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Abstract: This paper proposes a novel metal oxide arrester (MOA) fault detection technology based
on a small sample infrared image. The research is carried out from the detection process and data
enhancement. A lightweight MOA identification and location algorithm is designed at the edge,
which can not only reduce the amount of data uploaded, but also reduce the search space of cloud
algorithm. In order to improve the accuracy and generalization ability of the defect detection model
under the condition of small samples, a multi-model fusion detection algorithm is proposed. Different
features of the image are extracted by multiple convolutional neural networks, and then multiple
classifiers are trained. Finally, the weighted voting strategy is used for fault diagnosis. In addition,
the extended model of fault samples is constructed by transfer learning and deep convolutional
generative adversarial networks (DCGAN) to solve the problem of unbalanced training data sets.
The experimental results show that the proposed method can realize the accurate location of arrester
under the condition of small samples, and after the data expansion, the recognition rate of arrester
anomalies can be improved from 83% to 85%, showing high effectiveness and reliability.

Keywords: metal oxide arrester; deep learning; edge computing; condition monitoring

1. Introduction

A metal oxide arrester (MOA) is widely used as an important protection equipment for
safe operation of power transmission and the transformation system. However, due to the
impact of lightning overvoltage and switching overvoltage, as well as environmental tem-
perature and humidity, the characteristics of the MOA will change [1]. Therefore, the good
operation characteristics of the MOA are particularly important for power transmission
and the transformation system.

There are two main methods for MOA condition monitoring. The first one is based
on leakage current, which can be divided into three methods, including the full current
method [2–4], third harmonic current method [5–7] and the capacitive current compen-
sation method [8,9]. However, these methods need an aging test, which is inefficient
and difficult to overcome the interference of harmonic voltage in operation voltage. The
second method is based on infrared thermal imaging [10,11]. Because MOA faults will
cause a local temperature rise, the grade of heating defect can be judged by comparing the
temperature difference of each part of the MOA. Compared with other defect detection
methods, infrared detection technology is simple, safe and more efficient. However, the
complex environment and less-fault samples are the difficulties of intelligent inspection.
Therefore, how to realize automatic fault identification is a hot topic for researchers.

The early research of state detection is mainly based on the traditional image recogni-
tion and machine learning methods for image data mining. References [12,13] proposed
to use self-organizing mapping (SOM) to analyze the thermal characteristics of an MOA
infrared image under working voltage, so as to determine the MOA state; in [14], it is
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proposed to use the correlation between thermal image temperature and the third harmonic
current to classify the MOA states by multi-layer perceptron (MLP). Zang Xiaochun [15]
and others used a back propagation (BP) neural network to extract and classify the temper-
ature characteristics of the MOA and realized the fault identification of the 500 kV MOA.
Although all the above methods can realize the fault identification of an MOA, it cannot
avoid the shortcomings of an artificial neural network, such as long training time and poor
generalization ability, which has proven difficult to deal with the massive data of today’s
power grid.

Different from traditional shallow learning, deep learning can train deep fault features
through feature transformation layer by layer, which makes classification or prediction
easier, especially suitable for fault diagnosis of electrical equipment [16]. In [17], a motor-
bearing fault diagnosis method based on deep learning is proposed, which uses a three-
layer sparse automatic encoder to extract the features of the original data and uses the
maximum average error term to minimize the error loss between the features of the training
data and the test data. In [18], the improved SSD detection network was used to detect the
thermal anomaly area location of infrared image of power equipment in real time, and only
71.54% accuracy was achieved in the test set. However, the existing detection model based
on deep learning is a single neural network, which is often limited by the characteristics of
the network itself in the face of different background applications.

