
electronics

Article

Building Complete Heterogeneous Systems-On-Chip in C:
From Hardware Accelerators to CPUs

Qilin Si, Santosh Shetty and Benjamin Carrion Schaefer *

����������
�������

Citation: Si, Q.; Shetty, S.; Carrion

Schaefer, B. Building Complete

Heterogeneous Systems-On-Chip in

C: From Hardware Accelerators to

CPUs. Electronics 2021, 10, 1746.

https://doi.org/10.3390/

electronics10141746

Academic Editor: Akash Kumar

Received: 16 June 2021

Accepted: 16 July 2021

Published: 20 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Computer Engineering, The University of Texas at Dallas,
Richardson, TX 75080, USA; qilin.si@utdallas.edu (Q.S.); santosh.shetty@utdallas.edu (S.S.)
* Correspondence: schaferb@utdallas.edu; Tel.: +1-972-883-4531

Abstract: High-Level Synthesis (HLS) dramatically accelerates the design and verification of individ-
ual components within larger VLSI systems. With most complex Integrated Circuits (ICs) being now
heterogeneous Systems-on-Chip (SoCs), HLS has been traditionally used to design the dedicated
hardware accelerators such as encryption cores and Digital Signal Processing (DSP) image processing
accelerators. Unfortunately, HLS is a single process (component) synthesis method. Thus, the inte-
gration of these accelerators has to be performed at the RT level (Verilog or VHDL). This implies that
the system-level verification needs to be performed at lower levels of abstraction, which significantly
diminishes the benefits of using HLS. To address this, this work presents a methodology to generate
entire heterogeneous SoCs in C. This work introduces two main contributions that enable this: first,
an automatic bus generator that generates a synthesizable behavioral description of standard on-chip
buses and, second, a library of synthesizable bus interfaces that allow any component in the system
to send or receive data through the bus. Moreover, this work investigates the generation of processors
and interfaces (peripherals) at the behavioral level as these are important parts of any SoCs, but
have long been thought not to be efficiently synthesizable using HLS. Generating complete SoCs
in C has significant advantages over traditional approaches. First, it enables the generation of fast
cycle-accurate simulation models of the entire SoC, making the verification faster and easier. Second,
it allows completely isolating the bus implementation details from the developers’ view, allowing
the change between bus protocols with only minor changes in the designers’ code. Thirdly, it allows
generating different SoC variants quickly by only changing the HLS synthesis options. Experimental
results highlight these benefits.

Keywords: high-level synthesis; heterogeneous SoC; bus generator; bus interfaces; fast simulation
models; micro-architectural design space exploration; system-level exploration

1. Introduction

With the breakdown of Dennard’s scaling, computer architectures have dramatically
changed to meet stringent power budgets. Most complex Systems-on-Chip (SoC) are
now heterogeneous, as shown in Figure 1. These include embedded processors, on-chip
memory, different types of interfaces, and numerous dedicated hardware accelerators.
These heterogeneous SoCs are faster and consume orders of magnitude less power than
general-purpose systems. Unfortunately, the main problem with these heterogeneous
systems is that they are much more difficult to design and verify. This is particularly
important in a time where consumers demand more powerful electronic products in
shorter and shorter time frames. Thus, new design methodologies are required to enable
the generation and verification of these complex systems faster.

Raising the level of abstraction from the RT level to the behavioral level seems a
promising approach. It has been shown that a single line of C code leads to 7× more
gates than a single line of Verilog code [1]. This implies less coding and faster verification.
Moreover, commercial High-Level Synthesis (HLS) tools have shown in numerous case

Electronics 2021, 10, 1746. https://doi.org/10.3390/electronics10141746 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4755-6503
https://doi.org/10.3390/electronics10141746
https://doi.org/10.3390/electronics10141746
https://doi.org/10.3390/electronics10141746
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10141746
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10141746?type=check_update&version=1

Electronics 2021, 10, 1746 2 of 18

studies that they can generate RTL code (Verilog or VHDL) that rivals hand-optimized
code [1]. HLS also allows generating a variety of different micro-architectures for the
given behavioral description by simply setting different synthesis options. Based on these
advantages, it makes sense to build these complex heterogeneous SoCs using only HLS.
Figure 1 shows the envisioned design flow with the highlighted modules in orange to be
designed using HLS.

Heterogeneous
System on Chip

(SoC)

MemoryCPU1

HWacc1
(HLS)

C/C++

High-Level
Synthesis

UART
SPI

I2C
Interfaces

: :

HWacc2
(RTL)

HWaccN
(HLS)

: :

On-chip Bus

Logic
Synthesis

Place and
Route

Compiler
(gcc/g++)

HW/SW design flow

Ar
ea

Latency

Power

HLS synth
options

Figure 1. Overview of a typical heterogeneous SoC and its design flow.

Embedded memories shown in the figure can be easily modeled using HLS also as
arrays, but would require a memory compiler. Moreover, because most SoCs are built
incrementally, they might also include numerous RTL IPs such as the second hardware
accelerators shown in the figure (�,0222). In this case, previous work on RTL to C
compilation optimized for HLS could be used to generate synthesizable C code for these
IPs [2–4]. Another approach could be to use Verilog’s Programming Language Interface
(PLI), which allows cosimulating Verilog with C [5]. Although faster than the RTL-only
simulation, this approach is still too slow to simulate complex modern SoCs [6,7].

One of the problems with HLS is that it is a single-process synthesis method. Basically,
it allows synthesizing individual modules in the SoC that later need to be stitched together.
This implies that the system integration, and thus the full system verification, needs to
be performed at a lower level of abstraction, e.g., the RT level. This defeats much of the
benefits of raising the level of abstraction. It is therefore important to provide a path to
allow the generation of complete heterogeneous SoCs at the behavioral level. This has
numerous advantages over traditional methods based on low-level Hardware Description
Languages (HDLs): First, it accelerates the design process (less coding is needed). Second,
the entire system can be simulated faster making use of transaction-level or fast cycle-
accurate simulation models. Third, it enables the exploration of different bus interface
types by decoupling the bus interface from the functionality of each component in the
system. This allows easily changing between bus types (e.g., AMBA AHB or AXI) and bus
characteristics (e.g., arbiter type and bus bitwidth) and evaluating the effect of these on the
overall system performance and power. Finally, it allows quickly generating SoCs with
different area, performance, and power profiles by simply setting different HLS synthesis
option combinations. It also allows quickly retargeting the SoCs from one hardware
platform to another, e.g., ASIC to FPGA and vice versa, with minimum effort [8].

