
electronics

Article

Cross-Protocol Unfairness between Adaptive Streaming Clients
over HTTP/3 and HTTP/2: A Root-Cause Analysis

Chanh Minh Tran 1,* , Tho Nguyen Duc 1, Phan Xuan Tan 2,* and Eiji Kamioka 1,*

����������
�������

Citation: Tran, C.M.; Nguyen Duc,

T.; Tan, P.X.; Kamioka, E.

Cross-Protocol Unfairness between

Adaptive Streaming Clients over

HTTP/3 and HTTP/2: A Root-Cause

Analysis. Electronics 2021, 10, 1755.

https://doi.org/10.3390/

electronics10151755

Academic Editors: Manuel Perez

Malumbres, Carlos Tavares Calafate

and Glenn Van Wallendael

Received: 7 June 2021

Accepted: 20 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
nb20501@shibaura-it.ac.jp

2 Department of Information and Communications Engineering, Shibaura Institute of Technology,
Tokyo 135-8548, Japan

* Correspondence: nb20502@shibaura-it.ac.jp (C.M.T.); tanpx@shibaura-it.ac.jp (P.X.T.);
kamioka@shibaura-it.ac.jp (E.K.)

Abstract: With the introduction of HTTP/3, whose transport is no longer the traditional TCP protocol
but the novel QUIC protocol, research for solutions to the unfairness of Adaptive Streaming over
HTTP (HAS) has become more challenging. In other words, because of different transport layers, the
HTTP/3 may not be available for some networks and the clients have to use HTTP/2 for their HAS
applications instead. Therefore, the scenario in which HAS over HTTP/3 (HAS/3) competes against
HTTP/2 (HAS/2) must be considered seriously. However, there has been a shortage of investigations
on the performance and the origin of the unfairness in such a cross-protocol scenario in order to
produce proper solutions. Therefore, this paper provides a performance evaluation and root-cause
analysis of the cross-protocol unfairness between HAS/3 and HAS/2. It is concluded that, due to
differences in the congestion control mechanisms of QUIC and TCP, HAS/3 clients obtain larger
congestion windows, thus requesting higher video bitrates than HAS/2. As the problem lies in the
transport layer, existing client-side ABR-based solutions for the unfairness from the application layer
may perform suboptimally for the cross-protocol case.

Keywords: adaptive streaming; HTTP/3; QUIC; cross-protocol; unfairness; congestion control

1. Introduction

Adaptive streaming over HTTP (HAS) has become the de facto standard for most of
the online video services on the internet nowadays, thanks to its ability to instantaneously
adapt the video quality with the network condition [1]. In HAS, a video at the streaming
server is encoded into multiple quality versions (in terms of bitrates), each of which is
split into multiple small segments with the same duration. Then, every streaming client is
equipped with an Adaptive Bitrate Algorithm (ABR) in its video player to continuously
monitor the network condition, therefore requesting the suitable bitrate for every video
segment. Accordingly, undesirable incidents such as playback stalls and quality variation
can be reduced, thus maintaining a high quality of experience (QoE) for the users.

Nevertheless, in order to cope with the constantly increasing number of online video
users [2], as well as their daily usage time of the service [3], the performance of the HAS
services against multiple competing clients still requires further optimization. In multi-
client scenarios, it has been proven that due to the mismatch of the clients’ downloading
states originating from their ABRs on the application layer, some clients may overestimate
their bandwidths and request higher video bitrates than others [4–6]. Such a phenomenon
is defined as the unfairness problem, which causes QoE deterioration and a negative impact
on the user retention rate. Therefore, over the years, various research has been conducted
and various solutions to the unfairness have been proposed [7–10].

On the other hand, the protocol stacks have seen some significant changes in recent
years that complicate the efforts to solve the unfairness of HAS. In fact, the HTTP/3

Electronics 2021, 10, 1755. https://doi.org/10.3390/electronics10151755 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8451-2470
https://orcid.org/0000-0002-9592-0226
https://orcid.org/0000-0003-2155-4507
https://doi.org/10.3390/electronics10151755
https://doi.org/10.3390/electronics10151755
https://doi.org/10.3390/electronics10151755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10151755
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10151755?type=check_update&version=2


Electronics 2021, 10, 1755 2 of 13

protocol [11] was proposed and is expected to be standardized in the near future. While
HTTP/2 differs from HTTP/1.1 by the novel features on the application layer [12], the
major difference between HTTP/3 and its successors lies in the transport protocol. In other
words, while HTTP/1.1 and HTTP/2 have been running on top of the well-tuned TCP
protocol for decades, the HTTP/3 utilizes the novel QUIC protocol [13] for its transport.
QUIC actually runs atop the UDP protocol, which is often blocked or limited by network
entities due to known security risks [14–16]. This means that, as QUIC relies on UDP, there
are realistic scenarios that a client fails to use HTTP/3 because of configurations of its
network system and has to use HTTP/2 or HTTP/1.1 instead (Figure 1). Thus, streaming
providers must support both HTTP/3 and the former HTTP versions at the same time
to ensure service availability. This raises the need for the performance investigation of
the unfairness with regard to the cross-protocol scenario, where streaming clients using
HTTP/3 concurrently compete against ones using HTTP/2 or HTTP/1.1.

(a)

(b)
Figure 1. An example realistic case of Youtube where the HTTP/3 cannot be utilized. (a) A normal
client that successfully sends HTTP/3 requests (h3-29); (b) a firewall-controlled client that fails to
send HTTP/3 requests and has to use HTTP/2 (h2) instead.