With the essential improvement of the neural network algorithm, although the per-
formance of classifier based on supervised learning has been greatly improved, it needs a
large number of labeled data as the basis. However, in the actual power grid system, the
number of some defect samples is scarce, In the case of small samples, there is not enough
data for the deep learning algorithm to fully train, so the risk of overfitting is very easy
to occur in the model training process, which makes it difficult to train a detection model
with good performance [19]. Traditional methods [20,21] mainly use physical methods
such as mirror image, rotation and multi-scale scaling to expand the data set. However,
due to the global image transformation, it does not change the details of the original image,
which may lead to overfitting of the model and can affect the final effect. Goodflow [22]
proposed the generation of adversarial networks (GAN) in 2014, which opened a new era
of data enhancement. Li Yaxin et al. [23] introduced reinforcement learning and a strategy
gradient algorithm into the generative countermeasure network, and proposed a method
of generating a transformer oil chromatogram case based on the strategy gradient and
generative countermeasure network, which improved the accuracy of transformer fault
classification. In order to solve the problem of lack of foreign body intrusion monitoring
samples in transmission lines, reference [24] uses a conditional generation countermea-
sure network to expand the samples of foreign body intrusion images, which can greatly
improve the accuracy of model recognition.

In this paper, an infrared thermal fault detection technology for the MOA is proposed,
which is based on small sample infrared images. An edge lightweight MOA identification
and location algorithm is designed to reduce the amount of data uploaded. A multi-
model fusion defect detection method is proposed to improve the prediction accuracy and
generalization ability under the condition of small samples.

The organization of this paper is as follows. Section 2 summarizes the defect de-
tection system. The localization identification of the MOA is described in Section 3. In
Sections 4 and 5, data expansion and defect detection are described theoretically. The ex-
perimental results and analysis are summarized in Section 6. Section 7 introduces the
conclusion and future work.

2. System Overview

As shown in Figure 1, a new online monitoring scheme architecture of MOA status is
proposed in this paper. The status identification task is completed through the cooperation
between the edge intelligent devices (patrol Unmanned Aerial Vehicle (UAV) or patrol
smart car, etc.) and the server (cloud server, etc.). The infrared thermal images of the MOA
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are collected and stored by edge devices, and then processed quickly on the spot based
on the needs of communication and cloud diagnosis and uploaded to the cloud server for
fault identification, relying on a high-speed communication network (4G, power wireless
private network, etc.). Computing is distributed in the whole system network, including
edge intelligent devices and cloud servers, and data is stored in the intelligent devices at
the edge of the network. Therefore, the system can meet the construction needs of a low
delay, low energy consumption, high-precision power Internet of things.
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2.1. MOA Identification and Localization

Aiming at the problem that traditional detection methods are difficult to overcome
the complex background interference of a power grid, the key components localization is
proposed to localize and extract different types of MOAs in substation or transmission line.
In order to apply to edge devices, an improved SSD-MobileNet network that performs well
in both speed and scale is adopted.

2.2. Infrared Thermal Fault Detection of the MOA

However, achieving full automation of MOA defect detection is still very challenging
due to the visual complexity of defects and the small number of defective MOAs.

(1) The amount of abnormal MOA data is not enough to train robust classification model.
(2) The existing fault detection algorithms based on deep learning are usually single

neural network, but they are often limited by the characteristics of the network in the
face of different background applications.

(3) The visual complexity of defects makes it difficult, if not impossible, to construct a
precise model.

On the one hand, through a transfer learning-generation convolution countermeasure
network, the data expansion model is constructed to solve the problem of data imbalance.
On the other hand, different infrared features are extracted by multiple neural networks,
and multiple classifiers are trained. Finally, the combination strategy is used to fuse the
prediction results to improve the accuracy and generalization ability of the detection model.

3. MOA Identification and Localization

A single shot multibox detector (SSD) is a classic one-stage target detection model
proposed by Wei Liu in 2016 [25]. As a fast recognition and positing network, SSD is widely
used in target detection, and its architecture is shown in Figure 2.
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Figure 2. Single shot multibox detector (SSD) Architecture.

In order to cope with the limited computing resources at the edge, in this paper we
use the lightweight MobileNet structure to replace the original VGG16 basic network, and
cut down the average pooling layer and the full connection layer. MobileNet is a series of
lightweight networks proposed by Google [26]. Figure 3 shows the standard convolution
and MobileNet structure. MobileNet uses something similar to a deep separable convolu-
tion instead of a traditional convolution and decomposes the original standard convolution
into deep convolution and point-by-point convolution. Each time, one channel of input
data is convoluted, and then convolution is performed by using the convolution core with
a channel number of 1 × 1 input data channel number, thus reducing a large amount of
redundant calculation.
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Figure 3. Mobile Architecture.

