figure 1 shows the LER as a function of S/N (dB) and A/σ ratios [10]. The LER
decreases with an increase in S/N (AS/σ) ratio. On the other hand, to guarantee that a
system does not make a mistake even once during the operation period, the LER should be
reduced as shown in the following equation.

LER ≤ 1
NL × F× T

(8)

where NL, F, and T represent the number of logic gates in a chip, the number of operations
per second, and the guarantee period, respectively. For example, the LER should be less
than 3× 10−26 for a circuit with 108 logic gates, 109 Hz operations, and a 10-year (3 × 108 s)
operation period, and then the S/N (AS/σ) ratio should be greater than 26.5 dB (21.1).
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Figure 1. Logic error rate as a function of S/N and A/σ ratios.
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For example, we consider signal electrons required from a no error operation. Figure 2
shows (a) Variation in the number of electrons as a function of the number of signal
electrons. (b) Logic error rate as a function of the number of signal electrons. When a
signal is constructed by a constant number of electrons (Ne), the standard deviation of the
number of electrons is (Ne)1/2, and then the A/σ ratio is (Ne)1/2. As a result, the number
of electrons must be greater than 445 to maintain an S/N (AS/σ) ratio of 26.5 dB (21.1).
If the number of signal electrons is 1, the LER must be equal to 0.3. Then, such a system
produces the wrong output once every three calculations.
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The electronic circuit will be influenced by noise, such as thermal noise, quantum noise,
and flicker noise. The noise voltage (vnf) in 1/f noise is defined by the following equation.

vnf =

√
KF

COX × L×W
ln
(

fH

fL

)
(9)

where KF represents the flicker noise coefficient, fL~fH is the frequency period for device
operation, COX, L, and W represent the gate oxide capacitance, gate length, and gate
width of a MOSFET, respectively. Noise increases with device shrinkage because vnf is
inversely proportional to

√
COXLW [11–14]. It has been pointed out that 1/f noise may

influence not only analog devices, but also digital devices when device shrinkage and the
decreasing signal voltage are moved on [15]. Random telegraph noise (RTN), another low-
frequency noise also affects electronic devices, such as CMOS image sensor [16–21], static
random access memory (SRAM) [22–25], dynamic random access memory (DRAM) [25],
and flash memory [26–32]. Low-frequency noise, such as 1/f noise and RTN, have high
variability [33,34] because they must be statistical phenomena by nature, and statistical
analysis is required to fully understand this phenomenon. The conventional evaluations of
the noise in MOSFETs have performed with a few sample numbers, and then we could
understand only typical noise characteristics of MOSFETs having relatively large noise.
However, we need statistical information of the noise for the design of LSI. Then, low-
frequency noise statistical evaluation methods and evaluation results are described in
this study.

2. Evaluation Methods
2.1. Test Pattern for Noise Evaluation

The test structure is constructed using 0.22 µm, 1-poly 2-metal standard CMOS tech-
nology and includes n-MOSFETs of various gate sizes [35–38] as shown in Table 1. The
measured MOSFETs are arrayed in 1024 rows and 1776 columns (total number of MOSFETs:
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1217856) in a chip at 5 µm intervals. The size of the MOSFETs, and their number, and
location in a chip are shown in Table 1. The test chip has an area of 5.5 mm × 14 mm. The
gate insulator is formed by pyrogenic oxidation and is 5.8 nm thick.

Table 1. Number of n-MOSFETs for each transistor size.

Gate Length (µm) Gate Width (µm) Number of MOSFETs Supply Voltage (V)

0.22 0.28 131,072 (128 × 1024)

2.5

0.22 0.30 131,072
0.24 0.30 131,072
0.24 1.5 131,072
0.24 15 131,072
0.4 1.5 32,768 (128 × 256)
0.4 15 32,768
1.2 0.3 65,536 (64 × 1024)
1.2 1.5 65,536
4.0 0.30 65,536
4.0 1.5 65,536

0.24 0.30 32,768 (AR:100)
0.24 0.30 4096 (16 × 256, AR:1000)
0.24 0.30 1344 (32 × 42, AR:10000)

0.4 1.5 131,072

3.3
0.4 15 32,768
1.2 15 16,384 (64 × 256)
4.0 15 16,384

AR: Antenna ratio.

