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Abstract: In this paper, a methodological data condensation approach for reducing tabular big
datasets in classification problems is presented, named FDR2-BD. The key of our proposal is to
analyze data in a dual way (vertical and horizontal), so as to provide a smart combination between
feature selection to generate dense clusters of data and uniform sampling reduction to keep only
a few representative samples from each problem area. Its main advantage is allowing the model’s
predictive quality to be kept in a range determined by a user’s threshold. Its robustness is built on a
hyper-parametrization process, in which all data are taken into consideration by following a k-fold
procedure. Another significant capability is being fast and scalable by using fully optimized parallel
operations provided by Apache Spark. An extensive experimental study is performed over 25 big
datasets with different characteristics. In most cases, the obtained reduction percentages are above
95%, thus outperforming state-of-the-art solutions such as FCNN_MR that barely reach 70%. The
most promising outcome is maintaining the representativeness of the original data information, with
quality prediction values around 1% of the baseline.

Keywords: big data; data reduction; classification; preprocessing techniques; Apache Spark

1. Introduction

The term big data mainly refers to the huge amount of data being continuously gener-
ated [1]. The technological developments society is facing, such as IoT, cloud computing,
social networks, and mobile devices, among others, are the main reasons for this growth,
leading to Industry 4.0 [2,3]. However, big data includes not only the volume but also
the variety and velocity, among other aspects, involved in concepts that are still being
defined [4–6].

In the machine learning field, data classification is a widespread task that learns from
targeted data aiming to predict the class label of unseen data. For this purpose, different
paradigms of classification algorithms exist, and they are used in multiple application
fields [7,8]. When analyzing the publicly available tabular big data problems for binary
classification, the presence of a notable conceptual redundancy of information in the data
might be observed [9] (redundant instances and/or features) that leads to an unnecessary
computational cost. Furthermore, it is known that the classifiers only need a set of instances
that correctly represent a problem in order to generate an adequate model [10]. In this
sense, maintaining the original raw data, including these redundant features and instances,
has a strong negative impact related to scalability and storage.

In addition to the former, not all users have direct access to the computational infras-
tructure suitable for big data or the ability to work with dedicated big data frameworks
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such as Apache Spark [11]. It is possible to rent an external cloud computing service,
but this may result in an excessive cost when doing the whole data science cycle. In
addition, it should be noted that there are state-of-the-art machine learning algorithms
that have not yet been developed to be scalable. In contrast, several implementations
can be found for smaller size datasets in standard packages for Python, R, among other
programming languages.

Applying preprocessing techniques focusing on data condensation/reduction, such as
feature and instance selection [12–15], helps to cope with the undesired conceptual redun-
dancy. Having a reduced version of the original data while keeping as much information as
possible is always a desirable situation [16,17], but even more so in the big data problems
where time-consuming processing tasks are implicit. For the standard size datasets, i.e.,
“non-big datasets”, a myriad of data reduction proposals have been designed [18,19]. How-
ever, most of them are focused either on the selection of the most representative features
or on the instances. Few proposals are based on a combination or synergy between both
filtering methods [20].

Despite the large number of data reduction techniques available in small data sce-
narios, we were not able to find the same situation for big data analytics. Most of the
current data reduction standard approaches for big data are highly costly in terms of
execution time and resources, mainly owing to the use of solutions based on clustering
and distances (O(dn2) complexity), which are not easy to calculate in a distributed way
without being approximate.

Recent studies have shown that publicly available big datasets used as benchmarks
might have questionable quality regarding some unwanted aspects [9,21], such as redun-
dant examples, disproportion of classes, and noise, among others. The presence of some
of these issues could be due to the nature of the data or to the artificial generation of
the data by replication of instances in order to generate big datasets. Another recurrent
characteristic in these large sets of data is that they usually have several features where not
all of them have the same discrimination power (if any). In view of the above, designing
new big data reduction techniques becomes necessary.

Our hypothesis is that these big tabular datasets may have a large conceptual redun-
dancy that allows us to obtain, from a reduced version of them, similar predictions to those
achieved with the full training dataset. Hence, it is not only possible but also necessary and
advantageous to perform a data condensation process for big tabular datasets, with the
premise of maintaining the predictive quality. For this purpose, it is essential to maintain
representative data points for all the initial clusters originally present in the raw dataset.
To do so, it is mandatory to reduce the input dimensionality so as to “compress” the
information into more dense groups of instances. Then, the most straightforward way to
proceed is by applying a uniform sampling based on a class-stratification procedure. This
way, the original density function that represents the data should be maintained, keeping
the lesser number of samples from each low-dimensional hyper-cube space.

In order to work with the data in a reduced space, the Fast Data Reduction Recom-
mendation tool for tabular big data (FDR2-BD), an effective and fully scalable methodology,
is presented in this paper. The aims of this proposal are the following:

(a) To determine whether a dataset is reducible or not by means of a uniform stratified
sub-sampling.

(b) To estimate the maximum possible reduction percentage and the most important features.

Both answers will be based on maintaining a predictive quality range on the original
raw data, determined by a threshold. The rationale for this requirement is that simply
decreasing data is useless if the resulting data are not representative of the information
contained in the original dataset. Thus, a very important capability of our proposal is to
include the aforementioned threshold of acceptable loss in the predictive quality that acts
as a “controller” between the reduction rate and the prediction values obtained. In some
case studies, the need to reduce the data is such that users are willing to accept a slightly
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lower predictive power than that achieved with original data in exchange for a sub-sample
of the data that allows them to deal with it more quickly and efficiently.

The proposed methodology focuses on the information condensation by reducing data
in a dual way (vertical and horizontal). Furthermore, it is based on a hyper-parametrization
procedure that is fully transparent to the user. This iterative procedure performs an internal
cross validation which gives more support to the individually obtained reduction values,
which are aggregated to obtain the final reduction value.