First, the image size of the MOA is converted to a fixed size of 300 × 300. Then,
forward propagation is used to extract features through basic network to from the feature
map. Finally, the additional feature network is adopted for regression calculation and
maximum suppression to generate the prediction of the target object frame and category.

4. Data Expansion

As shown in Figure 4, the proposed data expansion model based on transfer learning
and a deep convolution generation adversarial network (TL-DCGAN) is proposed. Firstly,
the transfer learning method is used to train a model DCGAN1, which can generate normal
samples by using a large number of existing normal MOA images. Then, the weight of
dcgan1 is transferred again, and the limited fault data is used to train the data expansion
model DCGAN2.
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4.1. Generation Adversarial Network

As shown in Figure 5, the GAN network structure mainly includes the generator (G)
and discriminator (D).
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The objective function of GAN training is as follows:

min
G

max
D

V(G, D) = Ex−pdata(x)[log D(x)] + Ez−pz(z)[log(1 − D(G(z)))] (1)

where pdata(x) is the probability distribution of real samples, pz(z) is the distribution of
input random noise and V(G,D) is the cross entropy loss.

The loss function of G is:

LG = Ex−pg [log(1 − p(s
∣∣∣x f ake))] (2)

The loss function of D is:

LD = −Ex−pdata [log p(s
∣∣∣xreal ]− Ex−pg [log(1 − p(s

∣∣∣x f ake))] (3)
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where s is the real sample and xfake is the false sample. The optimization goal of the GAN
model is to make the samples generated by G make D unable to distinguish true from
false. Therefore, in training, for G, we hope that the larger the p(s|xfake) is, the better; that
is, max

D
V(D, G) mentioned above. For the D, when the sample comes from the training set

xreal, the larger the p(s|xreal) is, the better; when the sample comes from the G, the larger
the p(s|xfake) is, the better; that is, the min

G
V(D, G) mentioned above.

4.2. Data Expansion Model Based on TL-DCGAN

Compared with GAN, a variant of GAN (deep convolutional GAN (DCGAN)) was
proposed in 2016 [27] which uses the mature convolutional neural networks (CNN) instead
of MLP and removes the pooling layer, making the overall network model differentiable.

4.2.1. Improved Generator Structure

In order to improve the resolution of the MOA, a cumulus layer is added on the basis
of DCGAN. The generator structure of the fault image expansion model of the MOA is
shown in Figure 6. In addition, this is conducted in order to make the generated data
distribution more close to the real data distribution, prevent the gradient disappearance
and improve the network stability.
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Figure 6. Generator Structure.

The generator is mainly composed of the input layer, full connection layer, convo-
lution layer and residual block, in which the convolution layer is used as fractional step
convolution, and the activation function is the ReLU function. Firstly, a set of random
noise is inputted, which is uniformly distributed, and is extended to a feature matrix of
size 4 × 4 × 1024 through the whole connection layer. Then, through the first convolution
layer, deconvolution, batch normalization and activation function operation are performed,
and the output characteristic matrix size is 8 × 8 × 512. Then, the output characteristic
matrix size is 16 × 16 × 256 through two residual blocks, increasing the network depth
and improving the network representation ability. Finally, after much processing of the
volume layer and residual block, the pixel is 128 × 128 MOA image. See Table 1 for the
parameters of convolution layer of the producer, where the convolution core size is 3 × 3
and the step size is 2.

Table 1. Generator convolution layer parameters.

