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Abstract: Since the advent of computers, computing performance has been steadily increasing.
Moreover, recent technologies are mostly based on massive data, and the development of artificial
intelligence is accelerating it. Accordingly, various studies are being conducted to increase the
performance and computing and data access, together reducing energy consumption. In-memory
computing (IMC) and in-storage computing (ISC) are currently the most actively studied architectures
to deal with the challenges of recent technologies. Since IMC performs operations in memory, there is
a chance to overcome the memory bandwidth limit. ISC can reduce energy by using a low power
processor inside storage without an expensive IO interface. To integrate the host CPU, IMC and
ISC harmoniously, appropriate workload allocation that reflects the characteristics of the target
application is required. In this paper, the energy and processing speed are evaluated according to the
workload allocation and system conditions. The proof-of-concept prototyping system is implemented
for the integrated architecture. The simulation results show that IMC improves the performance
by 4.4 times and reduces total energy by 4.6 times over the baseline host CPU. ISC is confirmed to
significantly contribute to energy reduction.

Keywords: near data processing; processing in memory; in-storage computing

1. Introduction

Recently, there has been growing interest and demand for artificial intelligence and
immersive media. These applications require high performance devices to process massive
data. However, it is difficult to compute and transfer such large amounts of data in the
traditional von Neumann architecture because it consumes significant power and dissipates
heat energy as Moore’s Law and Dennard scaling reach physical limits. It is known that
data access and movement are the main bottleneck of processing speed, and they consume
more energy than computing itself [1]. Thus, many studies about near data processing are
ongoing to overcome these challenges [2,3].

Near data processing is applicable not only in traditional memory, such as SRAM [4,5]
and DRAM [2,6–10], but also in emerging memory, such as PCM [11], STT-MRAM [12],
and ReRAM [13]. There are also various attempts to reduce the data movement overhead by
computation offloading to storage devices [3,14–16]. However, real-world applications are
composed of complex and diverse tasks, and thus, there is a limit to solving the problems
with an individual device-level approach. In this paper, the requirements of tasks for
real application scenarios are analyzed in terms of task partition and the data movement
overhead. By providing various options for near data processing in consideration of the
characteristics of each task that composes an application, opportunities to reduce the data
movement overhead are explored at the architectural level.

• This paper makes the following contributions:
• The requirements of the task are analyzed from the memory and storage points of view.
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• An integrated architecture for in-memory and in-storage computing is proposed,
and its implementation is verified on a prototyping system.

• Possible performance improvement is shown in terms of execution time and energy.

2. Background and Related Work
2.1. In-Memory Computing

In-memory computing (IMC), also known as processing in-memory (PIM), is a paradigm
that places processing elements near or inside the memory in order to obtain fast memory
access and high bandwidth. Among the various types of memory, this paper focuses on in-
memory computing for DRAM, which is most widely used and has high density. There are
two categories of in-DRAM computing depending on the package and module assembly
of the DRAM chip: computation in two-dimensional (2D) planar DRAM, and computation
in three-dimensional (3D) stacked DRAM. In 2D planar DRAM, processing elements reside
in the DRAM die as shown in Figure 1a. Since data travel through on-chip inter-connection
on the DRAM die, it is free from off-chip IO constraints, and also it can achieve high
parallelism by exploiting the bit-line of the subarray, row buffer, and internal data line [2,6].
However, there are some difficulties in computing in 2D planar DRAM. Because the DRAM
manufacturing process is optimized for low cost and low leakage, only simple logic can
be placed, due to the bulky and slow transistors. The standard logic process is optimized
to deal with complex logic functions, but requires frequent refresh operations, due to the
current leaky characteristic. This leads to high power consumption and poor performance.
In order to overcome these drawbacks, there have been attempts to add separate chips for
processing elements over the 2D planar DRAM chip in the dual-inline memory module
(DIMM) [7,8]. However, additional assembly process is required, and cost is consequently
increased. On the contrary, 3D stacked DRAM, such as high bandwidth memory (HBM)
and hybrid memory cube (HMC), can use the DRAM process and standard logic process
together because they pile up more than two dice. Therefore, more complex processing
elements can be located on the base die with the standard logic process as shown in
Figure 1b [9,10]. Even though the physical interface (PHY), through-silicon via (TSV),
and IEEE1500 area for test pins and circuits occupy the base die, there is still extra space
that can be used for other purposes.
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Figure 1. In-memory computing structure examples: (a) 2D planar DRAM, such as DIMM type, and (b) 3D stacked DRAM,
such as HBM type.