A schematic block diagram of a test pattern is shown in Figure 3a [35,37,39,40]. This
is composed of MOSFETs measured in arrayed unit cells, vertical and horizontal shift
registers for addressing measured MOSFETs, MOSFETs located on each column for current
control of measured MOSFET, analog memories for storing the source voltage of the
measured MOSFETs within one line, and a source follower circuit for amplifying the output
signal. The drain (VD) and gate (VG) voltage in measured MOSFETs and the gate voltage
applied to current source MOSFETs (VREF) are supplied from the external voltage source
simultaneously. VDD and VSS are the supply voltages in the peripheral circuits and ground
voltage, respectively. The measured MOSFET and current source transistor construct a
source follower circuit using a select transistor. This test structure uses simple peripheral
circuits. Therefore, it can be used to evaluate various MOSFETs with varying gate lengths,
gate widths, gate insulator films, thicknesses, and other characteristics. Figure 3b shows
the circuit schematic of a unit cell and current source transistor in Figure 1, which is the
principle of this measurement. A unit cell is constructed with a measured MOSFET and a
select transistor. When the current source transistor operates at a saturation region, IREF is
independent of the voltage between the source and drain in the current source transistor
(Vout). When the gate bias of the select transistor (Φx) is applied from a vertical shift
register, IREF flows into the measured MOSFET. The output voltage (Vout) is indicated
as follows.

Vgs = VG −Vout − IREF·Rselect ≈ VG −Vout (10)

where Rselect is the channel resistance of the select switch transistor. The select transistor
must be operated in the linear region to have sufficient high channel conductivity compared
with the measured MOSFET, and then, IREF·Rselect can be neglected. The output signal
can be obtained as a source voltage for each measured MOSFET by shift register scanning,
and then 1.2 million MOSFETs can be measured within approximately 0.7 s. The electrical
characteristics of the measured MOSFETs can be observed as the Vgs included in the output
voltage Vout (Figure 3b). In this frame measurement mode, each MOSFET can be measured
every 0.7 s. This test pattern has another measurement mode, which can measure a specific
MOSFET every 1 µs.
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2.2. Extraction of Amplitude and Time Constant of RTN

Two-level type RTN is characterized by only three parameters, which are the mean
time to capture (<τc>), mean time to emission (<τe>), and amplitude (∆Vgs). The time
constants correspond to two physical states of a trap, that is, τc and τe represent spans
in a low Vgs level (carrier trapping state) and high Vgs level (carrier emission state),
respectively (Figure 4a). The RTN amplitude ∆Vgs is defined as the difference between two
normal distributions in a voltage histogram (Figure 4b). We extract the time constants by
fitting the distributions of τc and τe to the exponential distribution (Ae−t/<τ>) because the
phenomenon is governed by the Poisson process. The time constants can be extracted with
µs accuracy using the specific MOSFET measurement mode.
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The time constant ratio <τe>/<τc> is also an important parameter in RTN because the
energy level of a trap that causes RTN is related to the constant ratio as follows [12,41–43].

< τc >

< τe >
= gexp

(
ET − EF

kT

)
(11)

where ET and EF represent the energy of the trap and Fermi energy of the channel, re-
spectively; k, T, and g represent Boltzmann constant, temperature, and degeneracy factor,
respectively, where g is assumed to 1. Then, the energy of the trap level is indicated by (12).

ET − EF = kTln
(
< τc >

< τe >

)
(12)

We can use the frame measurement mode to extract the time constant ratio, and the
1.2 million MOSFETs can be measured 10,000 times in 7000 s (sampling period = 0.7 s). An
average of the time constant ratio <τe>/<τc> is the same as Count-L/Count-H (shown in
Figure 4b), where Count-L and count-H are the numbers of low and high states, respec-
tively [41–44]. When the time constant is greater than a sampling frequency of 0.7 s, the
detected number of transition times is the same as the transition time of RTS characteristics.
However, when the time constant is less than 0.7 s, the detected number of transition times
is less than the real one; however, it is proportional to the real one because the absolute
value of the time constant, which is less than the sampling frequency, cannot be extracted
in this measurement. Then, the number of transition times is defined as the detected ones
in the sampling frequency of 0.7 s.

2.3. Root Mean Square of RTN Waveform

The root mean square (RMS) of the signal waveform is often used for the representative
parameter of noise [45], and the RMS of the output voltage VRMS is defined as follows in
this study.