Layer Kernel Size Stride Output

Deconv1 3 × 3/512 2 8 × 8/512
Deconv2 3 × 3/256 2 16 × 16/256
Deconv3 3 × 3/128 2 32 × 32/128
Deconv4 3 × 3/64 2 64 × 64/64
Deconv5 3 × 3/3 2 128 × 128/3
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4.2.2. Improved Discriminator Structure

As shown in Figure 7, compared with the original DCGAN network, the discriminator
structure designed in this paper adds a layer of convolution network. In addition, in order
to improve the network performance, the residual module is constructed similar to the
above generator. Among them, the leaky ReLU activation function is used, and the convo-
lution kernel size is 3 × 3. After convolution, batch normalization and function activation
are performed. The input of the discriminator is the real or generated MOA image with the
size of 128 × 128. The image size is reduced by sampling under the convolution layer, and
then the network is deepened by two residual blocks, and the extracted feature information
is transmitted to the deep layer of the network. Finally, through several convolution layers
and residual blocks, the image size becomes 4 × 4 × 1024 and is input to the full connection
layer to get the result of image discrimination. The parameters of the convolution layer in
the discriminator are shown in Table 2, in which the convolution kernel size is 3 × 3 and
the step size is 2.
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Table 2. Discriminator convolution layer parameters.

Layer Kernel Size Stride Output

Conv1 3 × 3/64 2 64 × 64/64
Conv2 3 × 3/128 2 32 × 32/128
Conv3 3 × 3/256 2 16 × 16/256
Conv4 3 × 3/512 2 8 × 8/512
Conv5 3 × 3/1024 2 4 × 4/1024

5. Defect Detection

As shown in Figure 8, the proposed MOA infrared state detection framework based on
multi-model fusion is proposed. Due to the small number of MOA infrared fault samples,
if the traditional single neural network is used to extract the feature vector, it is easy to lead
to overfitting of the model in the training process of the classifier. Therefore, this paper
uses a variety of convolutional neural networks to extract a variety of MOA fault features,
and then selects the relevance vector machine (RVM) as the feature vector classifier to train
and generate multiple weak learning machines, and finally uses the combination strategy
to fuse them together for defect detection.
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5.1. Depth Feature Extraction

In recent years, deep learning has developed rapidly; the deep convolution neural
network has especially achieved good results in image classification and target recognition,
and greatly improved the efficiency. Therefore, this method is used as a feature extractor to
identify the infrared thermal fault of the MOA.

In the deep convolution neural network, most of the neurons only connect with the
nearby neurons and share the weights, which greatly reduces the network parameters and
improves the training speed. As shown in Figure 9, there are three main structures in the
deep convolution network: the convolution layer, pooling layer and full connection layer.
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In the convolution layer, after the input data is convoluted with the linear filter, the
feature map is obtained through the nonlinear activation function. Each feature map
contains one feature and shares the same parameters. Different feature maps use different
parameters to extract different features. The convolution formula is:

xk
ij = f [(wk

ij × xk−1
ij ) + bk

j ] (4)

where xk
ij is the k-th layer characteristic graph, i and j are input dimensions and xk−1

ij is the
input data of the upper layer. The convolution filter of layer k is determined by the weight
wk

ij and the bias term bk
j and f is the nonlinear activation function.

The pooling layer downsamples the feature graph, reduces the dimension of the
feature graph and network parameters, makes the feature easier to follow-up processing
and reduces the overfitting phenomenon to a certain extent. The pooling formula is:

xk
ij = f [βk

ijdown(xk−1
ij ) + bk

j ] (5)

where down is the downsampling function, if the downsampling window size is n × n. The
output feature map is reduced by N times.βk

ij and bk
j are multiplicative bias and additive

bias parameters, respectively.



Electronics 2021, 10, 1748 9 of 15

The full connection layer is similar to the traditional neural network, in which each
neuron is connected to all inputs.

Although the classifier based on supervised learning is very mature, it needs a large
number of labeled data to train a classification model with high accuracy and strong
generalization. However, in the actual power grid system, the samples of fault MOA
infrared data are usually less, and the image background environment is more complex.
Therefore, in this paper, different convolution neural networks (AlexNet, GoogLeNet,
ResNet, RetinaNet) are used to extract different features of the MOA image, and the image
can be comprehensively analyzed from different aspects, so as to obtain more reliable
detection results.