The FDR2-BD proposal has been developed as a tool using Scala language pro-
gramming under the Apache Spark framework. It uses several Spark primitives and
utilities to achieve good scalability and maximum efficiency, and it follows a global
approach design in order to process all data at once to obtain exact results (as if it
was sequential processing). Its implementation is available in a repository at https:
//github.com/majobasgall/big_data_reduction_recommender, accessed on 14 June 2021.

For the sake of contrasting the appropriateness of our proposed methodology for
big data reduction, we conducted a thorough analysis over 25 different datasets obtained
from different well-known public data repositories. The experimental results show high
reduction values for most of the datasets studied, regarding the dimensionality as well
as the suggested reduction percentages (around 70% reduction of the features and 98%
reduction of the instances) for a predictive loss threshold of 1%. In absolute terms, there are
datasets that achieve a horizontal reduction of four, eight, and even nine million instances,
while maintaining their predictive capabilities for the original problem. The maximum
possible reduction percentages obtained outperform the standard techniques selected for
comparison purposes. As our proposal is based on a hyper-parametrization process, this
fact gives more robustness to the recommendation values that are yielded.

The remainder of this paper is organized as follows. In Section 2, the big data design
approaches as well as a data reduction introduction are briefly discussed. In addition,
the current and ongoing data reduction solutions in big data are mentioned. Then, in
Section 3, the FDR2-BD tool’s methodology is detailed, and the most relevant technical
implementation is highlighted. Then, in Section 4, the experimental environment of this
work is described. Next, the results are presented in Section 5. Finally, Section 6 contains
the future work observed from the experimental study and summarizes and concludes
the manuscript.

2. Data Reduction in Big Data

In this section, some brief comments on the two design schemes for solutions in big
data are first presented in order to establish the basis for the different types of solutions that
may be encountered (Section 2.1). Furthermore, a concise introduction to data reduction
(Section 2.2) is provided. Finally, a quick review of its solutions in big data (Section 2.3)
is given.

2.1. Big Data Design Approaches

To take advantage of this enormous amount of data that is implicit to big data, tradi-
tional machine learning techniques have to be adapted to be fully scalable, or new ones
should be developed [22]. In order to process all this data in the necessary scalable way, a
“divide-and-conquer” programming model known as MapReduce [23] is the basis of most
widespread open-source frameworks for big data. To design an application for big data
using the MapReduce scheme, two approaches can be found regarding data and model
distribution [24]. On the one hand, the local approach results in an approximated model
because each partition of data is processed separately without any knowledge of the data
belonging to the other partitions. Hence, in this approach, each data partition is isolated.
On the other hand, the global design generates an exact model because data and models
are considered to be shared across all cluster nodes. In other words, data are split into
a number of partitions, but, at the same time, each node is able to know the data from
other partitions by using distributed data structures. As the reader will be able to interpret
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from [24], there is a clear preference for models based on a global design because, as they
work with all the data at once, the solutions they generate are identical to those that would
be obtained sequentially in terms of exactness.

2.2. Data Reduction

Traditionally, data reduction methods refer to the preprocessing tasks that are com-
monly applied in the pipeline of the knowledge extraction process for downsizing a dataset
with respect to the number of examples (also known as horizontal or row-wise reduction)
without losing the information that it represents. For instance, in a classification task, train-
ing a model from the reduced data would perform similarly in comparison to training with
the whole dataset. In the taxonomy, two widely used groups of data reduction techniques
can be found: instance selection (IS) [13] and instance generation (IG) [18]. On the one
hand, the IS task’s goal is to select a subset of an original dataset; on the other hand, IG
methods provide a reduced set of data that can be built from a complete set of synthetic
instances or in combination with a sub-sample of the original dataset.

In the specialized literature, it can be found that the basis of most data reduction
methods usually involves applying an instance-based classifier algorithm. A widespread
IS method is the fast condensed nearest neighbor (FCNN) rule [25], which uses the NN rule
to find a sub-sample of instances from the initial dataset. The idea behind FCNN is that it
starts with an initial subset consisting of the centroids of each class, and, in the subsequent
iterations, the subset is augmented until the stop condition is reached. The way to add
instances into the subset is by incorporating the nearest enemy that is inside the Voronoi
region of each instance that belongs to the subset. Despite having relatively good reduction
results, regarding the complexity, the FCNN has a quadratic time complexity in terms of
the number of instances in the worst case.

More instance-based methods constitute the state-of-the-art for data reduction, such as
steady-state memetic algorithm (SSMA) [26], random mutation hill climbing (RMHC) [27],
and democratic instance selection (DIS) [28]. The significance of these approaches is mainly
based on their extension to the big data scenario, as will be introduced in what follows.

However, data can also be reduced regarding their variables (also known as vertical,
dimensionality or column-wise reduction), not only because data are highly dimensional, but
also, when they are not, there is a need for working with a subset of features that are
the most representative, as this boosts the robustness of the final learned model. The
most popular variable-based reduction techniques are feature selection (FS) and feature
extraction [12,29]. The former, as its name suggests, selects the most important features
that can affect the behavior of a machine learning algorithm. The latter builds a whole set
of new features from combining the original ones. Among the methods in the theoretical
framework of FS [30] for dimensionality reduction, those belonging to the group of em-
bedded solutions are the most prominent. The idea is based on obtaining the contribution
of each variable after training a classifier model. To mention the most relevant features of
these methods, they are the most accurate and much less prone to overfitting. Among the
different embedded solutions, one of the most widely used is random forest (RF) due to its
good results in general-purpose applications [31,32].