VRMS =

√
∑N

i=1
(
Vout,i −Vout

)2

N− 1
= A

√
< τe >< τc >

< τe > + < τc >
(13)

where Vout,i, Vout, N, and A are the output voltage at ith sampling, average of Vout, sam-
pling numbers, and the amplitude of two-state RTN, respectively. Using VRMS, we can
obtain MOSFETs with high noise from many measured MOSFETs. Figure 5 shows the rela-
tionship between VRMS and RTN waveform. The waveform with large RTN corresponds
to large VRMS.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 25 
 

 

2.3. Root Mean Square of RTN Waveform 
The root mean square (RMS) of the signal waveform is often used for the representa-

tive parameter of noise [45], and the RMS of the output voltage VRMS is defined as follows 
in this study. 

V = ∑ V , − VN − 1 = A 〈τ 〉〈τ 〉〈τ 〉 + 〈τ 〉 (13)

where V , , V , N, and A are the output voltage at ith sampling, average of V , sam-
pling numbers, and the amplitude of two-state RTN, respectively. Using VRMS, we can ob-
tain MOSFETs with high noise from many measured MOSFETs. Figure 5 shows the rela-
tionship between VRMS and RTN waveform. The waveform with large RTN corresponds 
to large VRMS. 

 
Figure 5. Relation between VRMS and RTN waveform. 

3. Results and Discussion 
3.1. Statistical Evaluation of RTN Characteristics 

The 1/f noise increases with downscaling of MOSFETs, as mentioned above, and RTN 
also increase with the downscaling [12,36,37]. Figure 6 shows the Gumbel plot of VRMS for 
the various MOSFET sizes [36,37]. A large VRMS can be observed in small-size MOSFETs 
(L/W = 0.22/0.28, 0.22/0.3, 0.24/0.3 μm). In this experiment, noise cannot be observed in 
large MOSFETs because the floor noise is relatively high at ~2.5 mV. 

 

Figure 5. Relation between VRMS and RTN waveform.



Electronics 2021, 10, 1759 7 of 24

3. Results and Discussion
3.1. Statistical Evaluation of RTN Characteristics

The 1/f noise increases with downscaling of MOSFETs, as mentioned above, and RTN
also increase with the downscaling [12,36,37]. Figure 6 shows the Gumbel plot of VRMS for
the various MOSFET sizes [36,37]. A large VRMS can be observed in small-size MOSFETs
(L/W = 0.22/0.28, 0.22/0.3, 0.24/0.3 µm). In this experiment, noise cannot be observed in
large MOSFETs because the floor noise is relatively high at ~2.5 mV.
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Figure 7a shows the Gumbel plot of VRMS for the various IDS varied from 0.13 to
12.7 µA. The sizes of MOSFETs are L/W = 0.22/0.28 µm and VBS = −1.0 V [39]. The data
in (a) and (b) were measured by the frame and specific MOSFET measurement modes,
respectively. The number of MOSFETs with large noise increases with decreasing IDS,
which is controlled by Vgs. This means that the event probability of large noise increases
with decreasing Vgs because the number of channel electrons decreases with decreasing
Vgs, and then the effect of a trapped electron charge becomes large with decreasing number
of channel electrons. The number of channel electrons also decreases with the shrinkage
of transistor size shown in Figure 6, and then, the probability increases with decreasing
channel size. Figure 7b shows the waveform of typical MOSFETs for IDS of 0.13, 0.38, and
1.3 µA [39]. The time constants and amplitude are modulated by IDS. With increasing
IDS (Vgs), amplitude and τc decrease, whereas τe slightly increases. An increase in Vgs
decreases ET-EF, and then, the time to capture decreases as shown in Equation (11). The
difference between the modulation of τe and τc is discussed later. The modulation of
amplitude is caused by a decrease in the number of electrons, as discussed above. It is
considered that decreasing the time to capture and increasing amplitude with decreasing
Vgs increases the event probability of large noise. Figure 8a shows the Gumbel plot of
VRMS for the various back bias (VBS). VBS varied from −0.075 to −1.38 V, and Figure 8b
shows the waveform of typical MOSFETs for VBS of 0.6 1.0 and 1.3 V [39]. The probability
increases with the absolute value of VBS in (a). In this experiment, IDS was constant at
1.0 µA, and this means that the number of electrons was almost the same for each VBS.
Increasing VBS caused channel percolation [46–49], making the channel thickness narrow
and percolated and increasing electron energy [50]. The probability is increased by channel
percolation [46,47], and the varying electron energy modulates the time constants. In
MOSFETs with RTN, the amplitude does not increase with increasing VBS because the
number of electrons is the same for each VBS. This means that channel percolation increases
the probability of RTN generation.
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Figure 9 shows the Gumbel plot of the RTN amplitude for MOSFETs with varying
channel doping [51]. The channel percolation is accelerated by increasing channel doping
concentration [46–48]. This figure shows that the probability of the number of MOSFETs
with large amplitude increases with doping concentration. RTN is increased by channel
doping as well as doping the concentration near the source and drain regions. Figure 10
shows the Gumbel plot of VRMS for various Halo implantation concentrations [52]. The
number of MOSFETs with large RTN increases with an increase in Halo implantation con-
centration. This indicates that the high dose in the channel region or near the source/drain
region results in high RTN because of channel percolation enhancement.
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Figure 11 shows the energy band diagrams and energy distribution of traps causing
RTN for Vgs of 0.57, 0.53, and 0.46 V, respectively [41,42]. The difference between ET and
EF for electrons is calculated using Equation (11). The blue shading and red solid bars
in Figure 11 show the energy distribution of traps causing RTN in each measurement
condition and common traps in all conditions, respectively. Although the shape of the
distribution of each Vgs is almost the same, and the energy of common traps in all Vgs
increases with decreasing Vgs. The conduction band edge (EC), the bottom sub-band
energy (Esub), and 2nd sub-band energy (E2nd) in the inversion layer and EF are indicated
in Figure 11 [50]. The energy levels of sub-bands were calculated using Equation (14) [50].