Some commercial HLS vendors already provide different types of system-level design
features. The main problem is that they are proprietary. Some use dedicated pragmas to
specify the bus interface (e.g., Xilinx Vivado [9,10]) or even encrypt the generated RTL code
to avoid being reverse engineered [11].

Electronics 2021, 10, 1746 3 of 18

This work extends the work presented in [12], which provided a basic path to enable
the generation of complete SoCs through two main contributions. First is a bus generator
that generates synthesizable SystemC code for a given standard bus. Currently, only
AMBA AHB-LITE and AHB are supported, but in the future, other bus structures such as
AMBA AXI or different types of Networks-on-Chip (NoCs) could be easily added. Second
is a library of synthesizable APIs to abstract away the bus interface in each of the SoC
components to read and write from and to the bus. These APIs are a library of functions
that are synthesized as the bus interfaces of the masters and the slaves in the system. This
facilitates the tedious and error-prone task of building the bus interfaces manually and also
enables easily switching between bus types as the users only need to modify the function
call. The bus generator and bus interfaces’ APIs all generate synthesizable SystemC code
that complies with Acellera’s latest synthesizable SystemC subset specifications [13], thus
ensuring that they are portable across most commercial HLS tools. It should be noted that
this work assumes that the HW/SW partition has already been made a priori, although
being able to build and simulate larger complex systems fast could serve to guide the
system designer in determining the most appropriate HW/SW partition and evaluate the
effect of this partition on the area and performance.

This previous work is extended here by presenting how to describe processors and
interfaces efficiently using HLS, which has been until now perceived as not being possible
or leading to suboptimal results as compared to RTL descriptions. In summary, this work
makes the following contributions:

• It introduces a behavioral bus generator that generates synthesizable SystemC code
for HLS for standard AMBA buses (AHB and AHB-Lite) and presents a library of
synthesizable bus interface APIs that allow decoupling the bus interface for each
component in the SoC from the computational part;

• It presents extensive experimental results highlighting the benefits of this approach
vs. traditional approaches based on low-level HDLs.

2. High-Level Synthesis

Before we proceed with describing the proposed work, it is important to review what
HLS is and how it works. Figure 2 shows an overview of the complete HLS process. HLS
can be described as a process to convert untimed behavioral descriptions into efficient
hardware that implements that behavior. The inputs to the HLS process, as shown in
Figure 2b, are the behavioral description to be synthesized in, e.g., ANSI-C, C++, or Sys-
temC, a technology library (C42ℎ;81�!() that contains the area and delay information of
basic operations (i.e., adders and multipliers of different bitwidths), a target synthesis
frequency (5<0G), and a set of synthesis directives in the form of pragmas (pragma.h).
These synthesis directives are extremely important as they allow the designer to control
the synthesis process. In particular, these directives control how to synthesize arrays (RAM
or registers), loops (unroll, partially unroll, not unroll, or pipeline), and functions (inline
or not). In the example shown in Figure 2b, the code snippet contains one array and two
loops.

The HLS process then parses the behavioral description and constraints and per-
forms three main steps: (1) resource allocation, (2) scheduling, and (3) binding. In the
resource allocation stage, the number and type of hardware resources from C42ℎ;81�!(are
extracted. In the scheduling phase, the different operations in the behavioral description
are assigned to individual clock steps based on the number of available resources, and
finally, in the binding stage, the hardware resources are bound to different operations in
the scheduled operations.

To achieve high-quality RTL, the HLS process needs to know the accurate delay
of the different functional units (FUs) that are mapped to different operations in the
behavioral description. For this, commercial HLS tools provide a library characterizer
shown in Figure 2a that generates the technology library for the HLS process. This library
characterizer synthesizes (logic synthesis) different basic units with different bitwidths.

Electronics 2021, 10, 1746 4 of 18

Basically, the library characterizer automatically generates the RTL code of these basic units,
synthesizes it with the target technology specified by the user, which has to match the
technology used during HLS, and back-annotates the area and delay information reported
by the logic synthesis tools into the HLS technology library (C42ℎ;81�!(). This process
needs to be executed before the HLS process is executed, and although time consuming, it
only needs to be execute once. It should be noted that FPGA vendors do not provide this
flow as they pregenerate these technology libraries for their particular FPGAs and include
them with their HLS tool.

Fr
on

t-
en

d
VL

SI
 D

es
ig

n

7nm, 22nm,
40nm, 90nm

Logic
Synthesis tech

lib (db.lib)

Logic
Synthesis

1-bit +, 2-bit
+, 4-bit +,
…,1-bit x

RTL basic
units

High-Level
Synthesis

technology
library

Inputs

#define pragma1 array=reg
#define pragma2 loop=all
#define pragma3 loop=all

RTL (Verilog, VHDL)

Reports (Area, timing, power)

Cin (ANSI-C/C++/SystemC)

#include ”pragma.h”
int buffer[16]; //pragma1
// pragma2
for(i=7;i>0;i--)

buffer[i]=buffer[i-1];
buffer[0] = in0;
sum= buffer[0];
// pragma3
for (i= 1; i< 16; i++)

sum += buffer[i];
return (sum/16);

Area

Latency
[clk cycles]

!𝑃

HLS Inputs

HLS Outputs

Logic synthesis scripts

Testbench, simulation models

Allocation

Scheduling

Binding

High-Level
Synthesis

pragma.h

fmax

array=reg
loop=all
loop=all

array=reg
loop=partial
loop=partial

array=ram
loop=0
loop=0

RTL
(.v/.vhdl)

techlibHLS

High-Level Synthesis
technology library

generator
(a)

Technology dependent
High-Level Synthesis

(b)

Figure 2. High-Level Synthesis (HLS) overview.