2.2. In-Storage Computing

For in-storage computing (ISC), some computations are offloaded to the storage
device. There was a study in which a hard disk drive (HDD) used a processor to com-
pute offloaded tasks for ISC [14]. However, HDDs were quickly replaced by solid-state
drives (SSDs), after SSDs were introduced. The conventional SSDs do not process data,
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even though they have an embedded processor. The internal structure of the SSD is shown
in Figure 2. The SSD consists of non-volatile NAND flash chips that do not lose data re-
gardless of power-off, and an embedded processor, such as the ARM processor, to manage
the firmware, such as the flash translation layer (FTL). Even if the conventional SSD is not
designed for in-storage computing, it is capable of computation because it already has an
embedded processor. The main concept of SSD-based ISC is that the SSD is regarded as
a small computer with an embedded processor to run programs within the storage device.
ISC increases the system performance because a storage device can handle the tasks in
parallel with the host CPU. It also decreases data movements if the data are selectively
transferred to host the CPU after processing within the storage device. This lowers the IO
latency and improves the energy efficiency.

Figure 2. Block diagram of SSD for in-storage computing.

If the tasks, such as query processing [17], list intersection [18], scan and join [19],
Hadoop MapReduce [20], and search engine [18] are offloaded to an embedded processor
in SSD, it improves the processing speed and energy efficiency. Not only did other studies
employ an embedded processor, but they also introduced additional implementations of
FPGA [21] or GPU [22] in the SSD. However, they have significant disadvantages, such as
modification of the SSD structure, resulting in additional costs.

2.3. Integrated Solution of In-Memory and In-Storage Computing

The integration of in-memory and in-storage computing is an architecture where IMC
and ISC are applied simultaneously in order to improve the processing speed and energy
efficiency of applications. However, the structure with ReRAM-based IMC inside the SSD
performing ISC [23] cannot avoid IO bottlenecks because the data have to be delivered into
the SSD for offloaded task operations. Another hybrid architecture, which consists of the
memory channel network (MCN) DIMM [24] for IMC and Samsung Smart SSD for ISC,
needs more space in the buffer die in the DIMMs for the MCN processor. The architecture
manufacturing cost increases as explained in Section 2.1 because it also has additional chip
implementation in the 2D planar DRAM. Other hybrid architectures, such as near-memory
and in-storage FPGA acceleration architectures [25] require 3D stacked memory in the SSD
to implement FPGAs rather than the conventional 2D planar DRAMs. Thus, additional
costs are required, such as the example of the SSD with a GPU in Section 2.2.