Ej =

[
3hqEs

4
√

2mx

(
j +

3
4

)] 2
3
, j = 0, 1, (14)

where Es is the electric field, h and mx represent Planck’s constant and effective mass of
electrons, respectively. Ej is jth sub-band energy, and Esub and E2nd represent E0 and E1,



Electronics 2021, 10, 1759 10 of 24

respectively. The main energy distribution for each Vgs locates higher energy than the
conduction band edge. It is considered that the energy level of traps is widely distributed,
and the energy of the detected traps is determined by the electron energy in Esub and E2nd.
Conversely, the energy of common traps in all Vgs increases with decreasing Vgs because
the influence of trap energy on Vgs is larger than that of electron energy in the channel.
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0.46 V, respectively.

3.2. Multi-State RTN

Large VRMS RTN includes both two-state and multi-state RTN [34,53–56], which is
considered to be generated by multi-traps. The analysis of trap characteristics, such as
time constants and amplitude, in multi-state RTN is more difficult than that of two-state.
Figure 12 shows the appearance probability of RTN with two, three, four, and more than
four states. A large RTN (VRMS > 680 µV) was obtained by a frame measurement mode of
the sampling period of 0.7 s/frame in IDS = 1 µA. 131,072 MOSFETs (L/W = 0.22/0.28 µm)
were measured, and 2575 MOSFETs with large VRMS can be extracted. Then, we selected
MOSFETs with large RTN and measured them by a specific measurement mode of a
sampling period of 1 µs and a long sampling time of 10 min (sampling points = 6 × 108)
for the same bias condition [57,58]. Figures 13–15 show the (a) waveform, (b) time lag plot
(TLP), and (c) histogram for typical three-, four-, and six-state RTN. The number of peaks
and the transition of each state can be understood via TLP [53,54,56].
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Figures 13–15 show the (a) waveform, (b) time lag plot (TLP), and (c) histogram for
typical three-, four-, and six-state RTN. The number of peaks and the transition of each
state can be understood via TLP [53,54,56]. Figures 13, 14 and 15b show the relationship of
ith and (i + 10)th Vgs for the constant IDS. As shown in Figure 13b, transitions occur not
from the lowest state to the highest state, but only via the medium state. When the trapping
probability of some traps is even, the number of states should be even, and the transition
from one position to the next can occur. To begin with, an odd number of states implies
that the trapping probability for each trap is not independent of each other. A similar
transition phenomenon occurs even in a four-state case. As shown in Figure 14b, transitions
did not occur from the lowest state to the highest state or from the second-lowest state
to the second-highest state. This also means that there are more than two traps, and the
probability of trapping for each trap is not independent of each other. The characteristics of
multi-trap RTN can be understood via TLP and waveforms [56]; however, these analyses
become more difficult as the number of states increases.
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3.3. Time Constants in Individual RTN