The output of the HLS process is the RTL code (Verilog or VHDL) and a set of reports
that summarize the area and performance of the synthesized circuit. Commercial HLS
tools also generate synthesis scripts to interface the HLS tool with the logic synthesis
process and test benches to verify the generated circuit, as shown on Figure 2b. It also
shows different micro-architectures generated when different combinations of the synthesis
directives are specified. Out of all the combinations, the designer is typically only interested
in the combinations that lead to the Pareto-optimal designs (%̄). This unique advantage of
HLS has received much attention recently. The main problem with finding these Pareto-
optimal configurations is that the search space grows supralinearly with the number of
explorable operations (loops, arrays, and functions), making exhaustive enumerations of
all combinations impractical. Thus, multiple fast heuristic methods have been proposed
to find these Pareto-optimal designs quickly. A recently published survey summarized
them [14]. In this work, we use this to highlight one of the salient benefits of building a
complete heterogeneous SoC in C. Using different synthesis directives, the proposed flow
cannot quickly generate SoCs with different area and performance trade-offs.

Table 1 summarizes the main commercial HLS tools available to date classified in
ASIC and FPGA tools. The table also shows the input language support. It can be observed
that except Intel’s HLS compiler, all other HLS tools accept SystemC. This is why in this
work, we target generating entire SoCs using SystemC rather than C or C++, as IEEE has
standardized SystemC in their 1666 Language Reference Manual (LRM), while most C or
C++ languages used also include vendor specific constructs such as their own data types.

Electronics 2021, 10, 1746 5 of 18

Table 1. Overview of commercial HLS tools and their supported input languages.

HLS Tool Input Languages

ASIC
Cadence Stratus [15] C/C++/SystemC
Mentor Catapult [9] C++/SystemC

NEC CyberWorkBench [11] C/BDL/SystemC

FPGA Vivado HLx [10] C/C++/SystemC
HLS Compiler [16] C++

3. Related Work

The increase in the level of VLSI design abstraction, from the RT level to the behavioral
level, has mainly been used to design the hardware accelerators within the SoCs. Because
these have to interface with the rest of the system, different approaches have been proposed
to facilitate this. Commercial HLS tools have followed two main approaches. ASIC vendors
such as Cadence Stratus [15], Mentor Catapult [9], and NEC CWB [11] provide, similarly
to this work, a library of synthesizable APIs that need to be included in the source code.
The main problem is that these are proprietary and, in some cases, generate encrypted
code [9,11]. FPGA vendors such as Xilinx follow a different approach, making use of
pragmas to specify the bus interface [10]. The HLS tool parses these pragmas and generates
the corresponding bus interface for the given accelerator. In all these cases, the HLS tool
only generates the bus interface such that the hardware accelerator can be easily integrated
within the SoC. They do not generate the bus itself, as we do in this work. In the FPGA
case, this is obviously not needed as newer programmable SoC FPGAs already include
the bus to connect the embedded processors with the reconfigurable fabric onto which the
accelerator is mapped. To generate standard on-chip buses, companies typically rely on
bus generators such as [17] that generate synthesizable RTL code, which in some cases
is also encrypted. The main drawback of this approach is that it forces performing the
integration and verification at the RT level. As we show in Section 6, being able to perform
the integration at the behavioral level facilitates the verification of the entire system through
faster simulation models. It also allows exploring different system parameters faster to
optimize the SoC.

Academic efforts in this domain have mainly targeted the automatic generation of
NoCs. In [18], the authors introduced FPGA-to-CUDA (FCUDA)-NoC, a NoC generator
that takes in CUDA code and custom network parameters as inputs and produces synthe-
sizable Register-Transfer Level (RTL) code for the entire NoC system. The authors in [19]
targeted HLS and automated the NoC generation to improve the access to on-chip memo-
ries that cannot be determined at HLS compile time. Other approaches aim at generating
customizable memory banking schemes only for a particular accelerator in the system [20].
Other recent approaches target specifically the efficient execution of neural networks in
SoCs [21] and use NoCs as interconnects. The main problem with all these approaches is
that they generate synthesizable RTL code and typically require some sort of RTL wrappers
for the final integration. This does not allow fully leveraging the benefits of behavioral SoC
design.

The proposed work allows building a complete SoC at the behavioral level, which in
turn enables performing quick cycle-accurate simulations of the entire system, thus verify-
ing functional timing issues, as well as, e.g., deciding on the overall system architecture
faster.

4. Proposed Behavioral SoC Design Flow

The proposed behavioral SoC development flow was based on four main features. The
first is a bus generator that generates synthesizable SystemC code for the actual SoC bus.
The second is a library of synthesizable APIs to allow any component in the SoC described
as a behavioral description to access the bus. These APIs are further divided into master
APIs and slave APIs. These two features allow stitching together all the components in the

Electronics 2021, 10, 1746 6 of 18

SoC, simulating the system, and finally, generating the RTL code for each component in
the system. The third feature that is needed to generate complete SoCs in C are embedded
processors described in C. For this, we provide a library of embedded behavioral processors.
Lastly, every SoC has multiple synchronous and asynchronous interfaces to communicate
with the external world. This also includes memory interfaces. In this case, we made use
of the ability of commercial HLS tools to time the behavioral descriptions to efficiently
optimize these interfaces and create a library of these external interfaces.

Figure 3 shows an overview of the complete flow. The next subsections explain how
the bus generator, the synthesizable APIs, the embedded processor, and the library of
external interfaces work in detail.

2

1

3 4

RTL (Verilog/VHDL)

MemoryCPU1

HWacc1

cHigh-Level
Synthesis

SPI

I2C
: :

HWacc2 HWaccN
: :

On-chip Bus

Cycle-accurate
model generator

Bus Type: AHB/AXI
Bus bitwidth=32bits
Arbiter: round robin
Memory map
#Masters=M
#Slaves =N

Bus
Generator

bus.c
Bus IFBus IF Bus IF

Bus IF Bus IF UART

Bus IF

Bus definition

Bus_read_single()
Bus_read_burst()

Bus_write_single()
Bus_write_burst()

Synthesizable Bus
Interface APIs

Waveform(.vcd)

C/C++

RTL
Simulator gcc/g++

Waveform (.vcd)

master_IF.c
slave_IF.c

Behavioral
Processors

Library

Synch and
asynch interfaces

(timed C)

Figure 3. Overview of the proposed flow and target architecture.

1 Behavioral bus generator: The input to the behavioral bus generator is a bus specifica-
tion file (.bsf) that contains all the specifications of the on-chip bus. Three main sections are
required, as summarized in Table 2. Section 1 includes the bus protocol, e.g., AMBA, AHB,
AHB-Lite, or AXI, although currently, only AHB and AHB-Lite are supported, the bus
bitwidth, the type of arbiter (fixed or round robin), and the names and number of masters
and slaves. In case the system only has a single master, then it is assumed that the SoC
follows the AMBA AHB-Lite protocol (single-master system, which does not require any
arbiter and, hence, is much simpler). Sections 2 and 3 describe the bus interfaces in each of
the masters and slaves in the systems, e.g., if single mode or burst mode is enabled and, in
the case of the slaves, the address range of each of them.