3. A Case Study on Integrated Architecture for In-Memory and In-Storage Computing
3.1. Prototype Platform

Figure 3 shows the prototype platform to test the proposed hybrid architecture.
The host CPU is on the host PC, and it is connected with the FPGA that acts as an IMC
via a USB interface. The storage server for modeling ISC is connected through a network.
The purpose of this platform is to evaluate the performance of an application in a hy-
brid architecture quickly, focusing on data movement. Because there is no commercial
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integrated solution of in-memory and in-storage computing specification, the prototype
was implemented using configurable commodity devices in order to deal with various
requirements. To support the hybrid architecture effectively, FPGA is adopted for IMC im-
plementation to easily modify the logic circuits of the base die. The Xilinx Zynq UltraScale+
MPSoC ZCU102 Evaluation Kit is used where the DDR memory corresponds to the DRAM
die and the programmable area corresponds to the logic die. The accelerator of IMC is
developed on Xilinx Vivado, whereas the firmware is programmed with the Xilinx Vivado
SDK. To model the interposer connected between the host CPU and memory, a high-speed
USB is used for the host PC and FPGA connection. In terms of the ISC operation, it can be
prototyped using a low-performance computer with large storage space. To mimic the IO
constraints of SSDs, the host PC and ISC are connected through the network and mounted
storage server and SSH file system (SSHFS) to access large data files. It transfers commands
and data to the storage server with socket programming.

Figure 3. Integrated solution of in-memory and in-storage computing architecture proof of concept.

3.2. Workload Analysis from the Perspective of Data Accesses

In this paper, a focus fancam is used as a case study application. In this scenario,
the series of tasks are divided into two phases: off-line and on-line. The first off-line
phase prepares data prior to the user request. Here, data are managed in the background,
and there are no urgent deadlines. Therefore, it does not require high-performance com-
puting but the amount of handling data in the file format is very large. On the other
hand, in the second on-line phase, the user request is processed in real time. Therefore,
it needs powerful computing capability and a high memory bandwidth. Focus fancams are
re-edited videos that focuses on the favorite celebrity. The original video is reproduced in
hundreds of different versions, securing a wide user base. Using auto highlight technology,
artificial intelligence (AI)-based algorithms generate videos or images focused on specific
members in an idol group. As a case study of this paper, labeled-image-based focus picture
editing is used. Input data are images of a K-pop group, labels, and position information,
whereas output data are cropped images of each member in the group. The group image
is a JPEG file in which all members appear together. The label is text data, which is the
unique name of each member, and it is used as a key to the index table. The position is
represented as a coordinate that indicates where a particular member is in the group image.
The member image is a cropped picture, according to the member position information
from the group image. Users can view their favorite member images originated from group
images, and sometimes edit and share them with other users. Among the tasks of the focus
fancams application, a super resolution (SR) technique plays an important role. It enhances
the resolution of small cropped images by means of the deep learning algorithm.

Figure 4 shows a focus fancam application scenario. White and gray boxes indicate
tasks and data, respectively. Numbers with arrows indicate the data flow of the off-line
phase. At first, it reads the group images ( 1©) and obtains labels and position information
( 2©) of each member in the group images. The JPEG files are decoded and then regions
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of interest are cropped, such as the face. The cropped images are encoded back to JPEG.
For database (DB) indexing, it updates data ( 4©) in the index table with each member’s
names as keys and the file paths of the cropped image as values. Data movement of
group images take place in proportion to the number of files stored. Since the number of
labels, positions and member image files increase in proportion to the number of people
in the group images, there is a lot of data movement. The cropping and update tasks are
performed on the background whenever new group images come into storage. They do
not have strong latency constraint. Letters with arrows of Figure 4 indicate the data flow
of the on-line phase. It reads label ( a©), which is a member’s name. It retrieves the index
table with the label to obtain the corresponding file path ( b©). It reads the member’s image
( c©) from the found file path. Here, the image is divided into Y and UV color components.
Upscaling is executed with different algorithms according to color components to reduce
the overall execution time. For the visually sensitive Y component, convolutional neural
network (CNN) based SR is performed [26] ( d©), which gives good performance but is
computationally expensive. For the UV components, the least neighbor interpolation
algorithm is applied ( e©). Since there is no dependence between Y and UV color channels,
it is possible to execute those algorithms in parallel. Then, it brings the data which are
upscaled Y ( f©) and upscaled UV ( g©). It rearranges the separately upscaled Y and UV
together, converts the color space from YUV into RGB, and finally displays the favorite
member’s upscaled image. Data movement in the on-line phase is less than that in the off-
line phase because it only needs to handle the user’s request. However, YUV conversion,
Y-SR, and UV-interpolation tasks strongly require low-latency computations because they
immediately produce the results upon user request.