As the extraction of multi-trap phenomena is difficult, as discussed in Section 3.2, we
discuss the time constants and amplitude only in two-state RTN [59]. Figure 16 shows (a)
τc and (b) τe as a function of IDS, respectively. These data are measured at IDS of 0.1, 0.3,
1.0, 3.0, and 5.0 µA. The data in Figure 16 show how parameters from all two-level RTN
can be extracted in common under four or five IDS, and thus, the number of selected data
points was 22.
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Figure 17a shows τc/τe and ET-EF as a function of IDS and Figure 17b band diagram
of MOS structure for changing VGS (IDS). τc/τe and ET-EF are calculated from the data in
Figure 16 and Equation (12), respectively. τc and τe decrease and increase with an increase
in IDS (VGS), and the absolute slope of τc is significantly larger than that of τe. Large trap
energy (ET) decreases with an increase in VGS than that of channel electron (EC: bottom
energy of conduction band). Then, with increasing VGS (IDS), the energy barrier from the
channel electron to the trap decreases and that from the trapped electron to the channel
increases. As a result, the time to capture and time to emission decreases and increases,
respectively, with increasing VGS (IDS). The transition probability depends on the energy
barrier height between a trap and channel. τe depends only on the energy barrier because
only one electron is captured in a trap. Meanwhile, τc depends not only on the energy
barrier, but also on the number of electrons in a channel because the number of channel
electrons increases as VGS (IDS) increases. Then, the dependency of τc on IDS is more
significant than that of τe. ET-EF in Figure 17 changed by approximately 175 mV during
IDS (VGS) from 0.1 (0.53V) to 5.0 µA (0.75V). Based on these values, ET-EF changes by 0.18 V,
whereas VGS changes by 0.22 V. The distance between the traps and the channel was 4.6 nm
due to the gate oxide thickness of 5.7 nm. However, τc depends not only on the trap energy,
but also on the number of channel electrons; thus, ET-EF values cannot be calculated using
Equation (12). The distance is considered to be shorter than the calculated value. τe values
for almost all samples monotonically increased with increasing IDS. This suggests that
the distance from the trap to the channel is shorter than that to the gate electrode. The
distance between the trap and channel is shorter than 2.85 nm, which is the center of
the gate oxide thickness. Figure 18a,b show the amplitude and transition frequency as
a function of IDS for the same samples as those in Figures 16 and 17, respectively. For a
sufficiently long measuring period, the transition frequency (TF) was calculated using the
following equation.

TF ≈ Ne

τe
≈ Nc

τc
(15)
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Figure 18. (a) Amplitude and (b) transition frequency as a function of IDS.

The amplitude decreases and the TF increases with an increase in IDS for almost all
samples. This is caused by the increase in the number of channel electrons as IDS increases.
However, the amplitude and TF of some samples did not exhibit monotony, which is due to
the percolation channel effect [46–49]. The distance between the channel and trap changes
as IDS (VGS) changes because of the formation of the percolation channel.

3.4. Effect of Drain Current on Appearance Probability and Amplitude

Figure 19 shows the Gumbel plot of the VRMS for 18,048 MOSFETs. IDS varied from
0.1 to 20 µA. The floor noise in this experiment was smaller than the others and was
approximately 35 µVRMS [60]. In Figure 7, VRMS decreases with an increase in IDS for all
VRMS. In Figure 19, larger VRMS can also be observed in small IDS in relatively large VRMS
regions. However, the higher appearance probability in large IDS than that in small IDS for
the small VRMS region of less than 500 µV could not be observed in Figure 7 because the
floor noise was approximately 1 mV in that experiment. The amplitude characteristics are
the same as the VRMS characteristics, and the distribution of the time constants is the same
for all conditions [60]. Figure 20 shows the frequency of RTN with two, three, and more
than three states in 18,048 MOSFETs. The frequency of all states increases with IDS.
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noise was a 35-µVRMS.
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Figure 20. Frequency of RTN with two, three, and more than three states in 18,048 MOSFETs.