The bus generator was implemented in Python. It reads this bus specification file and
outputs a synthesizable behavioral description of the on-chip bus in synthesizable SystemC
code. The advantages of generating the description in SystemC is that it follows the
SystemC synthesizable subset specifications published by Accellera [13]. This guarantees
that every commercial HLS tool can synthesize it into efficient RTL.

Electronics 2021, 10, 1746 7 of 18

Table 2. Bus specification file (.bsf).

Bus Type

Parameter Options Description

Type AHB|AXI On-chip bus protocol selection
Width 8|16|32|64 Bus bitwidth
Arbiter fixed|round robin Type of arbiter
Masters M1, M2, . . . , Mn Names and number of masters in the system
Slaves S1, S2, . . . , Sn Names and number of slaves in the system

Master definitions (one entry for each master)

Mode single|burst Send/receive individual data or burst mode

Slave definitions (one entry for each slave)

Mode single|burst Send/receive individual data or burst mode
Address �33ABC|�33A4=3 Address range of the given slave

2 Synthesizable APIs: The second feature that facilitates the generation of behavioral
SoCs is a library of synthesizable APIs. These APIs allow any behavioral application in
the SoC to simply call the API to read from the bus or write to the bus. This approach
fully abstracts away the bus interface details from the main functional description of each
component. Figure 4a shows an example of a system composed of a single master and a
single slave and how these two components interact with each other through the developed
API.

High-Level Synthesis
(front-end/Parser)

1: #include <bus_api.h>
2: master1(){
3: --------------
4: bus_single_write(slave1, data);
5: -------------
6: bus_single_read(slave2, data);
7: --------------
8: --------------
9: bus_burst_write(slave1, data, INCR16);
10:
11: bus_burst_read(slave2, data, INCR8);
12:}

1: #include <bus_api.h>
2: slave1(){
3: --------------
4: while(1){
5: // get status
6: stat = bus_poll_req();
7: if(stat == BUS_WRITE){
8: bus_response(BUS_OK);
9 data[x] =bus_get_data();
10: }
11: else if(stat == BUS_READ){
12: bus_response(BUS_OK);
13: : bus_write_data(data);
14: }
16: // Main computational loop
17: // using data read from bus
19:}

Masters CMaster Slaves (Hwacc) CSlave
Bus API

bus_api.h

//Master APIs
bus_single_read();
bus_single_write();
bus_single_read_nblock();
bus_single_write_nblock();
bus_burst_read();
bus_burst_write();
// Slave APIs
Bus_poll_req();
Bus_response();
Bus_write_data();
Bus_get_data();

1: #include <bus_api.h>
2: bus(){
3: ---------------

master.IFF bus.IFF slave_IF.IFFmaster_IF.IFF slave.IFF

High-Level Synthesis
(Allocation, Scheduling, Binding)

master.v master_IF.v bus.v slave_IF.v slave.v

Bus

High-Level
Synthesis

(b)

High-Level Synthesis
Design Space

Explorer

Pragma library
(loops, arrays,

functions)

Latency [clk cycles]

Ar
ea

 [μ
m

2]

Hardware Accelerator micro-
architectural design space exploration

System-level Exploration

Throughput

Smax

Smin

Sfastest

Ssmallest

System-level Design
Space Explorer

Ar
ea

 [μ
m

2]

Interface library
(bus type,

bitwidth, arbiter)

Dsmallest

Dfastest

(a)

(c)
(d)

Figure 4. Example of synthesizable communication APIs (one master and one slave) and the HLS
DSE flow to optimize the micro-architecture of the slave (hardware accelerator). (a) Behavioral
descriptions for individual components of SoC. (b) Result of individual HLS of each component. (c)
Individual component HLS design space exploration. (d) System-level exploration by combining
different micro-architectures of each individual component.

Table 3 summarizes the main APIs for the AMBA AHB bus case classified into master
and slave APIs. The master has the option to send or receive individual data or multiple
data at the same time through burst mode. By default, the API call is blocking. This implies
that the master will be kept waiting until the data have been fully written or read. Two
nonblocking additional API functions are provided to allow the master to continue its
operation while the data are been sent over the bus. Figure 4a highlights how simple it
is to use these APIs in the �<0BC4A example. The slave side is slightly more complicated,
as it requires continuously monitoring the bus to check if any of the masters are trying to
initiate a communication. Thus, additional APIs are needed for this, as shown in Table
3 (slave). The slave side has to continuously check for any requests from the master and
respond to the request by either returning: OK, ERROR, RETRY, and SPLIT, as per the AHB

Electronics 2021, 10, 1746 8 of 18

specifications. Once the data have been read, the slave continues using them in its main
computational loop. When finished, it then waits for the master to request the data to be
sent back.

Table 3. Synthesizable communication APIs’ overview.

Master

API Name Description

bus_single_read() Blocking single data read from the slave
bus_single_read_nblock() Nonblocking single data read from the slave

bus_burst_read() Blocking burst read from the slave
bus_single_write() Blocking single data write to the slave

bus_single_write_nblock() Nonblocking single data write to the slave
bus_burst_write() Blocking burst write to the slave

Slave

bus_poll_req() Poll status of the bus
bus_response() Respond to the master’s request
bus_get_data() Read data from the bus

bus_write_data() Write data to the bus

3 Behavioral processors’ library: Every SoC has at least one embedded processor. These
embedded processors could again be heterogeneous such as ARM’s big.LITTE processor
pairs or multiple copies of the same one. It is therefore important to investigate if it is
possible to design these processors also in C and include them in the heterogeneous SoC
proposed.

Some previous work indicated that describing a fixed architecture such as a processor
using HLS leads to suboptimal implementations. Table 4 shows the results for two different
types of processors implemented using HLS and manually described in Verilog. The
first is the configurable NEC processor reported in [1], while the second is a scalar MIPS
processor from the CHStone benchmark suite [22]. In both cases, it can be observed that
the behavioral processor requires less lines of code to be described (7.6 and 6.4× less lines
for the NEC and MIPS processor, respectively). The cycle-accurate simulation is also faster
as HLS allows generating fast cycle-accurate simulation models, which are on average
203 and 120× faster than an RTL simulation. The drawback of describing the embedded
processor in C is that HLS leads to slightly larger area overheads. 5% for the NEC processor
and 2% for the MIPS processor. The authors in [23] also reported similar results for an
RISC V processor compared to a manually optimized processor.