Figure 4. Focus fancam application scenarios.

Table 1 summarizes the requirements for data movement in Figure 4. The second
column represents the data flow of the main tasks, whereas the third and fourth columns
represent the data unit size and latency requirement in each dataflow, respectively. The crop-
ping task of the focus fancam has data movement of 1©, 2©, and 3©. The data unit size
of a group image ( 1©) is as large as 1 K or 2 K resolution and is assumed to be 150 KB
on average. The data unit size of the label, which comprises unique key and position
information, which is x–y coordinates of the picture ( 2©), is just 12 bytes. The member
image ( 3©) also has a small data unit size of around 20 KB. The index table update needs
the label and member image file path data ( 4©), and its data unit size is 64 bytes of string
format. The index table retrieval task has data movement of a© and b©, where the label ( a©)
needs 4 bytes of a unique key, and the file path ( b©) needs 64 bytes of the string. The YUV
conversion task has data movement of c©, d©, and e©. Here, the unit size of the member
image file ( c©) is assumed to be 20 KB. The luminance Y ( d©) and UV component ( e©) need
256 KB and 128 KB, respectively, because a 256- by 256-pixel image is used with 4:2:0
chroma subsampling. The Y- SR task and the UV-interpolation task have data movements
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of d©, f© and e©, g©, respectively. The unit size of the upscaled Y ( f©) is 1 MB, due to a scale
factor of 2, whereas the upscaled UV ( g©) requires 512 KB because of subsampling.

Table 1. The requirements of each dataflow in the focus fancam scenario.

Scenario Data Flow Data Size Latency Requirement

Focus
fancam

Cropping ( 1©, 2©, 3©) 150 KB, 12 bytes, 20 KB Slow
Index table update ( 4©) 64 bytes Slow
Index table retrieval ( a©, b©) 4 bytes, 64 bytes Fast
YUV conversion ( c©, d©, e©) 20 KB, 256 KB, 128 KB Fast
Y super resolution ( a©, f©) 256 KB, 1 MB Fast
UV interpolation ( e©, g©) 128 KB, 512 KB Fast

3.3. Application to Integrated In-Memory and In-Storage Computing

In this paper, an integrated framework for in-memory and in-storage computing
architecture is proposed. IMC and ISC are incorporated into a single system for the target
application, i.e., focus fancam as shown in Figure 5. In this architecture, there are two
candidate devices: IMC and ISC for task offloading. Therefore, the device to be offloaded
should be appropriately selected, according to the task characteristics. Gray boxes indicate
data, whereas white boxes indicate the computing resources of each device. The host
CPU is responsible for offloading tasks to IMC and ISC and obtaining the results back
from them. This central orchestration is a relatively simple operation. Thus, the host CPU
can afford to provide additional computing resources for the remaining tasks that are
un-offloaded. IMC processes the data stored in the DRAM, taking advantage of being close
to the data. The distance of the data movement is short, due to the TSV connection and
thus, the latency penalty caused by going through the cache and memory controller can be
reduced. Since the host CPU and IMC are connected with a through silicon interposer (TSI),
energy consumption can be reduced because the capacitive loading is less than that of the
off-chip interconnection used in the general DDR DRAM. The accelerator, implemented
as a computing unit in a logic die, can improve the overall performance by utilizing
parallelism. In the case of ISC, the embedded processor with a buffer memory computes
the data, which are stored in the NAND flash chip, instead of passing them all to the host
CPU. After the processing of ISC, only the processed result moves to the host CPU, and it
significantly reduces IO operations as well as the bottleneck delay caused by IO requests.
In addition, it is possible to perform the tasks energy efficiently, due to the low power
characteristic of the embedded processor of ISC.