In this manner, research about the cross-protocol unfairness between HAS over
HTTP/3 (HAS/3) and over HTTP/2 (HAS/2) or HTTP/1.1 (HAS/1.1) should attract
more attention. However, to the best of our knowledge, only a few works have attempted
to investigate the unfairness in such a case for HAS and no solution has ever been pro-
posed due to the following limitations. Firstly, as HTTP/3 and QUIC are still under
standardization, their features and characteristics vary upon drafted versions and their
implementations vary upon releases. Consequently, performance conclusions in the ex-
isting works are contradictory against one another. Secondly, those works only provide
observations and lack root-cause analysis. Without such crucial information, research for
an effective solution to the cross-protocol unfairness could not be conducted.

Realizing the aforementioned drawbacks, this paper presents an up-to-date perfor-
mance evaluation and a comprehensive root-cause investigation on the cross-protocol
unfairness of HAS/3 against its successors HAS/2 and HAS/1.1. In fact, the HTTP/2
nowadays accounts for 64% of HTTP requests over the internet and is expected to con-
tinue growing linearly [17]. With such usage growth, in addition to the more advanced
features that the HTTP/2 provides [12], it is believed that HTTP/1.1 will become degraded



Electronics 2021, 10, 1755 3 of 13

in the near future. Therefore, this work focuses mainly on the competition of HAS/3
and HAS/2 clients. Our analysis demonstrates that, with the newest documentation and
implementation, HTTP/3 clients tend to experience higher video quality than HTTP/2
clients when they compete under the same bottleneck network. Taking an in-depth look
at their transport—QUIC for HTTP/3 versus TCP for HTTP/2—it is found that, despite
both implementations running the same congestion control algorithm, QUIC is able to
acquire a larger congestion window than TCP. Such a behavior actually originates from
the different mechanisms of the congestion control and the characteristics of QUIC and
TCP [18]. In detail, we argue that the differences in loss epoch life cycle, acknowledgement
(ACK) ranges and minimum congestion window size, as well as the unreliable nature of
the UDP (QUIC’s based protocol), allow QUIC to receive ACK frames more frequently
than TCP. As a consequence, QUIC updates its congestion window more aggressively than
TCP, resulting in a higher occupation of the bandwidth. Moreover, since such an under-
performance is transparent to the application layer, it has been proven that the existing
unfairness solutions utilizing the client-side ABR-based approach on the application layer
may fail to achieve desirable effectiveness. Instead, follow-up research should focus on
either examining server- or network-based approaches on the transport layer, or tweaking
the functionalities and parameters of the transport QUIC. In summary, the distinguished
contributions of this work are as follows:

• An up-to-date investigation of the cross-protocol unfairness between HAS/3 and HAS/2
is provided, showing that HAS/3 clients unfairly experience higher video quality.

• A comprehensive analysis of such an unfairness problem is conducted, which con-
cludes that its origin lies in the differences in congestion control mechanisms and the
characteristics of the transport layer QUIC for HTTP/3 and TCP.

• Based on the root-cause analysis, we provide suggestions for proper solutions to the
cross-protocol unfairness between HAS/3 and HAS/2.

The remainder of this paper is organized as follows: Section 2 reviews the existing
research about the cross-protocol unfairness between HAS/3 and HAS/2. The hypothesis
on the cause of the cross-protocol unfairness and the methodology and experimental
setup for validation are presented in Section 3. The experimental results are analyzed and
discussed in Sections 4 and 5, respectively. Finally, Section 6 concludes this paper.

2. Related Work

Ever since the proposal of the QUIC transport protocol and the HTTP/3, a dedicated
track of research has focused on evaluating its influences on the performance of the HAS. To
name a few, in [19], the authors showed that HTTP-over-QUIC, which was the former name
of HTTP/3 before November 2018 [20], helped the client start the video quicker, reduced
the rebuffering ratio and improved the average bitrate compared to HTTP-over-TCP in
WiFi, LTE and 3G networks. Moreover, for the situation when the client switched between
network interfaces, the results also expressed the outperformance of HTTP-over-QUIC
in those metrics. The work in [21] combined a traditional video streaming approach and
a retransmission technique for Scalable High Efficiency Video Coding streaming over
HTTP/3. Compared with HTTP/2, the proposed approach provided higher average video
quality and more stable bitrate switches when packet loss and retransmission occurred.
Meanwhile, the paper [22] discussed and provided suitable settings of the QUIC’s parame-
ters for better performance of the HAS. On the other hand, [23] investigated the impact of
HTTP/3 and QUIC on 360◦ HAS and argued that they could effectively reduce rebuffering
counts and duration. Despite the fact that these works provided promising performances
of the HTTP/3 and QUIC on HAS, they did not consider the multi-client scenario, where
the unfairness problem requires more attention.

As explained in the previous section, the differences in the transport protocol between
HTTP/3 and HTTP/2 or HTTP/1.1 highlight the need for tackling the cross-protocol
unfairness of the clients requesting these traffics. However, research about such a problem
for HAS is surprisingly limited. The work in [24] provided a performance study of several



Electronics 2021, 10, 1755 4 of 13

ABRs under the HTTP-over-QUIC. The author did not state which version of QUIC had
been tested in their work. However, they did mention the Google QUIC, which is the very
first variant of today’s IETF QUIC. Based on their evaluation results, it was shown that
the streaming clients using HTTP-over-QUIC failed to experience a video bitrate as high
as that of the HTTP-over-TCP clients. The author argued that such an underperformance
of the HTTP-over-QUIC clients was because most ABRs were tuned to work well with
TCP so they did not utilize the features of QUIC effectively. In their later work [25], the
QUIC retransmission scheme was employed with Google QUIC version Q043, showing
promising improvements in video quality and bitrate stability. Interestingly, while they
noted that their solution might result in unfairness among the clients running HTTP-over-
QUIC, they also observed that such a client also starved out the HTTP-over-TCP clients.
Such an observation was contradictory to their own previous work in [24]. On the other
hand, a performance investigation similar to that of [24] was conducted in [26] with the
Google QUIC server v39. The finding in [26] showed that, while the HAS clients running
over QUIC could perform fairly against one another, they provided 37% higher bitrate than
the HAS over TCP clients in most cross-protocol cases.