Table 4. Processor design comparison (C vs. RTL).

NEC [1] C RTL Ratio

#lines 1300 9200 7.6×
Sim speed 61 kc/s 0.3 kc/s 203×

Size 19,000 μm2 18,000 μm2 1.05×

MIPS Scalar [22] C RTL Ratio

#lines 494 3,161 6.4×
Sim speed 108 kc/s 0.9 kc/s 120×

Size 15,231 μm2 14,913 μm2 1.02×

Figure 5 shows an overview of how to map applications onto an embedded processor
described in C. In particular, this is the MIPS processor used in this work, taken from [22]
and converted to SystemC to make it portable to any HLS tool. Figure 5a shows a snippet
of the behavioral processor, which uses a very simple switch-case statement to decode
the different instructions. It can also be observed that the processor has two arrays, imem

Electronics 2021, 10, 1746 9 of 18

and dmem, which serve as instruction and data memories. One of the advantages of
describing the processor in C is that these arrays can now be synthesized as registers or
RAM depending on their size by setting different synthesis directives, as shown in the
figure. Figure 5b shows the generated processor block diagram after HLS and Figure 5c the
gate netlist after logic synthesis. Finally, Figure 5d shows the application that is compiled
using a MIPS cross-compiler and stored in the instruction memory (imem).

int imem[iSIZE]; //pragma REG
int dmem[dSIZE]; //pragma RAM

while(1){
// Fetch
Instr = imem[pc];

// Decode
opcode=instr >>26;
switch(opcode){

// Execute
case ADDU:

break;

// Read/Write Mem
case LW:

reg[x] = dmem[addr];
break;

case SW:
dmem[addr] = reg[x];
break;

}

Register File
(32 registers)

ALU
(+,x, logic)

Control Logic

Instruction
Memory

Memory
Access

RT-Level

(a) (b) (c)

LS

Gate Netlist

Behavioral
for(x=7;x>0;x--)

data[x]=data[x-1];
data[0] = read_data();
for(x=0;x<8;x++)

sum +=data[x]
return(sum/8);

mips-gcc

0x27bdffc0,
0x03a0f021
0x00802821
0x00c03821
0x00e01821
0x00c03821
0x03c21021

imem dmem

0x00000004
0x0000000d
0x00000001
0x0000000f,
0x0000000a,
0x00000003,
0x00000001,

Application

(d)

HLS

Behavioral Processor

Data
Memory

Figure 5. Simple behavioral MIPS scalar processor. (a) Behavioral description of the processor. (b)
Register transfer Level view of the synthesized processor. (c) Gate netlist view of the processor. (d)
Application example to be executed on the processor stored into instruction and data memories.

Based on this, we can generate a library of embedded processors that currently in-
cludes the scalar MIPS processor from the CHStone benchmark [22] and an RISC V core.
These processors serve as masters in our heterogeneous SoC design.

4 External interfaces using timed C: HLS has traditionally been used to synthesize data-
intensive applications such as filters and image processing applications, as shown in
Figure 6. Numerous works have reported excellent results using HLS for these types
of arithmetic intensive applications [24]. Other control-intensive applications that have
complex control dependencies can also be synthesized efficiently with modern HLS tools
through different types of speculation. In contrast, controller applications such as interfaces
(USB, PCI, etc.) have been traditionally difficult to design and efficiently implement with
HLS because they often follow specific protocols that require specific timing signals. These
protocols are difficult to implement using regular untimed C/C++. To address this and
enable the efficient synthesis of any application, commercial HLS tools (in particular, the
ASIC ones) allow manually timing the C description, either the complete description,
through what is called manual scheduling mode (C code is manually scheduled), or only
portions, called mixed or interface synthesis mode. In this case, only a portion of the
behavioral description is timed. This allows efficiently building the interface portion of the
synthesized circuit, while allowing the HLS tool to automatically synthesize the rest of the
description.

Electronics 2021, 10, 1746 10 of 18

Fr
on

t-
en

d
VL

SI
 D

es
ig

n

Data Intensive Applications Control Intensive Applications Controller/Interface Applications

Arithmetic intensive applications
o FIR, FFT
o Image processing
o Encryption

Arithmetic intensive applications
with complex control
o Voice recognition
o CODECs
o DRM
o ECC

o USB, ATA, UART
o PCI bus, AMBA bus
o DMA, timer
o DRAM, NAND Flash

Automatic HLS synthesis mode

Mixed HLS synthesis mode for interfaces

Manual HLS synthesis mode

Figure 6. Application types and different HLS synthesis modes.

One of the main problems with this approach is that although most ASIC HLS tools
support this, the syntax is vendor specific, e.g., NEC’s CWB [11] uses $ in ANSI-C to
indicate the timing boundary in manual scheduling mode. One exception is SystemC,
with most of the HLS tools supporting the wait(1) statement as the clock boundary. Thus,
in this work, we created a library of standard interfaces in SystemC following again the
synthesizable SystemC subset to accurately model them. In particular, a UART, an SPI
interface, and a VGA controller.

These four features enabled us to design complete heterogeneous SoCs at the be-
havioral level, which enables some interesting capabilities that we summarize in the
next section.

5. Design Space Exploration: Micro-Architecture and System Level

HLS is a single-process synthesis method. This implies that every component in the
system is synthesized separately. As shown in Figure 4b, this implies that once the behav-
ioral description using the APIs is generated and after parsing the different descriptions,
five separate behavioral descriptions need to be synthesized for this example: the master,
the slave, the master interface, the slave interface, and the bus itself. This leads to five
different RTL descriptions that can in turn be simulated and synthesized into gate netlists.
Figure 2 shows these steps. After HLS, the fast cycle-accurate simulation model can also
be generated. This is a model written in C/C++ that mimics the behavior of the RTL,
generating as the output a waveform identical to an RTL simulation. The benefit of this
approach is that the simulation time is much faster than RTL, and it also does not require
any RTL simulator, as this model only needs to be compiled with a C/C++ compiler.