Figure 5. Mapping of tasks and devices for the focus fancam.
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As shown in Table 1, the tasks of the target application have different characteristics,
and appropriate offloading strategies are required. Among the tasks of the focus fancam
application, cropping does not need to have low latency, but it has large data movement.
Therefore, the task is offloaded to ISC. The update data for the index table are stored
in the storage device to keep the persistence characteristics of the database. Thus, it is
appropriate for this task to be offloaded to ISC, as well. However, the YUV task requires
less data movement but needs low-latency computation. SR of the Y component is also
computation intensive and suitable for IMC. In particular, for SR, it is appropriate to
use the accelerator instead of general processors. For the YUV color space, each color
component is independent and thus, operations with YUV can be easily performed in
parallel. Moreover, interpolation of UV component is less computation intensive. Therefore,
it can be performed simply on the host CPU. Finally, the host CPU puts together the
independently upscaled Y and UV components from each device. In terms of the data
movement of Figure 4, the data flow of 1©, 2©, 3©, and 4© in the off-line phase, and the data
flow of a©, b© and c© in the on-line phase need a storage IO interface. In the mapping of
Figure 5, 1©, 2©, 3©, 4© and b© are performed inside the device of ISC. Data flow a© and c©
need an off-the-device interface between a host CPU and storage. Data flow d©, e©, f©, and
g© do not require a storage IO.

4. Experimental Results
4.1. Experimental Environment

In this paper, i7-7700K is used for a host CPU. The host-CPU-only system acts like
a baseline system. Figure 6 shows the IMC architecture used in this paper. The IMC adopts
systolic arrays to execute parallel multiply and accumulate operations (MAC) on the logic
die like other CNN accelerators, such as EYERISS [27], but the IMC processes data in mem-
ory through TSVs of the HBM2 structure. On the base logic die, there are eight accelerators,
and each accelerator consists of 168 processing elements (PEs) and 108 KB of a global buffer.
PEs communicate with each other through network on-chip (NoC). nn_dataflow [28] is
used to evaluate the performance of accelerators. The area and energy affected by the
SRAM (global buffer) size are obtained through CACTI [29]. It is known that CACTI
has an accuracy of less than 12% on average, compared to SPICE. For remote accesses
to other channels, the NoC power is estimated using ORION 2.0 [30]. The Dram Power
tool [31] is used to compare run time and energy according to data movement. For the
ISC, ARM Cortex R5 is assumed. The operation of ISC, where the offline phase is mainly
performed, is measured through Gem5 [32]. While performing a cropping task, the de-
coding (from JPEG to BMP) of large size images requires 16,055 M operations, whereas
the encoding (from BMP to JPEG) of cropped small size images requires 40 M operations.
For the comparison of DRAM energy in Gem5 [32] environment, i7-7700K uses the IDD
value of DDR4 16 GB 2400 Mhz × 64 (8 Devices/rank, 2 Ranks/Channel, MT40A1G8 Data
Sheet), and Cortex R5 uses the LPDDR4 8 Gb 4266 ×32 (2 Devices/rank, MT53E256M32D2
Data Sheet) IDD value. The SSD energy is calculated using the read/write energy of the
Samsung SSD 980 PRO (PCIe Gen4) data sheet.

Figure 6. The block diagram of accelerator and HBM2 assumed in this experiment.
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4.2. Processing Time and Energy Comparison for On-Line Phase