Regardless of which data reduction method is applied, the actual benefits of its
application in the data science life-cycle are alleviating storage and memory requirements,
the complexity of algorithmic computation, and runtimes, in addition to the fact that they
may obtain better quality data by removing conceptual redundancy [9].

2.3. Data Reduction Meets Big Data

Dealing with big data does not mean all of the data is going to be relevant for the
knowledge discovery process. Usually there is a subset of data that contains useful in-
formation, and from it, there is a smaller piece of data that retains the real knowledge.
Therefore, it is necessary to eliminate these layers of data that do not involve more than
noise to the modeling [17].
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When it comes to the big data scenario, few distributed solutions to traditional
instance-based reduction approaches can be found, apart from the traditional FCNN
method. Both the FCNN and SSMA techniques have been made scalable (FCNN_MR [33]
and SSMA-SFLSDE [34], respectively) using the MRPR framework [35]. This framework
divides the input data, and following a local MapReduce approach, the corresponding IS
task is applied to each split. Then, different strategies are available in order to merge the
reduced set of data of each split.

The parallel DIS implementation (MR-DIS [36]) also follows a local approach while
that of the RMHC (RHMC_MR [33]) applies the kNN algorithm repeatedly following a
global approach. In [37], authors have compared the IS methods for big data, and they have
concluded that there is not a clear outperforming method overall. However, regarding
their runtime, FCNN_MR is the only approach whose computational cost is within an
acceptable range.

With respect to the feature-based methods available for big data, in [38], several state-
of-the-art information theory-based methods of distributed implementations can be found.
In addition, the fully parallel implementation of RF is included as part of the available
machine learning algorithms provided by the MLlib library [22] of Apache Spark.

3. FDR2-BD: A Fast Data Reduction Recommendation Tool for Tabular Big Data
Classification Problems

In this section, we present and describe FDR2-BD, a novel methodology for informa-
tion condensation in tabular big data classification problems. The outcome is a decision
support tool that provides a set of recommended parameters, in terms of feature and
instance reduction values, by means of a hyper-parametrization process. As such, the
aforementioned output values are well-supported, as they are aggregated from different
subsets from the training data. The global design of this solution was developed to be
fast and scalable even when addressing very large data files. This is further achieved by
including native core functions from Apache Spark in the implementation.

The remainder of this section is organized as follows. First, the complete design and
characteristics that comprise FDR2-BD are detailed in Section 3.1. Then, the technical
highlights that allow for boosting the scalability of our tool implementation are commented
on in Section 3.2.

3.1. FDR2-BD Description and Workflow

The complete design of the FDR2-BD methodology addresses three requirements that
we consider relevant for data reduction solutions.

1. First, the ability to operate automatically by means of a hyper-parametrization process,
which is based on an ordered descendent list of suggested reduction percentages. To
do so, it works over a dataset following a k-fold cross validation scheme in order to
ensure all data are analyzed.

2. Second, the possibility to achieve the maximum level of data reduction by using
thresholds of acceptable loss of predictive performance. Both the list of the percent-
ages (redPerc list) and the predictive loss threshold (PLT) influence the ending
conditions of the hyper-parametrization process, and they can be set by the data
expert user.

3. Finally, the capability of being a scalable methodology able to deal with big data in
reasonable times by taking advantage of parallel computing. To achieve this, the
technical implementation details are described in Section 3.2.

The focus of FDR2-BD is to yield parameters for a recommended horizontal and
vertical tabular data condensation towards classification problems. Specifically, the user
can apply a more or less granular reduction percentage list (as pointed out in requirement
#1) and/or set how much predictive quality they are willing to lose for gaining data
reduction (as referred to in requirement #2). This comprises the scenario from which the
dataset is found to be non-reducible due to a large loss in the model performance. Among
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the different predictive performance measures, this proposal uses geometric mean (GM)
(see Equation (2)) because it consolidates the quality of all classes represented, regardless
of their a priori distribution.

The complete workflow of FDR2-BD, as depicted in Figure 1, enables data condensa-
tion in three different stages that are enumerated below:

1. First, an initial reduction regarding the dimensionality (vertical or column-wise
reduction) can be achieved through the selection of the most important features.

2. Second, if the FS generates redundant instances, i.e., exact duplicated “rows”, they
are removed (horizontal or row-wise reduction).

3. Third, the main process is carried out by means of a hyper-parametrization with the
aim to decide what percentage of instances could be removed while maintaining a
desired quality threshold. From the resultant decision, a final and intensive vertical
reduction can be carried out.

Figure 1. The FDR2-BD’s workflow showing the three main stages of the procedure.

In what follows, each single step of the procedure is detailed.

First Stage: Feature selection.

Some of the attributes in these kinds of datasets may not be representative and
necessary for example classification and thus can be omitted. With this vertical reduction,
conceptual redundancy can be easily found as duplicated instances.

The initial input data follow the k-fold cross validation method, with k equal to 5
(5fcv), so for each fold or training subset, the FS step is performed. Our design must
take into account the possible event of an uneven class distribution. Indeed, this may
cause a bias of the feature importance toward majority class examples. To deal with this
issue, the FS stage includes an instance preprocessing task for those uneven class sets,
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aiming to transform them into balanced ones. One standard approach is random under
sampling (RUS), which, as its name suggests, performs random reduction of the majority
class instances until achieving the desired proportion between the number of examples of
each class [39]. In our methodology, RUS is configured to achieve a perfect class balance.

An embedded model-based feature importance identification procedure is used, due
to its greater robustness compared to the use of statistical values. Among the different
models, an RF is chosen based on its greater diversity as it is an ensemble model, and
because it is fully scalable and native to Spark, according to the capabilities mentioned in
Section 2.2. Finally, in order to define the most important features (also referred to MIFs),
the cumulative explained variance is calculated; then, the chosen features are those which
can cover up to 90% of the variance.