Based on this, the proposed flow enables a set of interesting applications. The slaves
will typically be the hardware accelerators in the SoCs. Because the slave is specified in
C/C++/SystemC, HLS allows the generation of different micro-architectures with unique
area vs. performance and power trade-offs for any given behavioral description, as shown
in Figure 2. As mentioned previously, different settings of HLS synthesis directives lead
to implementations with unique area and performance trade-offs. Out of all the possible
combinations, the most important ones are the ones that lead to Pareto-optimal designs (%̄).
This in turn allows generating systems with different characteristics by mixing different
implementations of the hardware accelerators in the SoC using different types of interfaces,
e.g., AHB, AXI, changing the bus bitwidth, arbiter type, etc. The ability to generate quick
cycle-accurate simulation models allows one to quickly evaluate different configurations.
The next subsections describe how this is done.
Micro-architectural Design Space Exploration: As mentioned previously, one of the ad-
vantages of the proposed flow is that HLS enables the generation of different micro-
architectures with unique trade-offs without the need to modify the behavioral description.
The question for the system integrator now is: Which micro-architecture for each compo-
nent in the SoC should be used to meet the area, performance, and power constraints?

Much work has been done in the area of HLS DSE. A recent survey summarized the
main efforts in this domain [14]. The main approach in all these methods is to explore
the individual behavioral descriptions in isolation using different types of heuristics as

Electronics 2021, 10, 1746 11 of 18

the search space grows supralinearly with the number of explorable operations. Figure 7
shows a typical HLS DSE flow, where the design space explorer is built on top of the
commercial HLS tool, seen as a black box. The explorer reads in the behavioral description
to be explored and generates a unique combination of the different synthesis options
available based on the commercial HLS tools. These options are often called synthesis
knobs. In this example, these knobs can be classified into synthesis directives in the form
of pragmas (:0CCA), global synthesis options (:>?CB), and the number of FUs (: 5 DB). Once a
new combination is generated, the explorer invokes the HLS tools, extracts the synthesis
results (area and latency in this case), and continues generating a new combination based
on a given cost function, until a specified exit criterion is met.

Area

Latency [clk cycles]

High-Level Synthesis

Exploration
knobs

kattr

kfus

kopts

Design Space Explorer
(Dedicated heuristic, Meta-heuristic, ML-

based)

Techlib
(ASIC, FPGA)

kfuX kattrY, koptsZ

C/C++/SystemC

C,C++,SystemC

FU type : Limit
Mul16s : 6

ATTR1: loop=all
ATTR2: loop=all
ATTRN: array=RAM

fmax=10ns
FSM = gray

ka7r koptskfus

Unique set of Exploration knobs

RTL

QoR

!𝑃

Figure 7. Micro-architectural HLS design space exploration overview.

In this work, we only consider the synthesis directives in the form of pragmas (:0CCA),
as it was shown in [14] that these have the largest effect on the final micro-architecture. In
particular, our proposed work explores arrays, functions, and loops. Arrays are synthesized
as registers or RAM or fully expanded to individual registers, functions inlined or not, and
loops fully unrolled, partially unrolled, and pipelined with different initiation intervals.

Most previous works did not consider how the accelerator interfaces with the rest of
the system. Using our proposed framework, we can further expand previous work on HLS
DSE by including the interface type as an additional exploration constraint. Being able to
quickly simulate the entire system is key to understanding the effect of the interface choice
and pragma mixes on the area and performance of the system. In this work, we enable an
easy way to extend traditional HLS DSE to include the interface type, bitwidth, and system
arbiter as exploration parameters and used any of the previously developed heuristics
[14] to obtain the trade-off curve of dominating micro-architectures. The additional main
differences with previous work is that this explorer would need to perform a full cycle-
accurate simulation for every new configuration and use system performance as the
performance metric, as opposed to only using the latency or throughput of the individual
accelerator.

In this particular work, we used a metaheuristic based on a genetic algorithm. Genetic
algorithms have been shown to lead to very good results for these types of multi-objective
optimization problems. The genetic algorithm is an evolutionary method that replicates
how animals evolve. In this case, every unique pragma setting is a gene, and setting a
unique pragma to every array, function, and loop conforms a chromosome. This chro-
mosome is then combined and mutated based on predefined crossover and mutation
probabilities to produce an offspring. Because metaheuristics are very sensitive to their
hyperparameters (e.g., mutation rate and cross-over rate, exitcondition), we made use of a
previously published method that allows automatically setting these hyperparameters in
the context of HLS DSE [25].

System-level design space exploration: The HLS DSE results can now be used to generate
entire systems with different trade-offs, as shown in Figure 4d. The inputs are a library

Electronics 2021, 10, 1746 12 of 18

of different interface parameters, including the bus type, bus bitwidth, and arbiter, and
the result of the HLS DSE for each of the hardware accelerators in the system. The trade-
off curve shown highlights two boundaries denoted as the system of maximum area
((<0G) and the system with the smallest area ((<8=). Intuitively, if the fastest, but largest
micro-architectures of all the accelerators are used with the largest bus bitwidth, then the
fastest, but also largest system will be obtained ((<0G). Similarly, if the smallest micro-
architectures with the smallest bus bitwidth are used, then the very smallest system should
be generated ((<8=). One observation that we have made by simulating many of these
heterogeneous systems with our framework is that due to bus congestion issues in systems
with multiple accelerators, choosing slower, but smaller micro-architectures might actually
lead to the same overall system performance as (<0G . This is denoted in Figure 4d as
(5 0BC4BC . Thus, it is important to explore the different micro-architectures and interfaces
within the entire system.

Much work has been done in the past in the domain of system-level exploration. These
previous works can be classified into three different categories: (a) using aggressive pruning
techniques to reduce the search space [26,27], (b) making use of metaheuristics to search the
design space [28,29], or (c) using static analytical techniques to guide the explorer [30,31].
Once the candidate solutions have been generated, these have to be evaluated either
through simulation (i.e., [31]) or through predictive models (i.e., [30]). Other work uses
compositional techniques to explore the design space of SoCs [32].

As shown by the different trade-off curves in the system-level exploration result in
Figure 4d, different heuristics will lead to slightly different trade-off curves. Thus, in this
work, we simply used an exhaustive enumeration technique that allows us to compare the
running time of the exploration using our behavioral SoC design framework vs. performing
the exploration at the RT level. This allows us to directly compare the running times as
both exploration methods generate the exact same number of configurations.