It can be noticed that the findings in these existing works were contradictory to one
another and were actually outdated as the Google QUIC is now deprecated to make way
for the IETF QUIC [27]. Moreover, their works only provided observation and lacked
in-depth analysis on the origin of the problem. Thus, to the best of our knowledge, there
have been no solutions proposed for the cross-protocol unfairness between HAS/3 and
HAS/2 clients due to such a serious drawback. In order to clarify the root cause of the cross-
protocol unfairness, in the following sections, we present our hypothesis, experimental
methodology and performance analysis with the latest version of the HTTP/3 and QUIC.

3. Hypothesis and Methodology

This section describes the hypothesis on the existence and the cause of the cross-
protocol unfairness among HAS/3 and HAS/2 clients in detail, as well as the methodology
and experimental settings for validating it.

3.1. Hypothesis

In HAS, a client’s ABR typically decides the video bitrate based on its observation of
the available bandwidth. Apparently, unfair bandwidth consumption of clients towards
one another can lead to an unfair bitrate selection. Nevertheless, the bandwidth fairness
is actually well-handled by the congestion control of the TCP protocol in the transport
layer [28,29] and existing research also concluded that the unfairness in bitrate selection of
single-protocol HAS/2 or HAS/1.1 was the result of inefficient ABRs in the application
layer [4]. Therefore, before the introduction of HTTP/3, previous investigations and
solutions to the unfairness only focused on optimizing the ABR from the client side.

On the other hand, this work considers the cross-protocol scenario, where TCP is no
longer the only transport layer of all clients. In fact, the transport QUIC of HAS/3 also
implements TCP’s congestion control. However, as stated in the draft RFC, there exist
several differences, which are considered as enhancements, in the mechanism of QUIC’s
congestion control compared with TCP’s [18]. The differences that are most relevant to this
paper are as follows:

• Immediate reaction to packet loss: When a packet loss is detected, QUIC typically
reacts every round trip. For the case of TCP, it may have to wait for multiple round
trips before progressing with follow-up actions.

• More ACK ranges for loss recovery: While TCP utilizes only three selective ACKs for
loss recovery, QUIC supports many ACK ranges to speed up such a process, especially
in high-loss environments.

• Increasing minimum congestion window: QUIC recommends that the minimum
congestion window is two packets long, while that of the TCP is only one packet.



Electronics 2021, 10, 1755 5 of 13

Thus, it is likely that the performance of their congestion control is dissimilar and
causes uneven bandwidth distribution. As the clients’ ABRs rely heavily on the bandwidth
obtained by their transport, their bitrate selections are affected, which causes unfairness in
video bitrates. To clarify this hypothesis, the experimental methodology and settings of
this paper are presented in the remaining parts of this section.

3.2. Methodology
3.2.1. Experimental Scenarios

In order to confirm the cross-protocol unfairness between HAS/3 and HAS/2 with the
latest documentation and implementation of HTTP/3, as well as to validate our hypothesis
on the root cause of the problem, an experimental evaluation is conducted. The experiment
is run with several total bandwidth limits B to assess the performance of the clients across
different competitiveness levels of the network (i.e., a lower value of B means a more
serious competition). In this experiment, the clients are examined with B ∈ {3, 5} (mbps).

In addition, the number of each type of client (i.e., HAS/3 or HAS/2 clients) also
varies. This is to verify whether the unfairness is explicitly towards a particular type of
client. In this experiment, the total number of all clients is varied from 2 to 3 clients. For
the case of 2 clients, there is only the scenario that 1 HAS/3 client competes with 1 HAS/2
client. Meanwhile, with 3 clients, there are two subscenarios to be considered: 1 HAS/3
client competes with 2 HAS/2 clients, and 2 HAS/3 clients compete with 1 HAS/2 client.
In summary, the details of the evaluated scenarios are shown in Table 1.

Table 1. Summary of the experimental scenarios.

Total Number of Clients Scenario Denotation

2 clients 1 HAS/3 client and 1 HAS/2 client S11

3 clients 1 HAS/3 client and 2 HAS/2 clients S12
2 HAS/3 clients and 1 HAS/2 client S21

3.2.2. Investigation Metrics

Existing works on the unfairness of HAS often utilized the average unfairness index F
of the video bitrates selected by the clients’ ABRs as a numerical metric of the unfairness
level [6–8,10]. Therefore, in this paper, this metric will be considered to investigate such a
problem. F, adopted from [7], is estimated by averaging the unfairness index F from the
beginning to the end of a streaming session, with F calculated based on the discrimination
index of the Jain Fairness [30] as in Equation (1).

F =
√

1− JainFair =

√√√√1− (∑C
c=1 rc,t)

2

C ∗∑C
c=1 rc,t2

(1)

where rc,t denotes the bitrate r selected by the client c at time t. A larger value of F indicates
a more severe unfairness. Additionally, the average bitrate r of each client throughout
its streaming session will be measured in order to judge whether higher bitrates are only
available at a specific type of client.

Furthermore, in this work, it is hypothesized that the differences in congestion control
of the transport protocol QUIC and TCP actually cause the unfairness in bandwidth
consumption among the clients. In order to clarify this hypothesis, the time-varying
congestion window of each client, which is the output of the congestion control algorithm,
is also collected.