The outputs of the FS stage previously described are the k vertical reduced training
sets and their corresponding k MIFs. Moreover, from the latter, an aggregation is performed
with the aim of obtaining the recommended set of features across all folds. To do so, the
used criterion is to find the features that were selected as important in more than the 50%
of the k folds.

Second Stage: Drop duplicates.

Reducing the dimensionality of the problem causes clusters of data to increase their
density, and even duplicated instances can now be found in the dataset. Therefore, it is
highly necessary to delete redundant examples (keeping only one occurrence of each) in
order to avoid their negative influence, which may affect or distort the computation during
the following stage.

Third Stage: Recommended percentage reduction (RPR) hyper-parametrization.

The aim of this stage is to obtain the maximum possible percentage reduction of the
instances according to a qualitative threshold of predictive quality. In order to do so, an
internal k’ fold (Internal k’ Fold) process is performed by sub-splitting the k non-redundant
sets (generated by the previous stage) into k’ folds. Each sub-split is represented as k’
pairs of training and test sets (referred to as subTra and subTst), and they are analyzed by
means of a hyper-parametrization process of uniform data sampling to find k reduction
percentage values.

The hyper-parametrization process considers each subTra and applies an iterative
procedure by carrying out a stratified data reduction based on a uniform sub-sampling
(UnifReduction). Each step of this procedure considers a reduction level according to
the current element of the redPerc list. A default definition of this list is suggested in
Section 4.2 along with additional algorithm parameters.

Two conditions are considered to determine whether the iterative procedure is finished:
on the one hand, the performance evaluation of the resultant reduced set of data is within
the desired threshold and, on the other hand, there are no more values in redPerc list,
and thus, the problem cannot be condensed to any of these percentages without affecting
the predictive performance.

In order to check the quality of the reduced set (traRed), a fast decision tree (DT) model
is learned using traRed, and then classifies the subTst. The performance is evaluated
through the GM measure (named GMred), and it is compared against the range determined
by the average baseline GM (GMbsl) and the PLT.

Thus, the process iterates generating different sizes of reduced data until one of the
stop conditions is achieved. If the current GMred is within the desired range of predictive
performance, its corresponding reduction percentage will be the output, and since each of
them were obtained from the k’ splits procedure, it is necessary to aggregate them in order
to have a single output value.

As the FDR2-BD tool works following a hyper-parametrization scheme, some aggre-
gation criteria must be provided for merging all individual output parameters obtained
during the process. Specifically, two complementary approaches are followed: (1) the mini-
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mum reduction percentage is selected, being a more conservative approach, and (2) the
median reduction percentage is chosen. Whatever criterion is set, a reduction percentage
per k’ is the output of this step. Following this, one more aggregation task is performed
over the previous outputs in order to obtain the FDR2-BD’s recommended percentage
reduction (RPR) for the input dataset with the desired predictive loss threshold.

It is worth mentioning that, as FDR2-BD acts as a parameter recommender tool, it does
not generate a reduced dataset but returns a pair of recommendation parameters to modify
the dataset in order to reduce it in a dual way. In other words, until the user applies the
steps as shown in the pseudocode of Algorithm 1, the data reduction will not be performed.
After condensing data by applying the recommended feature and instance reduction, a
single model is learnt from it with the aim of obtaining the results. Note that from the step
indicated in line 3 onwards, it may not be necessary to use a big data framework to carry
out these actions, as long as the data should fit in the main memory.

Algorithm 1 Pseudo-code showing the use of FDR2-BD for data reduction.

Require: data, redPercList, GMbsl, PLT, k, aggCriterion
1: (recommFeats, RPR)← run FDR2-BD using input parameters
2: (training, test)← split data
3: tra← select the recommFeats features from training
4: condensedTra← apply UniformReduction over tra with RPR
5: model← train the classifier using RPR
6: results← classify test from model

3.2. Technical Implementation Highlights

The FDR2-BD tool was developed using Scala programming language under the
Apache Spark framework. As Spark writes intensively in memory, it is one of the fastest
big data frameworks. Our proposal design follows a global approach that considers the
whole dataset at once, generating exact results. The Spark version chosen is 3.0.1 due it
outperforming the previous versions in scalability, not just in its core functionalities but
also in its libraries. Regarding data structures, the dataframes and datasets were selected
over the resilient distributed datasets (RDD) base data structure, due they provide the
benefits of RDDs with an extra optimization, meaning that they are the fastest ones..

It is important to emphasize that the stages of our tool’s workflow were implemented
using both Spark primitives and some algorithms and utilities to build distributed machine
learning pipelines provided by the MLlib [22] library of Spark. All of them are fully efficient
and robust, and they ease the purpose of making our proposal fully scalable. The most
relevant primitives and functionalities used in our code are detailed in Table 1.

The FDR2-BD implementation is available in a repository at https://github.com/
majobasgall/big_data_reduction_recommender, accessed on 14 June 2021.

Table 1. Spark primitives and utilities used in FDR2-BD.

Spark Operation Description

map Performs a transformation to each element of a data structure
filter Selects all data structure elements that satisfy a predicate
sample Takes a sample of a set of data
union Combines two Spark data structure row-wise

kFold Splits data into k pairs of training and validation sets, following a
Bernoulli sampling

dropDuplicates Eliminates duplicated rows of a dataframe
RandomForestClassifier Are distributed learning algorithms for data classificationDecisionTreeClassifier

https://github.com/majobasgall/big_data_reduction_recommender
https://github.com/majobasgall/big_data_reduction_recommender
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4. Experimental Environment

In this section, the experimental framework is described. To do so, the selected
datasets of the study are first shown in Section 4.1, including a brief description and their
main characteristics such as the number of examples, variables, and classes. Then, in
Section 4.2 the state-of-the-art methods for fair comparison, the classification algorithm for
the modeling stage, and their parameters’ configuration are presented. Next, the evaluation
metrics regarding reduction and performance are described in Section 4.3. Subsequently,
in Section 4.4, the scalability evaluation measures are discussed. Lastly, in Section 4.5, the
characteristics of the infrastructure used for the experiments and analysis are introduced.