It is assumed that the probability that electrons and percolation paths are close to
each other increases as IDS increases, increasing the number of electrons in the channel
and the number of percolation paths. Figure 21 shows the Gumbel plot for the amplitude
of two-state RTN. Notably, frequency sometimes increases with an increase in IDS even
though the effect of trapped electrons on the channel decreases with an increase in the
electron density in the channel.
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3.5. Modulation of Time Constants

In Section 3.3, the time constants were measured under constant conditions. The
differences between time constants and VRMS in continuous on-state and periodically
switched conditions are discussed in this section [61]. As shown in Figure 16, VGS depen-
dance on τc is larger than that of τe, and this suggests that the cycle period (τc + τe) in
on-state is longer than that in off-state because the VGS of off-state is smaller than that of
on-state. Figure 21a,b show the time constant relationship between continuous on-state
and periodically switched conditions. In the periodically switched condition, MOSFETs
cycled for 10.6 msec in 700 ms, which was a measurement cycle. Although τe of almost all
samples are the same in both conditions, τc of some samples in the periodically switched
condition is larger than that in continuous on-state. Figure 22 shows (a) histogram of the
VRMS difference between continuous on-state and periodically off-state (∆VRMS) and (b)
schematic waveform of RTN in continuous on-state and periodically off-state, respectively.
Though VRMS of 5% samples was increased, that of 95% was not changed or decreased
in the periodically switched condition. As a result, VRMS decreased in the periodically
switched condition, with a few exceptions. This suggests that VRMS can be reduced by the
modulation of operation conditions, even in the same MOSFET.
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3.6. Device Structure Dependence of RTN

In the above results and discussions in Sections 3.1–3.5, the dependance of RTN
characteristics on operation conditions is mainly described. In Section 3.6, the dependance
of RTN characteristics on the structure of MOSFETs, such as buried channel MOSFETs and
asymmetric source–drain structure MOSFETs, are described [57,62–65].

3.6.1. Buried Channel MOSFETs

Figure 23 shows the structure of buried channel MOSFETs studied in this work. To
discuss the effects of n-Si layer widths and the distance between the channel and SiO2/Si
interface, n-Si layer width was varied to be 0, 10, 25, and 60 nm for standard, narrow,
middle, and deep samples formed by arsenic ion implantation, respectively, and the high-
energy ion implantation created not only a deep channel, but also a wide channel in the
vertical direction to the SiO2/Si interface. Figures 24 and 25 show the Gumbel plots of
VRMS for the standard, narrow, middle, and deep samples and the VBS dependance of VRMS
for the narrow, middle, and deep samples, respectively [57,65].
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The channel length and width were 0.22 and 0.28 µm, respectively, IDS was 100 nA,
and VBS in Figure 24 was−1.5 V and varied from−1.0 V to−2.0 V in Figure 25, respectively.
The VRMS values for the standard and Narrow samples are the same, and the frequency of
large VRMS decreases with an increase in n-Si width and/or depth. This means that RTN
cannot be decreased by the 20 nm buried channel, but can be decreased by forming a buried
channel of 40 nm and more. By increasing the back bias, VRMS increases for all samples,
and the effect of VBS remarkably appeared for the wide sample. By applying the back bias,
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the channel pushes onto the SiO2/Si interface, and the channel thickness decreases. The
buried channel is extremely effective for decreasing RTN because the channel is separated
from SiO2/Si interface and the wide channel becomes difficult to form the percolation path.
Furthermore, the buried channel MOSFET in the isolated well was employed to evaluate
VBS dependance [64], and VBS can be varied from 0 V in this structure because the well
voltage can be changed freely. The gate length and gate width of the MOSFETs are 0.32 and
0.32 µm, respectively, IDS was 1 µA, vs. was 1.5 V, and Vwell of the normal well and isolated
well were 0 and 1.5 V, respectively; thus, VBS was set at −1.5 and 0 V for the normal well
and isolated well, respectively.

Figure 26 shows the Gumbel plot of the VRMS for the buried channel and surface
channel MOSFETs with the back bias conditions of 0 and −1.5 V. VRMS of the buried
channel MOSFETs at VBS = −1.5 V is significantly less than those of surface channel;
however, that at VBS = 0 V is larger than those of the surface channel even though those
of the surface channel do not depend on VBS. Figure 27 shows the normal probability
plot of the subthreshold swing for the same sample of Figure 26. The subthreshold swing
of buried channel MOSFETs with VBS = 0 is much smaller than the others. A strong
relationship between the subthreshold swing and VRMS has been reported [64]. The result
strongly suggests that the increase in VRMS is enlarged by the physical origin, which
increases the subthreshold swing, and the origin is an enhancement of the percolation path
formation [64]. Note that RTN has to be enhanced by a minimal small gate control effect
on the channel. Furthermore, the variability of the threshold voltage is increased using the
buried channel MOSFETs; thus, we cannot introduce buried channel MOSFETs when the
fixed pattern noise is critical for device performance.
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3.6.2. Asymmetry Source and Drain Width MOSFETs