3.3. Experimental Setup

In this subsection, the description of the experimental settings for investigating the
cross-protocol unfairness between HAS/3 and HAS/2 is provided. Figure 2 depicts the
experiment topology.



Electronics 2021, 10, 1755 6 of 13

Figure 2. Experimental topology.

The video server and clients were deployed on separate virtual machines running
Ubuntu 20.04 LTS with 4GB of RAM and 4 processor cores. These machines were actually
virtualized on a Core i5 physical machine running Ubuntu 20.04 LTS with 80 GB of RAM.
For enabling HTTP/3, the server applied the implementation of quic-go v0.20.1 [31], which
supported version 34 of the drafted HTTP/3 and QUIC, which was the latest draft at the
time we conducted this experiment. As for HTTP/2, the server simply used the native
http package of Golang [32]. Meanwhile, the total bandwidth limit B was configured using
the linux tc [33]; the congestion window was extracted from the qlog files of quic-go for
HTTP/3 and linux ss [34] for HTTP/2.

The streaming application was packaged at the server based on the dash.js frame-
work [35], which was run via a Firefox web browser from the client side. The server
provided 300 2-second segments of the open-source Big Buck Bunny video with 11 quality
versions, i.e., {100, 200, 300, 500, 700, 900, 1200, 1500, 2000, 2500, 3000} (kbps). At the client,
the maximum buffer was set to 30 seconds. In this experiment, the clients’ performances
were tested with two types of ABR: general ABR and fairness ABR. For the general ABR,
the default ABR of dash.js was employed, which was actually a dynamic ABR that con-
ditionally switches between its own throughput ABR and the well-known buffer-based
BOLA [36]. The dash.js ABR was not tuned for solving the unfairness issues, whereas
we were also curious about whether existing fairness ABRs could perform well in such
a cross-protocol scenario. For this reason, the FESTIVE [7], which was among the most
famous baseline fairness ABRs (i.e., ABRs taking into account the fairness optimization in
their designed goals), was considered. The FESTIVE utilized the harmonic mean of the
estimated bandwidth, gradual and stateful bitrate transition, and randomized segment
download scheduler to overcome the unfairness from the client side.

The experiment of each scenario described in Section 3.2 was tested 10 times to en-
sure performance consistency. In the following section, the detailed results and analysis
are presented.



Electronics 2021, 10, 1755 7 of 13

4. Results and Analysis

This section provides the results and analysis of our experiment on the cross-protocol
unfairness between HAS/3 and HAS/2 clients. For the numerical results (F and r) of each
scenario, we show the average values of all 10 runs. As for the visualized time-varying
figures, due to similar behaviors, only one representative run for each scenario is shown.

4.1. General ABR

In this subsection, the results collected for the general ABR are analyzed. Table 2
summarizes the average bitrate r of every client. In this table, CX

HAS/Y denotes the client
X running HAS/Y with Y ∈ {2, 3}. Meanwhile, the average unfairness index F of all
scenarios is shown in Table 3.

Table 2. The average bitrate r (kbps) of each client running the general ABR.

B
S11 S12 S21

C1
H AS/3 C2

H AS/2 C1
H AS/3 C2

H AS/2 C3
H AS/2 C1

H AS/3 C2
H AS/2 C3

H AS/3

3 mbps 1412 ± 32 1007 ± 31 1105 ± 46 706 ± 32 717 ± 27 897 ± 70 702 ± 43 918 ± 41

5 mbps 2325 ± 33 1552 ± 45 1684 ± 105 1187 ± 107 1180 ± 96 1536 ± 106 1115 ± 124 1483 ± 87

Table 3. The average unfairness index F of the general ABR.

B S11 S12 S21

3 mbps 0.1895 ± 0.0195 0.2711 ± 0.0272 0.2122 ± 0.0150

5 mbps 0.2105 ± 0.0119 0.2398 ± 0.0275 0.2259 ± 0.0180

The numerical results in Table 3 quantitatively demonstrate that, across all scenarios,
the bitrate decisions of same-type HAS clients were relatively indistinguishable. In contrast,
it was obvious that the HAS/3 clients ended up requesting higher bitrates than the HAS/2
clients. In particular, the bitrates selected by the HAS/3 clients were 42.05% higher than
those of the HAS/2 clients on average. This led to the results of the unfairness index F
in Table 3. Although such an unfairness performance was actually predictable because
the general ABR was not tuned for solving such a problem, the fact that the high bitrates
were reserved only for the HAS/3 clients was very interesting. Taking a closer look at
this observation, Figures 3 and 4 depict the time-varying bitrates and moving average
congestion windows (cwnd_ma) of the clients under 3 mbps and 5 mbps, respectively.

Figure 3. The representative time-varying bitrates and cwnd_ma of the clients running the general ABR with B = 3 (mbps),
under the scenario (a) S11, (b) S12 and (c) S21.



Electronics 2021, 10, 1755 8 of 13

Figure 4. The representative time-varying bitrates and cwnd_ma of the clients running the general ABR with B = 5 (mbps),
under the scenario (a) S11, (b) S12 and (c) S21.

It can be observed from Figures 3 and 4 that the bitrates of both types of clients
varied significantly; they were occasionally increased or decreased with large amplitudes
and within short periods. This behavior actually harmed the fairness as such abrupt and
large changes might significantly increase the difference in clients’ bitrates at some time
intervals. More importantly, the time-varying cwnd_ma from Figures 3 and 4 expresses that
the HAS/3 clients always received a higher congestion window (cwnd) than the HAS/2
clients. Meanwhile, the cwnd_ma among the HAS/3 clients or among the HAS/2 clients
were relatively comparable. This means that, despite running the same congestion control
algorithm, the transport QUIC of HAS/3 clients helped them obtain more cwnd, thus
receiving a greater portion of the bandwidth than the HAS/2 clients running on TCP. This
phenomenon strongly supports our hypothesis in Section 3.1, that the performance of the
congestion control between QUIC and TCP was different, which harmed the fairness of
their bandwidth consumption. As a result, the HAS/3 clients running on QUIC were able
to request higher bitrates. Moreover, since this problem lies in the transport layer, it is
highly possible that such a behavior also occurred with the fairness ABR. As the ABR
worked on the application layer, it could not control but only relied on the bandwidth
given by its transport layer. To validate this expectation, the next subsection shows similar
analysis results of the fairness ABR.