4.1. Datasets’ Description

In order to analyze most of the widespread used tabular data in big data classification
problems, 25 datasets from different repositories (UCI machine learning [40], OpenML [41],
Kaggle [42]) were selected. A summarized description of each set of data alphabetically
sorted is shown in Table 2, where the number of examples (#Ex.), number of attributes
(#Atts.), number of instances for each class (#(class0; class1)), class distribution percentage
(%(class0; class1)), number of each type of feature (Co/Di/Ca, where Co = continuous, Di
= discrete, Ca = categorical), and the file size (in MB) are included.

The datasets used for this analysis were split following the k-fold cross validation
method, with k equal to 5 (5fcv).

Table 2. Datasets summary.

Dataset #Ex. #Atts. #(Class0; Class1) %(Class0;
Class1) Co/Di/Ca Size (MB)

Agrawal 1,000,000 9 (672,044; 327,955) (67.2; 32.8) 4/2/3 71.6
airlines 539,383 7 (299,119; 240,264) (55.46; 44.54) 4/0/3 18.3
BNG_Australian 1,000,000 14 (573,051; 426,949) (57.31; 42.69) 14/0/0 80.8
BNG_heart 1,000,000 13 (555,946; 444,054) (55.59; 44.41) 6/0/7 65.7
census 140,246 41 (132,085; 8162) (94.18; 5.82) 1/12/28 68.7
click_prediction 1,963,972 11 (1,636,593; 327,379) (83.33; 16.67) 0/11/0 136.3
covtype1 581,012 54 (369,307; 211,705) (63.56; 36.44) 10/0/44 71.7
covtype1_vs_2 495,173 54 (283,468; 211,705) (57.25; 42.75) 10/0/44 61.1
covtype2 581,012 54 (297,544; 283,468) (51.21; 48.79) 10/0/44 71.7
creditCard 284,015 30 (283,540; 480) (99.83; 0.17) 28/1/0 145.2
ECBDL14-10mill-90 12,000,000 90 (11,760,000; 240,000) (98; 2) 60/0/30 3481.6
ethylene_ECO_E_LH 4,208,261 16 (3,895,861; 312,400) (92.58; 7.42) 16/0/0 517
ethylene_EM_E_LH 4,178,500 16 (3,840,313; 338,191) (91.91; 8.09) 16/0/0 518.7
fars_fatal 100,968 29 (58,852; 42,116) (58.29; 41.71) 0/1/28 59
HEPMASS_IR_16 5,578,255 28 (5,250,122; 328,133) (94.12; 5.88) 28/0/0 1331.2
higgs 11,000,000 28 (5,827,686; 5,172,314) (52.98; 47.02) 28/0/0 7680
HIGGS_IR_16 6,193,440 28 (5,829,120; 364,320) (94.12; 5.88) 28/0/0 3378.7
homeCredit 307,511 171 (282,686; 24,825) (91.93; 8.07) 1/9/161 113.1
hyperplane 1,000,000 10 (500,007; 499,993) (50; 50) 10/0/0 91.4
klaverjas 981,541 34 (528,339; 453,202) (53.83; 46.17) 2/32/0 79.2
MiniBooNE 129,590 49 (93,101; 36,489) (71.84; 28.16) 49/0/0 67.7
rlcp 5,749,132 4 (5,728,201; 20,931) (99.64; 0.36) 1/3/0 180.1
skin 245,057 3 (194,198; 50,858) (79.25; 20.75) 0/4/0 3
susy 5,000,000 18 (2,712,173; 2,287,827) (54.24; 45.76) 18/0/0 1740.8
SUSY_IR_16 2,881,684 18 (2,712,173; 169,511) (94.12; 5.88) 18/0/0 1022.5

4.2. Comparison Methods, Classifier, and Parameters

As a base classifier for the experimental study, the DTs [43] provided by the Spark’s
machine learning library (MLlib) [22] are used. Two significant and related reasons support
the decision to select this classifier. On the one hand, the implementation of this algorithm
in Spark is based on a global design that makes the output more robust by using all training
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data at once. On the other hand, it has the advantage of being a very efficient approach for
the learning and prediction tasks with respect to other classification paradigms.

In order to confirm our proposal’s goodness not only in the context of data reduction
but also on baseline classification results, a fair comparison is required. Therefore, two
approaches will be used as state of the art: on the one hand, a DT as base model and, on the
other hand, the FCNN_MR as a representative of the data reduction techniques available
for big data.

It has to be considered that using the raw dataset for model training may not be
appropriate or comparable with respect to our technique for two main reasons. First, FS
significantly influences the construction and learning of the DT model. Second, there
may be a clear bias towards majority concepts for those datasets with a non-uniform
distribution of examples in classes. Thus, the baseline method consists of a simple but
necessary two-stage preprocessing process: first, an FS and drop duplicates stage following
the same procedure as FDR2-BD (please refer to Section 3.1) and second, an undersampling
of instances using the RUS technique to balance the class percentages in a fast and effective
way [39]. RUS is a state-of-the-art algorithm for balancing class by random deletion
of the majority class instances until the desired ratio between classes is achieved. The
choice is based on the fact that both FDR2-BD and RUS perform uniform sampling in their
workflows, and they generate a balanced dataset (in RUS, when setting a ratio between
classes of 1:1).