In the on-line phase of focus fancam scenarios, the execution time is measured in
the proof of concept with the help of the nn_dataflow simulator. A total of 100 images
of the members are cropped during the off-line phase in advance, according to the user
favorite member requests. Table 2 shows the runtime and energy comparison for four main
operations of the on-line phase. The baseline denotes running the focus fancam application
on the CPU-only system, whereas the proposed IMC denotes the host CPU-IMC hybrid
architecture for the on-line phase. The host CPU uses DDR4, whereas the IMC uses HBM2.
Energy and time measurement conditions are 100 MB read from memory and 25 MB write.
The row page hit ratio is applied as 80%. The HBM2 IDD data sheet has not been released.
Therefore, the IDD value of HBM2 is estimated based on the IDD data sheet of DDR4.
Since HBM2 has a wider data width compared to DDR4, it can be predicted that the data
circuit will also increase. Considering that part, we estimate the standby current of HBM2
to be twice that of DDR4. Toggle energy of TSV is added to IDD4W/R. IO Interposer
capacitance is used instead of PCB. HBM2’s TSV capacitance is 47.5 fF/1 stack [33] and
TSV output loading is 100 fF [34]. The IO interposer capacitance is 855 fF/5 mm [35].
The second and third columns represent the execution time, whereas the fourth and fifth
columns represent energy. Among tasks for the on-line phase, DB retrieval is performed
in ISC. However, it takes very little time of 12 us on average and thus, is not shown in
Table 2. YUV conversion is performed on the host CPU in both systems of the baseline
and proposed IMC. SR of the Y component and the interpolation of the UV components
are performed in parallel. UV interpolation runs on the host CPU in both cases. For SR
using the context-preserving filter reorganization very deep convolutional network for
image super-resolution (CPFR-VDSR) network, the runtime of the baseline is 2307.6 ms
and its power is 113.1 W. Thus, it consumes 260,691 mJ of energy. On the other hand, the SR
runtime of IMC is 72.8 ms, and its power is just 4.62 W. Therefore, it consumes 336 mJ
energy. Both runtime and energy are significantly reduced. In terms of data movement,
in the proposed IMC, the runtime of the data movement is reduced by 88%, whereas energy
is reduced by 21% because an interposer is used instead of PCB. Due to the improved
runtime and energy in SR and data movement, in the proposed IMC, the total runtime and
energy are reduced by 77.5% and 78.4%, respectively.

Table 2. Runtime and energy comparison for on-line phase.

Tasks
Runtime (ms) Energy (mJ)

Baseline Proposed IMC Baseline Proposed IMC

YUV Conversion 566.7 63,958

SR 2307.6 72.8 260,691 336

Interpolation 11.1 1254

Data Movement 8.5 1.0 8640 6810

Total 2893.9 651.6 334,543 72,358

For performance comparison, instead of the baseline of Table 2, which is a combination
of DDR4 and CPU, the efficiency under different system conditions where an accelerator is
used with DDR4 is measured. In Table 3, four system conditions are summarized. D1 uses
one DDR4 chip with an accelerator, whereas D8 uses 8 DDR4 chips to increase the number
of channels to a level similar to HBM2. H1 denotes an accelerator with a 1-channel HBM2,
whereas H8 denotes an 8-channel HBM2. DRAM devices have different numbers of IO
pins. DDR4 and HBM2 have 8 and 128 IO pins/channel, respectively.

Figure 7 shows an efficiency and throughput when SR is performed. For the through-
put, GOPS (Giga Operation Per Second) is used, whereas the GOPS/W, which calculates
GOPS that can be processed per watt for efficiency, is used to measure the efficiency. For
H8, the throughput and efficiency are 1012 GOPS and 219 GOPS/W, respectively. H8
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shows a clear performance advantage, compared to D8. The CPFR-VDSR used for SR is a
small network, and its data reuse ratio is quite low. Therefore, it is obvious that reducing
the access latency of 3D stacked memory has a huge impact on performance improvement.
Figure 8 shows the energy efficiency results (GOPs/W) for different kinds of popular
neural networks. The IMC-based accelerator improves average energy efficiency by 1.78×
compared to the accelerator, which needs off-chip memory access, such as Eyeriss [27]. The
average energy efficiency of Eyeriss is 118 GOPs/W and that of the proposed architecture
is 210 GOPs/W.

Table 3. A comparison of the cases.