4.2. Fairness ABR

Similar to the previous subsection, Table 4 shows the measured F, Table 5 summarizes
r of every client, while Figures 5 and 6 illustrate the time-varying performance under
3 mbps and 5 mbps, respectively, in terms of bitrates and cwnd_ma of the fairness ABR.

Table 4. The average unfairness index F of the fairness ABR.

B S11 S12 S21

3 mbps 0.0814 ± 0.0262 0.1095 ± 0.0227 0.0991 ± 0.0245

5 mbps 0.0697 ± 0.0129 0.0909 ± 0.0106 0.0712 ± 0.0120

Table 5. The average bitrate r (kbps) of each client running the fairness ABR.

B
S11 S12 S21

C1
H AS/3 C2

H AS/2 C1
H AS/3 C2

H AS/2 C3
H AS/2 C1

H AS/3 C2
H AS/2 C3

H AS/3

3 mbps 1106 ± 34 927 ± 41 866 ± 30 706 ± 19 689 ± 30 804 ± 24 653 ± 19 792 ± 36

5 mbps 1720 ± 21 1461 ± 41 1326 ± 18 1071 ± 21 1138 ± 16 1234 ± 25 1064 ± 39 1200 ± 29



Electronics 2021, 10, 1755 9 of 13

Figure 5. The representative time-varying bitrates and cwnd_ma of the clients running the fairness ABR with B = 3 (mbps),
under the scenario (a) S11, (b) S12 and (c) S21.

Figure 6. The representative time-varying bitrates and cwnd_ma of the clients running the fairness ABR with B = 5 (mbps),
under the scenario (a) S11, (b) S12 and (c) S21.

It can be inferred from Table 4 that the conditions of the cross-protocol unfairness
across all scenarios were significantly better than the general ABR. Indeed, the fairness
ABR provided an average of 44.69% improvement in F compared to the general ABR.
However, Table 5 concludes a similar tendency to that described in Section 4.1: the HAS/3
clients still experienced higher video bitrates than HAS/2 clients, despite the fact that the
gap between them was minimized to 19.47% higher for HAS/3 on average. Observing
Figures 5 and 6, we can see that the clients’ bitrates were more in control and tended to
vary within specific ranges. This behavior was the result of the gradual and stateful update
mechanism of the fairness ABR: the client stayed at every bitrate level for a specific number
of segments before, if necessary, increasing or decreasing it to the closest higher or lower
level. Thus, there were no abruptly large bitrate changes and the difference in the clients’
average bitrates was smaller. Moreover, their bitrate selections were relatively identical for
a specific amount of time at the beginning. This was because the fairness ABR forced all
clients to choose the lowest bitrate at the beginning of their streaming sessions to avoid
playback stalls. Such a strategy not only explains why the results of r of all types of client
with all total bandwidth limits were smaller when running the fairness ABR, but also
contributes to the minimization of the bitrate difference discussed earlier. Nevertheless, as
expected, the HAS/3 clients were given higher cwnd, thus requesting higher bitrates due
to the higher occupation of the bandwidth. As a result, although the bitrate selections were
similar at the beginning due to the ABR’s strategy, they ended up varying unfairly based
on their estimations of bandwidth afterwards.



Electronics 2021, 10, 1755 10 of 13

In summary, the results of both types of ABR demonstrate that, under a cross-protocol
scenario, the bitrate selection among the clients was always unfairly higher for the HAS/3
clients. This is because the transport QUIC allowed its HAS/3 clients to utilize higher
cwnd than the TCP of the HAS/2 clients. Therefore, the root cause of such cross-protocol
unfairness lies in the congestion control mechanisms of QUIC and TCP, rather than in the
application layer, as argued in previous investigations that only focused on the single-
protocol unfairness.

5. Discussion

Based on the analysis in Section 4, it is found that the transport QUIC was able to
achieve higher cwnd for its HAS/3 clients than TCP for HAS/2, leading to an unfair
distribution of the shared bandwidth. For this reason, even the referenced fairness ABR
could not perform optimally to provide similar bitrates for both types of HAS client. Such a
phenomenon is actually explainable by examining the enhancements of QUIC’s congestion
control in comparison with TCP’s, as described in Section 3.2. These enhancements actually
empower QUIC to transmit data packets much faster than TCP. In addition, QUIC runs
atop UDP, which is naturally faster than TCP due to the unreliable characteristics [16]. For
these reasons, QUIC is able to receive ACK frames faster than TCP, so that QUIC updates
its cwnd more aggressively and occupies more than the fair share of bandwidth. In order
to confirm this explanation, Tables 6 and 7 show the average number of cwnd updates of
the clients using the general and the fairness ABR, respectively, in the previous experiment;
meanwhile, Figure 7 illustrates an example of the zoomed-in time-varying cwnd of the
clients using the fairness ABR under the scenario S11 with B = 3 (mbps).

Table 6. The average number of cwnd updates of each client running the general ABR.