The most relevant parameter configurations used for each method are shown in
Table 3. With respect to the FDR2-BD parameters, they are explained in detail in Section 3.
In this study, the redPerc list is arbitrarily set with a 1% granularity between 99% and 90%,
and a 10% granularity for the rest, in order to obtain a broad overview of the large list of
datasets. The versatility of this proposed tool allows any interested user to provide a list
with a finer granularity with the aim of exhaustively analyzing the reduction percentage
of each dataset. The FDR2-BD is run by setting the PLT with a stricter value (1%) and
with a more relaxed one (5%). The cumulative explained variance represents the desired
value to be covered by the features with the highest values of representativeness. The 1:1
final ratio represents the same quantity of instances for each class in the resultant dataset.
The parameters of FCNN_MR are those recommended by the authors (interested readers
can find additional details in [35]). Finally, the degree of parallelism is represented by the
number of data partitions used by the Spark session, set as 128. The number of partitions
refers to the number in which the Spark data structure is divided and distributed across the
cluster nodes. For Spark, partitions are the basic units of parallelism, and a data structure
is a collection of them.

Table 3. Algorithms and parameters.

Algorithm Parameter Value

FDR2-BD

PLT 1%, 5%

redPerc list (%) {99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 80, 70, 60, 50, 40,
30, 20, 10}

aggregation criteria minimum
internal k-fCV 5

FS covered variance up to 90%

DT impurity Entropy
maxDepth 5

RUS final ratio 1:1

FCNN_MR k 1
ReducerType join
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4.3. Evaluation Metrics: Condensation and Predictive Performance

In this section of the paper, the measurements to asses our proposal from two different
approaches are presented: data condensation and predictive capabilities.

To evaluate data condensation, the following dimensionality and number of instances
measurements are used:

• Dimensionality reduction percentage (DimRed): number of features selected with
respect to the original amount in the training data.

• Size reduction percentage (SizeRed): number of remaining examples with respect to
the original data volume.

Regarding predictive performance evaluation metrics, Table 4 shows a confusion
matrix for a binary problem from which the metrics to evaluate the classification task are
obtained. This matrix organizes the instances of each class according to their correct or
incorrect identification. Therefore, the true positive (TP) and true negative (TN) values
represent the prediction quality for each individual class. These measures indicate if the
preprocessing is favoring a single class or concept.

Table 4. Confusion matrix for performance evaluation of a binary classification problem.

Actual
Predicted

Positive Negative

Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

One typical metric for assessing classification models is the Accuracy (ACC), defined
by Equation (1) when the problem is a binary one.

ACC =
TP + TN

TP + TN + FP + FN
(1)

However, ACC it is not suitable when data are skewed. Another metric more appro-
priate for all types of problems is known as the GM [44], and it can be calculated from the
following rates obtained from the confusion matrix:

True Positive Rate (TPR) is the percentage of positive instances correctly classified, and
it is defined as

TPR =
TP

TP + FN
True Negative Rate (TNR) is the percentage of negative instances correctly classified

and it is defined as
TNR =

TN
FP + TN

The GM metric attempts to maximize the accuracy of each one of the two classes at
the same time and is noted by Equation (2).

GM =
√

TPR ∗ TNR (2)

4.4. Scalability Evaluation

The FDR2-BD’s scalability assessment aims to understand its behavior in a parallel
environment, and it is based on the following two types of scaling: sizeup and speedup.
The former consists of changing the size of the data while keeping the degree of parallelism
(number of partitions) fixed, and the latter evaluates the tool behavior when the parallelism
degree changes while keeping constant the data size. The sizeup is defined by Equation (3),
where Tf ull is the total runtime obtained by using the full original dataset, whereas Ts is
the total runtime when using a version of the original dataset determined by the s size (s
times the original dataset). The speedup is defined by Equation (4), where Tp is the total
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runtime achieved for a number of partitions set p, and T1 is the time when no parallelism
is applied.

In the context of this work, the total runtime is considered as the period of time since
the Spark job is launched until it is finished. It thus includes the typical overhead generated
by the Spark environment, loading and distributing data across the computing nodes,
processing of the algorithm in itself, and learning and classifying data.

sizeup(s) =
Ts

Tf ull
(3)

speedup(p) =
T1

Tp
(4)

4.5. Infrastructure

Regarding the infrastructure used to perform the experiments using Apache Spark,
the Atlas cluster at University of Granada was used. The cluster consists of fourteen
nodes connected via a Gigabit Ethernet network. Each node has an Intel Core i7-4930K
microprocessor at 3.40 GHz, 6 cores (12 threads), and 64 GB of main memory working
under Linux CentOS 6.9. The infrastructure works with Hadoop 2.6.0 (Cloudera CDH5.8.0),
where the head node is configured as NameNode and ResourceManager, and the rest are
DataNodes and NodeManagers.

5. Experimental Results

This section presents the results of applying the FDR2-BD tool. First, in Section 5.1, the
study regarding the data volume reduction generated by the use of FDR2-BD is presented.
Then, the influence of FS with respect to horizontal reduction is shown in Section 5.2. Next,
the comparison between the different algorithms mentioned in this work is carried out in
Section 5.3. This comparative study focuses on the condensation details and the predictive
performance achieved. Finally, the conducted scalability study of our proposal focused on
sizeup and speedup is presented in Section 5.4.

5.1. Data Volume Reduction Study

The goal of any reduction method is to find if a dataset is well represented by a
condensed subset of it. Of course, there is a clear premise of maintaining the original
predictive performance of any model learned from this reduced set, or at least with only a
small or admissible impact on it.

In the following, the results obtained with our tool for all the studied big datasets
are presented, focusing on the reduction level achieved for two benchmark loss predictive
quality thresholds. In Section 1, it is mentioned that the publicly available big datasets,
by the way they are generated or obtained, can have redundancy, as partially seen in [9].
The aim of this experimental study over several big datasets is to determine that there not
only exists redundancy in the data but also that our tool should be able to find meaningful
reduction percentages without loss of predictive capacity.