Case DRAM Type
(Density)

Bandwidth
(GB/s)

Total
I/O Pins Channel Accelerator Global

Buffer (KB)

D1 DDR4 (512MB) 2.4 8 1 1 108
H1 HBM2 (512MB) 32.0 128 1 1 64
D8 DDR4 (4GB) 19.2 64 8 8 864
H8 HBM2 (4GB) 256.0 1024 8 8 512

Figure 7. Efficiency (GOPS/W) and throughput (GOPS) comparison.

Figure 8. Comparison of efficiency (GOPs/W) between the proposed architecture and Eyeriss.

4.3. Processing Time and Energy Comparison for Off-Line Phase

The off-line phase of the focus fancam consists of a couple of tasks. The images are
decoded from JPEG to BMP format and cropped to a 256 × 256 image. The cropped images
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are encoded back to JPEG. With a new key–value pair, the cropped JPEG files are stored in
the DB of SSD. The off-line phase does not demand a tight latency requirement. Therefore,
energy minimization is a main concern. In the example scenario, it is assumed that there
are 1000 group images per each group and that there are 20 groups in total. In average,
the group images are 1 K or 2 K resolution having the size of 150 KB. Each group image
has five members. The size of a cropped member image is about 20 KB.

Table 4 shows the specification of the processors in the host CPU and ISC. i7-7700K in
the host CPU is a baseline system; it is composed of 4 cores and its speed is 4.4 GHz. It has
6.05 CoreMark/Mhz performance and 1.24 GOPS/W power efficiency. When 140 GOPS
is operated, it consumes 113 W of power. Meanwhile, Cortex R5 in the proposed ISC is
composed of 2 cores and its speed is 1.4 Ghz. It has a 3.47 CoreMark/Mhz performance
and a power efficiency of 5.61 GOPS/W. The 12.8 GOPS consumes 2.3 W of power.

Table 4. The specification comparison of processors in baseline and proposed ISC.

CPU Core CoreMark/Mhz GOPS GOPS/w Power (W)

i7-7700k (Baseline) 4 6.05 140.2 1.24 113.1
Cortex R5 (Proposed ISC) 2 3.47 12.8 5.61 2.3

When cropping a small image from each image, the number of operations and DRAM
access energy are compared. This off-line task is compared with the case of the CPU and the
case of the ARM in the SSD. In Table 5, in the case of one image encoding and conversion,
i7-7700K of a baseline system consumes 15.4 J, whereas Cortex R5 in the proposed ISC
consumes 3.6 J. Thus, the energy is reduced by 76.6%. Here, the energy for processing
and DRAM is reduced but the SSD energy is increased. On the other hand, the runtime is
increased by 11 times from 115 ms to 1258 ms, but this is acceptable in the off-line phase,
where energy reduction is more important than real-time processing.

Table 5. Focus fancam off-line run time and energy.

CPU
Time Energy (J)

(ms) Processing DRAM SSD Total

i7-7700k (baseline) 115 12.980 2.459 0.007 15.446
Cortex R5 (proposed ISC) 1258 2.868 0.718 0.046 3.632

5. Conclusions

We propose an integrated solution of an in-memory and in-storage computing ar-
chitecture. Depending on the data movement and computing characteristics of the task,
the near data processing needs to be considered in various options. The proof-of-concept
environment is prepared, using a host CPU, FPGA, and storage server to estimate. With
this prototype, we were able to evaluate the potential of the application and the impact
of off-loading quickly. IMC improves the performance by 4.4× and reduces total energy
by 4.6× over the baseline host CPU; ISC reduces the energy by 4.25×. The proposed
architecture improves 14.7 times in the speed-up and 607 times in file read/write access.
As we allocate tasks to IMC and ISC on a rather intuitive basis, additional studies are
necessary to set up the simulation environment for a hybrid architecture to explore the
allocation criteria more systematically.
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