B
S11 S12 S21

C1
H AS/3 C2

H AS/2 C1
H AS/3 C2

H AS/2 C3
H AS/2 C1

H AS/3 C2
H AS/2 C3

H AS/3

3 mbps 4407 ± 238 2586 ± 351 3776 ± 287 2569 ± 332 2610 ± 276 3894 ± 255 2611 ± 363 3971 ± 253

5 mbps 6916 ± 349 3631 ± 402 6662 ± 387 3637 ± 458 3600 ± 484 6250 ± 390 3851 ± 472 6048 ± 399

Table 7. The average number of cwnd updates of each client running the fairness ABR.

B
S11 S12 S21

C1
H AS/3 C2

H AS/2 C1
H AS/3 C2

H AS/2 C3
H AS/2 C1

H AS/3 C2
H AS/2 C3

H AS/3

3 mbps 3443 ± 198 2212 ± 235 3425 ± 185 2076 ± 199 2050 ± 203 3397 ± 188 2054 ± 221 3301 ± 197

5 mbps 5360 ± 232 3159 ± 221 5001 ± 243 3091 ± 233 2969 ± 290 4836 ± 283 3110 ± 211 4815 ± 201

Obviously, from Tables 6 and 7, the HAS/3 clients updated the cwnd much more
frequently than the HAS/2 clients. The illustration in Figure 7 also supports this conclusion.
It can be noticed that the number of cwnd updates of all clients running the general ABR
was higher than those running the fairness ABR across all scenarios and bandwidth limits.
This was simply because the clients running the general ABR often abruptly requested
bitrates much higher than the fair portion of the total bandwidth limit, leading to higher
packet loss due to insufficient bandwidth and increasing the frequency of cwnd updates.

In conclusion, our hypothesis on the root cause of the cross-protocol unfairness of
HAS/3 and HAS/2 was verified; in other words, the dissimilarities in congestion control
of QUIC and TCP led to unfair bandwidth allocation and, finally, unfair bitrate selections.
As the the problem arises from the transport layer, follow-up research on the cross-protocol
unfairness can investigate existing methods working on this layer, such as server- or
network-based solutions. For example, [10,37] utilized a bandwidth allocation module that
assigned an equal and separate bandwidth slice for each client. Figure 8 visualizes the
bitrate selection performance of the scenario S11 with B = 3 (mbps) when applying such
a method.



Electronics 2021, 10, 1755 11 of 13

Figure 7. An example zoomed-in time-varying cwnd of the clients using the fairness ABR under the
scenario S11 with B = 3 (mbps).

Figure 8. An example time-varying bitrate selection of the scenario S11 with B = 3 (mbps) when
applying a bandwidth allocation method.

The time-varying bitrate selection clearly demonstrates superior fairness performance
compared with the client-side fairness ABR tested in Section 4.2. This is because, as
explained in [10,37], when every client had its own specific bandwidth, they ultimately
did not compete with one another and only maximized the bitrates based on the assigned
bandwidth. Consequently, since all clients were given an equal bandwidth, their bitrate
selections ended up being fair regardless of their HTTP versions or transport protocols.
Nevertheless, the server- and network-based solutions have been questioned regarding
their consistent efficiency in large-scale networks due to the extra computational complexity
and overhead, or regarding the deployment feasibility as they require additional network
entities [38,39]. The cost benefit regarding these matters should be carefully considered
before applying such solutions in real life.

On the other hand, the transport QUIC is actually implemented on the user space
of both endpoints [40]. Therefore, modifications of the protocol’s functionalities and
parameters become more feasible as they do not experience the ossification problem caused



Electronics 2021, 10, 1755 12 of 13

by conservative network blocks on-the-fly [41,42]. For this reason, future research can
also consider tweaking the functionalities and parameters of QUIC for obtaining a fairer
bandwidth for the HAS/3 clients against HAS/2 and/or HAS/1.1.

6. Conclusions and Future Work

This paper presents an up-to-date performance analysis of the HAS/3 and HAS/2
clients under a cross-protocol scenario and confirms that HAS/3 clients always unfairly
acquire higher bitrates than its successors. Looking into the transport layer, it is found that
the root cause of this underperformance lies in the aggressive occupation of the congestion
window of QUIC—the transport of HAS/3. Such a behavior originates from enhancements
in the congestion control mechanism of QUIC, as well as its different characteristics with
TCP. As a result, it is proven that the existing client-side fairness ABR fails to provide fair
bitrates for the clients due to irrelevant working layers. Based on this conclusion, for future
work, we will focus on tuning the congestion control algorithm of QUIC. In addition, the
feasibility of server- and network-based unfairness solutions will also be examined under
such a cross-protocol scenario.

Author Contributions: Conceptualization, C.M.T., T.N.D. and P.X.T.; Methodology, C.M.T., T.N.D.
and P.X.T.; Supervision, P.X.T. and E.K.; Writing—original draft, C.M.T. and T.N.D.; Writing—
review and editing, P.X.T. and E.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stockhammer, T. Dynamic Adaptive Streaming over HTTP–: Standards and Design Principles. In Proceedings of the Second

Annual ACM Conference on Multimedia Systems, MMSys ’11, San Jose, CA, USA, 23 February 2011; Association for Computing
Machinery: New York, NY, USA, 2011; pp. 133–144. [CrossRef]

2. Global Digital Video 2019; Technical Report; eMarketer: New York, NY, USA, 2019.
3. Online Video Forecasts 2019; Technical Report; Zenith: New York, NY, USA, 2019.
4. Akhshabi, S.; Begen, A.C.; Dovrolis, C. An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming

over HTTP. In Proceedings of the Second Annual ACM Conference on Multimedia Systems, MMSys ’11, San Jose, CA, USA, 23
February 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 157–168. [CrossRef]