6. Experimental Results

Six SoCs of different complexities were generated to test our proposed method. These
SoCs had between one and two masters and between two and five slaves. The masters
were either the behavioral MIPS processor taken from the CHStone benchmarks [22] or the
RISC V processor presented previously, while the slaves were all taken from the S2CBench
benchmark suite [33]. AMBA AHB-Lite was selected for the SoCs with only one master
and AMBA AHB for the rest. Two of the external interfaces were used to read and write
data from the SoC, in particular a UART or an SPI interface, as shown.

Electronics 2021, 10, 1746 13 of 18

Table 5 shows the configuration of each SoC, e.g., S1 is composed of a single master
(1), which implies that it uses the AHB-Lite bus protocol and has two slaves (Sobel and
snow3G). The rest of the systems contain different numbers of image processing and
DSP processing hardware accelerators and two different encryption accelerators, a stream
cipher (snow3G) and a block cipher (KASUMI). The main idea is that data arrive at the SoC
through the external interface encrypted and need to be decrypted first by the encryption
accelerator before they can be further processed. Once the data have been processed
by the different accelerators, they are encrypted again and returned through the same
external interface. The processors (masters) act as controllers setting the sequence of the
computation steps. In all cases, the input was a 512 × 512 input image with every pixel
being 32 bits. The size of the input was purposely kept small to allow the full simulation of
the larger systems in RTL.

Table 5. System benchmarks’ configuration overview.

System S1 S2 S3 S4 S5 S6

Masters MIPS • • • • •
RISC V • • • •

Bus AHB-Lite • • •
AHB • • •

External Interface UART • • •
SPI • • •

HWacc

Sobel • • • • • •
fir • •

decim • • • •
interp • •
FFT •
jpeg • •

snow3G • • •
KASUMI • • •

Table 6 summarizes the tools used in the experiments. The HLS tool used was NEC
CyberWorkBench v.6.1.1, which also allows generating cycle-accurate simulation models.
The compiler used to compile the cycle-accurate simulation model was g++ 4.8.5, and the
RTL simulator used was Mentor’s Modelsim 10.5c. The target technology in all cases was
ASIC Nangate 45 nm, and the target HLS frequency was 200MHz. The experiments were
conducted on a server mounting an Intel i7-1160G7@2.60GHz processor with 32 GBytes of
RAM running CentOS 7.0. After the exploration stage, we also fully synthesized, placed,
and routed all the systems to make sure that the target synthesis frequency was met.

Two set of experiments was conducted to test our proposed framework. The first
compared the simulation running time of the entire SoC when we used our framework to
generate cycle-accurate models vs. running the RTL simulation of the same SoCs when we
applied the default HLS synthesis constraints. The second set of results investigated the
ability of our proposed approach to perform efficient system-level design space exploration.

Table 6. Experimental setup.

HLS Tool NEC CyberWorkBench 6.1.1
HLS Frequency 200 MHz

Logic Synthesis Tool Synopsys Design Compiler 2018.06-SP1
Place and Route Tool Cadence Virtuoso 6.1.7-64b

RTL Simulator Mentor’s Modelsim 10.5c
Synthesis Technology Nangate 45 nm Opensource

C/C++ Compiler g++ 4.8.5

Electronics 2021, 10, 1746 14 of 18

Experiments 1: runtime comparison: All of these complex systems were fully described at
the behavioral level, and we made use of our proposed flow. To test the advantages of our
proposed flow, the bitwidth of the bus in each of these systems was set to 8, 16, 32, and 64
bits. The SoCs were slightly modified to break or group the data sent across the bus based
on the bitwidth. One advantage of our method is that this could be accomplished within
minutes. Table 7 shows the simulation runtime comparison of the entire SoC between the
cycle-accurate simulation model generated by the HLS tools used in this work and the
RTL simulation. The geometric mean is also shown for each benchmark to account for
the size difference between the different SoCs. From the results, it can be observed that
the cycle-accurate simulation was on average 4× faster, in particular 4.1, 3.4, 3.1, and 2.7×
for the 8 bit, 16 bit, 32 bit, and 64 bit buses. Table 7 also shows that the 64 bit bus led to
simulations that were 1.6, 1.3, and 1.2× faster than the 8 bit, 16 bit, and 32 bit bus versions.
This is mainly because fewer transactions were required to complete the computation,
further highlighting how simple it is to obtain these estimates quickly using our proposed
flow. Moreover, these different cycle-accurate simulations all generated a waveform (VCD
file) that allows the designer to analyze in detail bus congestion problems and overall
system performance bottlenecks.

Table 7. Runtime comparison of RTL simulation vs. cycle-accurate simulation using our proposed approach.

Benchmark
RTL Simulation Runtime (min) Cycle-Accurate Simulation Runtime (min)

8-Bit Bus 16-Bit
Bus

32-Bit
Bus

64-Bit
Bus 8-Bit Bus 16-Bit

Bus
32-Bit
Bus

64-Bit
Bus

A
H

B-
Li

t. S1 4.2 3.1 2.6 2.5 1.5 1.2 1.0 0.9
S2 10.5 7.2 6.5 5.8 1.8 1.5 1.3 1.1
S3 14.3 11.2 9.1 7.4 3.9 2.9 2.5 2.3

A
H

B

S4 28.2 16.2 13.6 11.9 6.5 5.3 5.1 4.3
S5 37.8 32.7 27.5 24.5 8.3 7.3 6.4 5.8
S6 42.1 39.5 37.3 35.2 10.2 8.3 7.7 6.8

Geomean 17.5 13.2 11.2 10.2 4.2 3.4 3.1 2.7

One observation that we made during this experimental evaluation is that the compi-
lation time of the cycle-accurate simulation for the larger systems was not negligible.

Figure 8 shows how the area of the bus and bus interfaces grew with the bitwidth of
the bus and the number of masters and slaves. The 16 bit, 32 bit, and 64 bit versions of the
system led to an area increase of 1.45×, 2.39×, and 4.18×, respectively, as compared to the 8
bit version. This further highlights how easy it is to analyze the impact of bus bitwidths on
the area and performance of the entire SoC.
Experiments 2 : system-level design space exploration: Figure 9 shows the resultant
trade-off curves from our system-level design space explorer, which fully enumerates all
possible combinations. The search parameters include the bus bitwidth and the Pareto-
optimal micro-architectures retrieved for each slave. Other parameters could be easily
added to the search such as the type of processor and processor-specific characteristics.