5.2. MOA Fault Detection Based on Integrated Learning

In order to get more accurate judgment accuracy and improve the generalization
ability of the defect recognition model, this paper proposes a multi-model combination
strategy based on weighted voting rule and F1 score. F1 score, also known as balanced f
score, is a harmonic average of model accuracy (P) and recall (R). Its maximum is 1 and
minimum is 0. It is often used to measure the accuracy of the binary classification model.

The F1 score of Mi of each weak learning machine is calculated, and the formula is
as follows:

F1 =
2TP

2TP + FN + FP
(6)

where P is the accuracy rate and R is the recall rate.
Then, according to the performance of RVM classifier in the verification set, the voting

weight is calculated by using the following formula to give higher weight to the classifier
with high reliability, so as to improve the reliability of the ensemble classifier:

wj =
Fj

1

∑k
j=1 Fj

1

(7)

Finally, according to the prediction result h(xi) of each weak learning machine and
its voting weight wi, the final model prediction result H(x) is obtained by using weighted
voting rule:

H(x) =
{

1 , ∑n
1 hi × wi ≥ 0.5

0 , otherwise
(8)

where n is the number of weak learning machines, that is, the number of depth feature
types. According to the prediction result H(x) of the integrated classifier, whether the MOA
is abnormal or not can be determined.

6. Experimental Results and Analysis

To evaluate the performance of the proposed MOA defect detection system, we tested
it on a MOA image data set of a substation in Jiangxi Province, China. The data acquisition
equipment is an advanced pistol thermal imager with 640 × 480 infrared resolution,
and its model is FLIR E98 (Shenzhen Keruijie Technology Co., Ltd., Shenzhen, China).
The experiment environment is as follows: Win10, Tensorflow1.3, Anaconda (python3.6),
Keras2.1.5, Core i9-9900k and GTX 2080 GPU with 8-GB memory.

6.1. MOA Positioning Experiment

In the experiment, the parameters of the model are initialized by using the weight of
the classical network, and then the infrared data of the MOA are divided into training set,
verification set and test set according to the ratio of 6:1:3. In this paper, the empirical value
is selected as the initial value of the super parameter. Among them, the learning rate is set
to 0.0015, batch_ size is set to 16 and the epoch is set to 500. Results as shown in Figure 10,
the proposed MOA identification and location algorithm can effectively identify and locate
different types of MOAs (the rated voltages are 110 kV, 220 kV and 500 kV, respectively).
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In order to further verify the advantages of the proposed method in MOA identifica-
tion and location, the proposed algorithm and the commonly used deep learning algorithm
are tested and compared on the same data set. The results are shown in Table 3. Different
algorithms are compared from map, recognition speed and model training time. It can
be seen from the table that a one-stage algorithm is superior to a two-stage algorithm in
recognition speed, model size and training time. The recognition accuracy of a two-stage
algorithm is significantly higher than that of a one-stage algorithm. Among them, although
the proposed algorithm is slightly inferior to the two-stage algorithm in accuracy and
slightly slower than the You Only Look Once (YOLO) in speed, it is most suitable to be
deployed in the edge end of the embedded device in comprehensive ability, and can realize
the MOA fast and with high-precision identification and positioning.

Table 3. Comparison of recognition performance of different algorithms.

Algorithm MAP Speed (ms) Time (h)

YOLO 80.5% 22 12
SSD 93.3% 45 14

Mask-RCNN 99.6% 67 36
Faster-RCNN 98.6% 58 28

SSD-MobileNet 96.5% 30 8

6.2. Data Expansion Experiment

In order to keep the diversity of the samples and enhance the generalization ability
of the training model, a total of 2435 infrared images of the MOA in different natural
conditions in several areas were obtained from a power grid company, including 1981
normal samples and 454 fault samples. Firstly, the fault samples are expanded to 1696 by
the traditional method, and then the original DCGAN model is trained. In the experiment,
the parameter optimizer is the Adam optimizer, the learning rate is set to 0.0002, the
momentum value is set to 0.5 and the batch_size is set to 64.