5. Akhshabi, S.; Anantakrishnan, L.; Begen, A.C.; Dovrolis, C. What Happens When HTTP Adaptive Streaming Players Compete
for Bandwidth? In Proceedings of the 22nd International Workshop on Network and Operating System Support for Digital
Audio and Video, NOSSDAV ’12, Amherst, MA, USA, 21 June 2012; Association for Computing Machinery: New York, NY, USA,
2012; pp. 9–14. [CrossRef]

6. Wang, Y.; Tran, C.M.; Duc, T.N.; Wu, X.; Tan, P.X.; Kamioka, E. An Experimental Study on The Unfairness in Adaptive Streaming
with HTTP/2 Server Push. In Proceedings of the 2019 International Conference on Video, Signal and Image Processing, VSIP 2019,
Wuhan, China, 29–31 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 94–98. [CrossRef]

7. Jiang, J.; Sekar, V.; Zhang, H. Improving Fairness, Efficiency, and Stability in HTTP-Based Adaptive Video Streaming With Festive.
IEEE/ACM Trans. Netw. 2014, 22, 326–340. [CrossRef]

8. Li, Z.; Zhu, X.; Gahm, J.; Pan, R.; Hu, H.; Begen, A.C.; Oran, D. Probe and Adapt: Rate Adaptation for HTTP Video Streaming At
Scale. IEEE J. Sel. Areas Commun. 2014, 32, 719–733. [CrossRef]

9. Liu, J.; Tao, X.; Lu, J. QoE-Oriented Rate Adaptation for DASH With Enhanced Deep Q-Learning. IEEE Access 2019, 7, 8454–8469.
[CrossRef]

10. Tran, C.M.; Nguyen Duc, T.; Tan, P.X.; Kamioka, E. FAURAS: A Proxy-Based Framework for Ensuring the Fairness of Adaptive
Video Streaming over HTTP/2 Server Push. Appl. Sci. 2020, 10, 2485. [CrossRef]

11. Hypertext Transfer Protocol Version 3 (HTTP/3)—Draft-Ietf-Quic-Http-34; Internet Engineering Task Force (IETF): Fremont, CA,
USA, 2021.

12. RFC: 7540 Hypertext Transfer Protocol Version 2 (HTTP/2); Internet Engineering Task Force (IETF): Fremont, CA, USA, 2015.
13. QUIC: A UDP-Based Multiplexed and Secure Transport—Draft-Ietf-Quic-Transport-34; Internet Engineering Task Force (IETF):

Fremont, CA, USA, 2021.
14. Berti-Equille, L.; Zhauniarovich, Y. Profiling DRDoS Attacks with Data Analytics Pipeline. In Proceedings of the 2017 ACM on

Conference on Information and Knowledge Management, CIKM ’17, Singapore, 6–10 November 2017; Association for Computing
Machinery: New York, NY, USA, 2017; pp. 1983–1986. [CrossRef]

http://doi.org/10.1145/1943552.1943572
http://dx.doi.org/10.1145/1943552.1943574
http://dx.doi.org/10.1145/2229087.2229092
http://dx.doi.org/10.1145/3369318.3369329
http://dx.doi.org/10.1109/TNET.2013.2291681
http://dx.doi.org/10.1109/JSAC.2014.140405
http://dx.doi.org/10.1109/ACCESS.2018.2889999
http://dx.doi.org/10.3390/app10072485
http://dx.doi.org/10.1145/3132847.3133155


Electronics 2021, 10, 1755 13 of 13

15. Wangen, G.; Shalaginov, A.; Hallstensen, C. Cyber Security Risk Assessment of a DDoS Attack. In Information Security; Bishop,
M., Nascimento, A.C.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 183–202.

16. Soni, M.; Rajput, B.S. Security and Performance Evaluations of QUIC Protocol. In Data Science and Intelligent Applications; Kotecha,
K., Piuri, V., Shah, H.N., Patel, R., Eds.; Springer: Singapore, 2021; pp. 457–462.

17. HTTP Archive’s Annual State of the Web Report. Available online: https://almanac.httparchive.org/en/2020/http2#fig-4
(accessed on 27 April 2021).

18. QUIC Loss Detection and Congestion Control—Draft-Ietf-Quic-Transport-34; Internet Engineering Task Force (IETF): Fremont, CA,
USA, 2021.

19. Arisu, S.; Begen, A.C. Quickly Starting Media Streams Using QUIC. In Proceedings of the 23rd Packet Video Workshop, PV
’18, Amsterdam, The Netherlands, 12 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–6.
[CrossRef]

20. HTTP-over-QUIC Officially Becomes HTTP/3. Available online: https://daniel.haxx.se/blog/2018/11/11/http-3/ (accessed on
9 March 2021).

21. Nguyen, M.; Amirpour, H.; Timmerer, C.; Hellwagner, H. Scalable High Efficiency Video Coding Based HTTP Adaptive Streaming
over QUIC. In Proceedings of the Workshop on the Evolution, Performance, and Interoperability of QUIC, EPIQ ’20, Virtual
Event, USA, 10–14 August 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 28–34. [CrossRef]

22. Tong, V.; TRAN, H.A.; SOUIHI, S.; MELLOUK, A. Empirical study for Dynamic Adaptive Video Streaming Service based on
Google Transport QUIC protocol. In Proceedings of the 2018 IEEE 43rd Conference on Local Computer Networks (LCN), Chicago,
IL, USA, 1–4 October 2018, pp. 343–350. [CrossRef]

23. Yen, S.C.; Fan, C.L.; Hsu, C.H. Streaming 360◦ Videos to Head-Mounted Virtual Reality Using DASH over QUIC Transport
Protocol. In Proceedings of the 24th ACM Workshop on Packet Video, PV ’19, Amsterdam, The Netherlands, 12–15 June 2018;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 7–12. [CrossRef]