Figure 28 shows the layout structure of rectangular and trapezoidal shape MOSFETs
used in this experiment [62,63]. In the trapezoidal MOSFETs, when current flows from the
left to right direction, the source has a wide gate width, and when current flows from the
right to left direction, the source has a shallow gate width. The Gumbel plots of VRMS for
trapezoidal ((a)WD < WS and (b) WS < WD) and (c) rectangular MOSFETs are shown in
Figure 29 [62]. The gate width of rectangular MOSFETs was set as the average of the gate
width of trapezoidal MOSFETs. IDS was varied from 0.1 to 11 µA for constant VBS of−1.9 V
and VDS of 1.4 V. In (c) rectangular MOSFETs, similar phenomena, as shown in Figure 19,
are obtained. In contrast, in the trapezoidal MOSFETs, VRMS increases with an increase in
IDS (VGS), and those of WD < WS are larger than those of WS < WD. VDS is larger than VGS in
this experiment. MOSFETs were operated in the saturation region, and the channel formed
near the source. Increasing IDS increases electron density in the channel, and the electron
density at the source of MOSFETs with WD < WS is less than that with WS < WD. These
characteristics indicate that the influence of a charged trap reduces at a high carrier density
condition [39,60,62]. This means that the electron density and the location in the channel
are important factors affecting RTN characteristics. RTN characteristics were evaluated for
various VDS using rectangular and trapezoidal MOSFETs.
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VBS of −1.9 V and VDS of 1.4 V.

Figure 30 shows the Gumbel plots of VRMS for trapezoidal ((a) WD < WS and (b)
WS < WD) and (c) rectangular MOSFETs. VDS was varied from 0.1 V to 1.4 V for constant
IDS of 10 µA and VBS of −1.9 V [63]. The VDS dependance of VRMS for the (c) rectangular
and (b) trapezoidal with WS < WD MOSFETs is the same, and VRMS increases as VDS
increases, monotonically. The dependance of (b) trapezoidal with WS < WD on VDS is larger
than that of rectangular MOSFETs. In contrast, VRMS increases with an increase in VDS at
less than 0.3 V; however, VRMS decreases with an increase in VDS at >0.3V for trapezoidal
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MOSFETs with WS > WD. When VDS is smaller than the pinch-off voltage (VGS-VTH = 0.3 V
in this experiment), the channel is uniformly formed under the gate oxide, and the channel
vanishes at the drain edge at the pinch-off voltage. The vanished region expands with
increasing VDS. On the other hand, IDS was set at a constant of 10 µA, and this means
that VGS decreases as VDS increases at less than a pinch-off voltage of 0.3V. In rectangular
MOSFETs, VRMS increases with a decrease in VGS, which is the same effect as shown in
Figure 7. In trapezoidal MOSFETs with WS < WD, VDS dependance was enhanced by
reducing the channel width. In trapezoidal MOSFETs with WD < WS, VDS dependance
is the same as others at less VDS than a pinch-off voltage of 0.3 V. However, the opposite
dependency is obtained at larger VDS than the pinch-off voltage. It is considered that the
apparent gate width of MOSFETs (WD < WS) increases when the pinch-off point reaches
the source, and then, the size effect of VRMS shown in Figure 6 is obtained. These data
imply that the noise strength depends heavily on operation conditions, which means that
the location and electron density in a channel are critical for RTN generation.
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Although using trapezoidal MOSFETs in real electronic devices is difficult, changing
the shape of MOSFETs is very useful to obtain much information about RTN characteristics.
For example, the effect of trap at the isolation edge can be evaluated using octagonal
MOSFETs, which have only a gate edge and no shallow trench isolation edge [62].

3.6.3. MOSFETs with Atomically Flat Gate Insulator/Si Interface

The roughness of the interface between the gate insulator and Si is essential for
MOSFETs. The interface roughness degrades not only electron mobility [66–71] and gate
dielectric reliability [72–74], but also noise generation [71,75,76]. An atomically flat inter-
face [77–84] is effective for reducing low-frequency noise [79,83–87].