It can be seen from the Figure 11a that in the original DCGAN model without transfer
learning, some MOA contour information appears only at 100 epoch, and the training is
relatively slow, and the complete and usable normal MOA image cannot be generated
after 500 epoch training. As shown in Figure 11b, the DCGAN1 model which migrates the
weight of classical algorithm can generate the basic features of MOA image at 100 epoch,
such as orientation features, target contour, etc., and can generate a more complete image
at 500 epoch. On the basis of training the model DCGAN1, we continue to use the idea of
transfer learning to train the model. Due to the use of the weight of the model DCGAN1,
in Figure 11c, it can be clearly seen that the DCGAN2 has been able to get the basic
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characteristics of the MOA at 100 epoch, can learn the characteristics of the fault MOA at
300 epoch and can generate better fault MOA images at 500 epoch.
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Figure 11. Comparison of images generated by different deep convolutional generative adversarial
network (DCGAN) models under different epochs. (a) Images generated by the original DCGAN
model, (b) normal images generated by the improved DCGAN1 model and (c) fault images generated
by the improved DCGAN2 model.

In order to judge the performance of the improved model more accurately, the dis-
criminator and generator loss rate curves of the original DCGAN model and the improved
DCGAN2 model are drawn; respectively, as shown in Figure 12, the x-axis is the different
training moments of the model, and the y-axis is the loss function value of the discrim-
inator or generator. In the initial stage of training, the generator training times are less,
the extracted MOA features are not comprehensive, the generated image is quite different
from the real MOA and the discriminator can easily identify the image “true and false”.
Therefore, the generator loss is much larger than the discriminator loss. With the increase
in training times, the MOA features obtained by the generator are more and more sufficient,
and the generated images are more and more close to the real sample data. Comparing
the change of the loss function of the two models, it can be seen that the loss rate of the
improved DCGAN2 model can finally converge, which proves that the generated image
effect is better.
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6.3. MOA Thermal Fault Detection Experiment

In addition to the average accuracy mentioned in the previous chapter, an F1 score is
added to evaluate the performance of the classifier. The fault identification effect diagram
of different types of MOA is shown in Figure 13. It can be seen from Table 4 that the highest
recognition rate of the model trained by a single neural network is only 76%, while the
recognition accuracy of the multi-model fusion classifier proposed in this paper can be
improved from 5% to 81%, which can effectively identify the infrared thermal fault of
the MOA.
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Table 4. Comparison of fault identification results of different methods.

Location Algorithm MAP Recall F1

AlexNet + RVM 68% 67% 0.68
ResNet + RVM 67% 66% 0.67

GoogleNet + RVM 76% 75% 0.75
RetinaNet + RVM 73% 73% 0.73

The proposed
algorithm 81% 80% 0.81

In addition, the proposed method can identify and locate the MOA before the condi-
tion detection, which reduces the search space of the fault detection model. As shown in
Figure 14, the fault detection accuracy of the MOA after positioning is significantly higher
than the global detection. Therefore, the average accuracy of the final detection increased
from 81% to 83%.
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7. Conclusions

In this paper, an infrared thermal fault detection method for small samples is proposed:

(1) In order to solve the problem of sample imbalance, transfer learning and deep con-
volution, generation countermeasure networks are used to expand the data of fault
MOAs. Experiments show that the expanded training set can improve the accuracy
of a fault detection model by 2%.

(2) In order to minimize the interference of the background to defect detection, defect
detection is divided into two steps: target recognition and state detection. Firstly, the
improved SSD algorithm is used to identify and locate the MOA. The experimental
results show that the proposed algorithm can accurately locate different types of
MOA in different scenarios.

(3) Through a variety of convolution neural networks to extract a variety of MOA features,
then train multiple weak classifiers, and then use the combination strategy to integrate
the prediction results, further improving the prediction accuracy and generalization
ability of the model.

(4) The proposed method is based on simulation data and real cases, and many problems
need to be further studied: how to combine the fault characteristics of equipment
to make the model interpretable and improve the identification accuracy; through
the cooperation of edge computing and cloud computing, improving the real-time
performance of the detection system to meet the engineering application is the next
research direction.
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