24. Bhat, D.; Rizk, A.; Zink, M. Not so QUIC: A Performance Study of DASH over QUIC. In Proceedings of the 27th Workshop on
Network and Operating Systems Support for Digital Audio and Video, Taipei, Taiwan, 20–23 June 2017; pp. 13–18. [CrossRef]

25. Bhat, D.; Deshmukh, R.; Zink, M. Improving QoE of ABR Streaming Sessions through QUIC Retransmissions. In Proceedings of
the 26th ACM International Conference on Multimedia, Seoul, Korea, 22 October 2018. [CrossRef]

26. Arisu, S.; Yildiz, E.; Begen, A.C. Game of Protocols: Is QUIC Ready for Prime Time Streaming? Int. J. Netw. Manag. 2020, 30.
[CrossRef]

27. Chrome Is Deploying HTTP/3 and IETF QUIC. Available online: https://blog.chromium.org/2020/10/chrome-is-deploying-
http3-and-ietf-quic.html (accessed on 27 April 2021).

28. RFC: 5681 TCP Congestion Control; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2009.
29. Ha, S.; Rhee, I.; Xu, L. CUBIC: A New TCP-Friendly High-Speed TCP Variant. Acm Sigops Oper. Syst. Rev. 2008, 42, 64–74.

[CrossRef]
30. Jain, R.; Chiu, D.; Hawe, W. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer

Systems. arXiv 1998, arXiv:cs/9809099.
31. quic-go. Available online: https://github.com/lucas-clemente/quic-go/tree/master (accessed on 9 March 2021).
32. golang http. Available online: https://golang.org/pkg/net/http/ (accessed on 9 March 2021).
33. linux tc. Available online: https://man7.org/linux/man-pages/man8/tc.8.html (accessed on 9 March 2021).
34. linux ss. Available online: https://man7.org/linux/man-pages/man8/ss.8.html (accessed on 9 March 2021).
35. dash.js. Available online: https://github.com/Dash-Industry-Forum/dash.js/wiki (accessed on 9 March 2021).
36. Spiteri, K.; Urgaonkar, R.; Sitaraman, R.K. BOLA: Near-optimal bitrate adaptation for online videos. In Proceedings of the IEEE

INFOCOM 2016, 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14
April 2016; pp. 1–9.

37. Taibi Guguen, C.; Le Bolzer, F.; Houdaille, R. Improving User Experience when HTTP Adaptive Streaming Clients Compete for
Bandwidth. Smpte Motion Imag. J. 2017, 126, 28–34. [CrossRef]

38. Bentaleb, A.; Taani, B.; Begen, A.C.; Timmerer, C.; Zimmermann, R. A Survey on Bitrate Adaptation Schemes for Streaming
Media Over HTTP. IEEE Commun. Surv. Tutor. 2019, 21, 562–585. [CrossRef]

39. Petrangeli, S.; Hooft, J.V.D.; Wauters, T.; Turck, F.D. Quality of Experience-Centric Management of Adaptive Video Streaming
Services: Status and Challenges. ACM Trans. Multimed. Comput. Commun. Appl. 2018, 14. [CrossRef]

40. Wang, P.; Bianco, C.; Riihijärvi, J.; Petrova, M. Implementation and Performance Evaluation of the QUIC Protocol in Linux Kernel.
In Proceedings of the 21st ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems,
MSWIM ’18, Montreal, QC, Canada, 28 October–2 November 2018; Association for Computing Machinery: New York, NY, USA,
2018; pp. 227–234. [CrossRef]

41. Kosek, M.; Shreedhar, T.; Bajpai, V. Beyond QUIC v1: A First Look at Recent Transport Layer IETF Standardization Efforts. IEEE
Commun. Mag. 2021, 59, 24–29. [CrossRef]

42. Papastergiou, G.; Fairhurst, G.; Ros, D.; Brunstrom, A.; Grinnemo, K.J.; Hurtig, P.; Khademi, N.; Tüxen, M.; Welzl, M.; Damjanovic,
D.; et al. De-Ossifying the Internet Transport Layer: A Survey and Future Perspectives. IEEE Commun. Surv. Tutor. 2017,
19, 619–639. [CrossRef]

https://almanac.httparchive.org/en/2020/http2#fig-4
http://dx.doi.org/10.1145/3210424.3210426
https://daniel.haxx.se/blog/2018/11/11/http-3/
http://dx.doi.org/10.1145/3405796.3405829
http://dx.doi.org/10.1109/LCN.2018.8638062
http://dx.doi.org/10.1145/3304114.3325616
http://dx.doi.org/10.1145/3083165.3083175
http://dx.doi.org/10.1145/3240508.3240664
http://dx.doi.org/10.1002/nem.2063
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
http://dx.doi.org/10.1145/1400097.1400105
https://github.com/lucas-clemente/quic-go/tree/master
https://golang.org/pkg/net/http/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/ss.8.html
https://github.com/Dash-Industry-Forum/dash.js/wiki
http://dx.doi.org/10.5594/JMI.2016.2632279
http://dx.doi.org/10.1109/COMST.2018.2862938
http://dx.doi.org/10.1145/3165266
http://dx.doi.org/10.1145/3242102.3242106
http://dx.doi.org/10.1109/MCOM.001.2000877
http://dx.doi.org/10.1109/COMST.2016.2626780

	Introduction
	Related Work
	Hypothesis and Methodology
	Hypothesis
	Methodology
	Experimental Scenarios
	Investigation Metrics

	Experimental Setup

	Results and Analysis
	General ABR
	Fairness ABR

	Discussion
	Conclusions and Future Work
	References