By applying our proposal on a tabular dataset, one of the outputs is the recommended
percentage reduction for the selected prediction loss threshold. The RPR can be “None” if
the tool concludes no uniform reduction can be done within the prediction range given by
the PLT or a value in the redPerc list (described in Section 4.2).

Table 5 shows the RPR provided by the FDR2-BD tool for the PLTs chosen for the
experimentation, for each dataset. It can be observed that the large majority of the datasets
(more than 80%) achieve a significant reduction between 93 and 99%, ensuring a predictive
behavior within the desired range. For example, in some datasets, the order of magnitude
of the reduction is 6. More specifically, in the case of ECBDL14-10mill-90, the dataset is
reduced from 9.6 million instances to 96 thousand, the higgs dataset goes from 8.8 million
to 109 thousand, and the susy dataset is reduced from 4 million instances to 40 thousand.
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The results obtained clearly answer our hypothesis formulated at the beginning of
this section, reinforcing that there is indeed a high level of conceptual redundancy in most
of the datasets. For census and airlines datasets, no suggested reduction percentages
are obtained. The predictive quality achieved by the hyper-parametrization process is not
within the accepted range considering the given threshold. Regarding the skin dataset, it
can be reduced by this methodology if the PLT is set to 5%, obtaining a reduction of 97%. It
is worth mentioning that the GM baseline result for this dataset is around 0.965, so reducing
it 97% by accepting a 5% loss of predictive performance is still a good compromise. In a
similar way, fars_fatal dataset achieves a significantly larger RPR when shifting the PLT
from 1 to 5%.

Table 5. Recommended percentage reduction (RPR) per each prediction loss threshold (PLT).

PLT [%] PLT [%]
1 5 1 5

Dataset RPR [%] Dataset RPR [%]

Agrawal 99 99 fars_fatal 30 94
airlines – – HEPMASS_IR_16 98 99
BNG_Australian 99 99 higgs 98 99
BNG_heart 99 99 HIGGS_IR_16 99 99
census – – homeCredit 93 98
click_prediction 99 99 hyperplane 99 99
covtype1 97 99 klaverjas 99 99
covtype1_vs_2 96 98 MiniBooNE 95 99
covtype2 94 99 rlcp 99 99
creditCard 98 99 skin – 97
ECBDL14-10mill-90 99 99 susy 99 99
ethylene_ECO_E_LH 97 99 SUSY_IR_16 98 99
ethylene_EM_E_LH 99 99

5.2. The Influence of FS in the Data Volume Downsizing

In order to show the behavior or characterization of each dataset from FDR2-BD,
Figure 2 presents the overall and disaggregated horizontal reductions for the PLT equal to
1%. There is no doubt that performing the FS stage as the initial step of the whole process
has, in many cases, a significant implication in that the level of reduction is considerably
extended, in particular for those datasets with nominal variables. In this type of dataset,
a reduction of features makes instance replication much more likely, meaning that the
information represented by the dataset is too exhaustive and that the same knowledge can
be extracted with a minority subset of it. An extreme example of this is the predominantly
nominal fars_fatal set of data that has the largest reduction given by the duplicates
removal step (almost 99%). At the same time, there are cases where reduction is generated
in both stages, although the greatest reduction occurs in the uniform reduction stage.
Despite the large reduction achieved with stages 1 and 2, in most of the case studies, it is
still necessary to apply the data reduction process by means of a uniformly distributed
sampling over the problem space.
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Figure 2. Volume reduction by drop repeated instances (violet) and uniform sampling (green).

5.3. Data Condensation Details and Performance Evaluation

Table 6 shows the data reduction measurements (SizeRed and DimRed) obtained by
each of the comparative techniques and the FDR2-BD, as well as their resultant datasets’
predictive capabilities (measured through the GM metric). In this and the following results,
the baseline method is denoted as BSL.

It can be observed that FDR2-BD far outperforms the other algorithms in terms of data
condensation for most datasets, achieving similar predictive performance as the baseline.
In general terms, our methodology applies a horizontal reduction of 93% to 99%, as it was
stressed in the previous section.

There are two datasets for which our tool obtains equivalent results to the other two
comparative methods in terms of SizeRed. These are the rlcp and creditCard datasets,
and the reasons for this behavior are that rlcp is a very simple dataset with low complexity,
so there is no difficulty for any of the three methods to achieve the same performance. Re-
garding creditCard, it is a dataset with a high disproportion in its classes, but fortunately,
the class clusters are well separated and, therefore, applying the baseline technique also
achieves a good modeling.

The results show that our tool achieves a remarkable difference in data reduction: a
reduction more than 45% greater than the rest of the experimented techniques, keeping or
even improving the predictive quality, of course. The excellent performance obtained using
FDR2-BD over the Agrawal, higgs, hyperplane, klaverjas and susy datasets excels.
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Table 6. Data condensation details and performance evaluation.