Figure 31 shows images of an atomically flat surface and as-received Si(100) measured
by atomic force microscopy (AFM). The atomically flat surface was formed in the active
region with shallow trench isolation and was measured after the gate oxide formation
and following oxide stripping [84]. The average roughness (Ra) of the conventional
surface is 0.12 nm, which is the same as the initial surface of Si(100). In an atomically flat
surface, a step and terrace structure can be obtained, and the step height is the same as
the monoatomic step length of Si(100) of 0.135 nm. The terrace width (L) is defined by
the following equation using the off-angle (θ) to the just (100) orientation. The average
roughness in the trace of the atomically flat interface was less than 0.04 nm, which is the
detection limit of our AFM system.

L =
0.135
tan θ

(nm) (16)
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Figure 31. Surface images of atomically flat and as-received Si(100) (before flattening) surfaces
measured by atomic force microscopy.

Figure 32 shows the Gumbel plot of VRMS for the atomically flat and conventional
SiO2/Si interface [84]. The noise of the atomically flat interface is less than that of the
conventional interface. This means that introducing the atomically flat interface is extremely
effective for reducing RTN as well as 1/f noise [86–88]. The atomically flat surface was
formed before gate oxidation in this experiment [84].

Electronics 2021, 10, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 31. Surface images of atomically flat and as-received Si(100) (before flattening) surfaces meas-
ured by atomic force microscopy. 

 
Figure 32. Gumbel plot of VRMS for atomically flat and conventional SiO2/Si interface. 

To implement the surface flattening process, a low temperature of less than 900 °C 
and low oxidation species, such as O2 and H2O, must be required [81,82,85]. There is an-
other method for flattening the surface first and keeping it during the process steps pre-
ceding gate oxidation [85,87,88]. Other problems exist, such as STI edge shape and dopant 
segregation, and the solutions to these problems may affect not only MOSFET character-
istics, but also noise [84]. The flattening process just before the gate oxidation is superior 
to the flattening process in the first step for introducing interface flattening between SiO2 
and Si, and this can be obtained by low temperature Ar annealing by reducing oxidation 
species. 

4. Conclusions 
The importance of low-frequency noise in LSI, and various effects on RTN, such as 

MOSFETs’ size, bias and operation conditions, and device structures, are described. The 
measurement technique using the array test circuit and the extraction of important pa-
rameters (time constants and amplitude) in RTN characteristics are also described. Time 
constants can be extracted essentially using classical equations; however, it is not as sim-
ple when downsizing MOSFETs and reducing the number of channel electrons, and the 
percolation path is formed. Variability of low-frequency noise increases with shrinkage of 
MOSFETs. In this paper, we evaluated relatively large planer MOSFETs (L = 0.22~0.4 μm), 
unfortunately. The size of MOSFETs has been downscaled to less than l0 nm and the struc-
ture has changed the planer to FinFET, recently. We have to continue the evaluation of 
such miniaturized and new structure devices. To assess the effect of this noise on 

Figure 32. Gumbel plot of VRMS for atomically flat and conventional SiO2/Si interface.

To implement the surface flattening process, a low temperature of less than 900 ◦C
and low oxidation species, such as O2 and H2O, must be required [81,82,85]. There is
another method for flattening the surface first and keeping it during the process steps
preceding gate oxidation [85,87,88]. Other problems exist, such as STI edge shape and
dopant segregation, and the solutions to these problems may affect not only MOSFET
characteristics, but also noise [84]. The flattening process just before the gate oxidation
is superior to the flattening process in the first step for introducing interface flattening
between SiO2 and Si, and this can be obtained by low temperature Ar annealing by reducing
oxidation species.

4. Conclusions

The importance of low-frequency noise in LSI, and various effects on RTN, such
as MOSFETs’ size, bias and operation conditions, and device structures, are described.
The measurement technique using the array test circuit and the extraction of important
parameters (time constants and amplitude) in RTN characteristics are also described.
Time constants can be extracted essentially using classical equations; however, it is not as
simple when downsizing MOSFETs and reducing the number of channel electrons, and the
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percolation path is formed. Variability of low-frequency noise increases with shrinkage of
MOSFETs. In this paper, we evaluated relatively large planer MOSFETs (L = 0.22~0.4 µm),
unfortunately. The size of MOSFETs has been downscaled to less than l0 nm and the
structure has changed the planer to FinFET, recently. We have to continue the evaluation of
such miniaturized and new structure devices. To assess the effect of this noise on MOSFETs,
we have to understand their characteristics statistically, and then, sufficient samples must
be accurately evaluated in a short period.
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