Agrawal BNG_Australian BNG_heart click_prediction

BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD

GM 0.9475 0.9506 0.9476 0.8606 0.8332 0.8561 0.8541 0.8549 0.8534 0.6112 0.2254 0.6171
SizeRed 42 38 99 14 66 99 23 55 99 68 61 99
DimRed 67 0 67 71 0 71 62 0 62 64 0 64

covtype1 covtype1_vs_2 covtype2 creditCard

BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD

GM 0.7534 0.7505 0.7585 0.7557 0.7487 0.7492 0.7411 0.7496 0.7351 0.9269 0.8662 0.9239
SizeRed 56 76 98 38 76 98 37 73 96 99 99 98
DimRed 87 0 89 85 0 91 83 0 85 67 0 73

ECBDL14-10mill-90 ethylene_ECO_E_LH ethylene_EM_E_LH HEPMASS_IR_16

BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD

GM 0.6969 0.1514 0.6959 0.8814 0.605 0.8777 0.8692 0.7295 0.8693 0.8284 0.7347 0.8252
SizeRed 96 88 99 85 98 97 84 97 99 88 85 98
DimRed 79 0 82 50 0 50 44 0 44 86 0 86

higgs HIGGS_IR_16 homeCredit hyperplane

BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD

GM 0.6509 0.6634 0.6488 0.6557 0.2771 0.6576 0.5953 0.1388 0.5954 0.3494 0.3432 0.5263
SizeRed 38 39 99 88 75 99 84 74 93 0 42 99
DimRed 82 0 82 79 0 79 90 0 91 60 0 60

klaverjas MiniBooNE rlcp susy

BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD BSL FCNN_MR FDR2-BD

GM 0.8006 0.807 0.8072 0.8743 0.8458 0.8689 0.9309 0.9308 0.9306 0.7612 0.7542 0.762
SizeRed 0 41 99 49 72 95 99 99 99 0 52 99
DimRed 79 0 79 75 0 78 25 0 25 78 0 78

SUSY_IR_16

BSL FCNN_MR FDR2-BD

GM 0.7613 0.5604 0.7614
SizeRed 88 82 98
DimRed 78 0 78
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It is important to notice that both the FDR2-BD and baseline apply a feature reduction
stage based on the feature importance values. However, the DimRed values could be
different for the same dataset as a result of FDR2-BD determining the recommended
features from the aggregation of the obtained features from each fold of a dataset and the
baseline selecting the features in only each fold, so they might change from fold to fold.
It is therefore shown that the use of feature aggregation of all data folds equals or even
improves the percentage of feature reduction.

With respect to the instance selection method behavior, our method is superior against
FCNN_MR regarding the predictive quality in more than 66% of the datasets. Furthermore,
in those cases when FCNN_MR achieves a GM similar to FDR2-BD, the SizeRed goes
between 38% up to 76%, which is a highly inferior range of values in comparison with the
ones obtained by our methodology. Furthermore, due the nature of the FCNN_MR method
(as well as the available IS methods for big data), no vertical reduction is generated at all.

In order to summarize the results, Table 7 presents the average GMs and reduction
metrics values and a comparison between our methodology with respect to the other ones.
The differences between the measures (column Diff) and the number of times our tool
outperforms, equals, or underperforms the tool being compared (column W/T/L, meaning
Win/Tie/Loses) are shown.

Table 7. Performance evaluation and data condensation (average, differences, and W/T/L counting).

GM SizeRed DimRed

Avg Diff W/T/L Avg Diff W/T/L Avg Diff W/T/L

BSL 0.7669 0.0077 4/15/2 56 42 19/1/1 71 1 7/14/0
FCNN_MR 0.6438 0.1308 14/5/2 71 27 18/1/2 0 72 21/0/0
FDR2-BD 0.7746 – – 98 – – 72 – –

It can be seen that our proposal is able to maintain the predictive quality even above
the percentage stipulated by the PLT parameter with respect to baseline. In addition, the
obtained reduction values regarding horizontality and verticality by applying FDR2-BD
are the greatest (98% and 72%, respectively), with significant differences with respect to
BSL and FCNN_MR.

5.4. Scalability Evaluation

In Figures 3 and 4, the sizeup and speedup achieved are shown for two (higgs and
susy) of the 25 experimental datasets in order to show the general behavior obtained. The
selected datasets are chosen because they are widely used in big data classification articles.
With the aim of assessing the sizeup, we have used our tool by varying the input size of the
original dataset (higgs_100perc), generating three different versions of it according to their
proportion of the original data size (higgs_75perc, higgs_50perc, higgs_25perc). Results
show that when a dataset increases in size, the scaleup value grows, as is expected.

With respect to the speedup evaluation, our tool uses the original dataset, and the
parallelism degree base is 8, doubling the previous parallelism degree value in each run.
It is important to remark that a linear speedup is difficult to achieve due to the fact that
increasing the number of partitions will introduce additional communication overhead.
However, a linear trend in an increasing direction can be noticed as the number of partitions
increases, meaning that this growing actually augments the parallelism degree of FDR2-BD.
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6. Concluding Remarks and Future Work

In this paper, the benefits of data condensation by reducing tabular datasets in classifi-
cation, particularly in the context of big data, are analyzed. A methodological proposal
that conforms to a condensation parameter (reduction percentage and most important
features, if any) recommendation tool is depicted. The design is simple and scalable based
on a hyper-parametrization process fully transparent to the user, in which all data are
taken into consideration by following a k-fold procedure. FDR2-BD is able to analyze data
condensation in a dual way (vertical and horizontal) by receiving the insight of the data
expert by setting two simple conditions: a predictive quality threshold associated with
the model obtained from the condensed set and a range of reduction percentages to check.
Furthermore, its implementation uses fully optimized parallel operations and utilities
provided by Apache Spark.

Throughout an extensive experimental study over 25 big datasets with different char-
acteristics, it has been observed that the FDR2-BD tool obtains reduction percentages above
95% in most cases. These values are far above state-of-the-art solutions such as FCNN_MR
that barely reach 70%. The key of our proposal lies in a smart combination of FS to generate
dense clusters of data and a uniform sampling reduction to keep only a few representative
samples from each problem area. Therefore, the results show how the modeling process
remains almost unchanged, with quality values around 1% of the baseline.

As future work, our intention is to test the quality of the proposal on multi-class
problems, where the boundaries between concepts may be more difficult, as well as on
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problems with imbalance. To this end, data complexity metrics can be included to guide
the process in those areas of the space where a higher degree of redundancy is observed.
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