Table 8 summarizes the running time of the explorer, with the total number of com-
binations indicated in Column 2. This search space is made out of the Pareto-optimal
micro-architectures of each hardware accelerator and the different bus bitwidth. For this,
each slave was explored using a genetic algorithm.

From the figure, we can clearly observe that different mixes of hardware acceler-
ator versions combined with different bus interface specifications led to systems with
dramatically different areas and throughputs.

Electronics 2021, 10, 1746 15 of 18

S1 S2 S3 S4 S5 S6
AVG

0

0.5

1

1.5
·104

A
re

a
Bu

s
[μ

m
2]

8 bit bus 16 bit bus 32 bit bus 64 bit bus

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

Figure 8. Bus and bus interface area for different bus bitwidths.

0.6 0.8 1
0.7

0.8

0.9

1

N
or

m
al

iz
ed

A
re

a

S1

0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1
S2

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
S3

0.2 0.4 0.6 0.8 1 1.2

0.6

0.8

1

Normalized Throughput

N
or

m
al

iz
ed

A
re

a

S4

0.2 0.4 0.6 0.8 1 1.2

0.6

0.8

1

Normalized Throughput

S5

0.4 0.6 0.8 1

0.4

0.6

0.8

1

Normalized Throughput

S6

Figure 9. System exploration trade-off curves.

Table 8. System-level DSE running time results (min).

Bench Search Space RTL (min) Proposed (min) Diff

S1 40 128 23 5.61
S2 120 732 85 8.59
S3 196 1019 169 6.05
S4 128 704 87 8.09
S5 224 1456 300 4.85
S6 576 4101 806 5.09

Geomean 858.9 138.0
Average 6.4

Moreover, from the results in Table 8, we can observe that using our behavioral SoC
design framework led to an average speedup of 6.4× compared to performing the same
exploration at the RT level.

Electronics 2021, 10, 1746 16 of 18

Based on these results, we can conclude that our proposed framework works well and
that it is able to simulate fully heterogeneous SoCs much faster than traditional approaches
based on RTL descriptions.

7. Conclusions and Future Work

In this work, we presented a framework that enables the generation of complete
heterogeneous SoCs at the behavioral level. Two main ideas enable this: a bus generator
and a library of synthesizable APIs for the bus interfaces. By generating synthesizable
SystemC code, any HLS tool can synthesize the bus interfaces generated and the bus into
efficient RTL code. We also showed that it is possible to create embedded processors at
the behavioral level, as well as external interfaces. This allows one not only to create the
hardware accelerators using HLS, but also fixed architectures and controllers. Future work
includes the support of other standard buses, e.g., AXI and Open Core Protocol (OCP),
and even a Network-on-Chip (NoC). This will dramatically increase the flexibility of the
proposed flow as only minor changes would be needed to change the topology of the
entire SoC, and hence, this will enable a fast path to perform fast system-level design
space explorations.

Author Contributions: Q.S. developed the behavioral CPU processor models and performed
the experimental results. S.S. developed the behavioral bus generator and created the library of
synthesizable interfaces APIs. B.C.S. supervised the work and summarized the work in this paper.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by NATO Grant Number SPS Project G5640.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AHB Advanced High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface
CWB CyberWorkBench
FPGA Field Programmable Gate Array
FU Functional Unit
HDL Hardware Description Language
HLS High-Level Synthesis
IC Integrated Circuit
NoC Network-on-Chip
OCP Open Core Protocol
RTL Register-Transfer Level
SoC System-on-Chip
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver/Transmitter
VGA Video Graphics Array
VLSI Very Large-Scale Integration

References
1. Coussy, P.; Morawiec, A. High-Level Synthesis: From Algorithm to Digital Circuit, 1st ed.; Springer: Berlin, Germany, 2008.
2. Bombieri, N.; Liu, H.Y.; Fummi, F.; Carloni, L. A method to abstract RTL IP blocks into C++ code and enable high-level synthesis.

In Proceedings of the 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 29 May–7 June
2013; pp. 1–9.

3. Mahapatra, A.; Carrion Schafer, B. VeriIntel2C: Abstracting RTL to C to maximize High-Level Synthesis Design Space Exploration.
Integration 2019, 64, 1–12.

4. Mahapatra, A.; Carrion Schafer, B. Optimizing RTL to C Abstraction Methodologies to Improve HLS Design Space Exploration.
In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5.

Electronics 2021, 10, 1746 17 of 18

5. Sutherland, S. The Verilog PLI Handbook, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2002.
6. Yamamoto, H.; Chikamura, K.; Shigiya, A.; Tsujino, K.; Izumi, T.; Onoye, T.; Nakamura, Y. System-Level Design of IEEE1394 Bus

Segment Bridge; Association for Computing Machinery: New York, NY, USA, 2002.
7. You, M.K.; Song, G.Y. Case study: Co-simulation and co-emulation environments based on SystemC SystemVerilog. In Proceed-

ings of the 2009 IEEE Region 10 Conference (TENCON 2009), Singapore, 23–26 November 2009; pp. 1–4.
8. Liu, S.; Lau, F.C.; Schafer, B.C. Accelerating FPGA Prototyping through Predictive Model-Based HLS Design Space Exploration.

In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6.
9. Siemens EDA. Catapult. Available online: https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-

verification-platform/ (accessed on 19 July 2021).
10. Xilinx. Vivado HLx. Available online: https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf

(accessed on 19 July 2021).
11. NEC. CyberWorkbench. Available online: http://www.cyberworkbench.com (accessed on 19 July 2021).
12. Shetty, Santoshand Carrion Schafer, B. Enabling the Design of Behavioral Systems-on-Chip. In Proceedings of the ACM/IEEE

Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 1–6.
13. SystemC Synthesizable Subset Version 1.4.7; Technical Report; Accellera: Elk Grove, CA, USA, 2016.
14. Carrion Schafer, B.; Wang, Z. High-Level Synthesis Design Space Exploration: Past, Present, and Future. IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst. 2020, 39, 2628–2639.
15. Cadence. Stratus. Available online: https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/

stratus-high-level-synthesis.html (accessed on 19 July 2021).
16. Intel. High-Level Synthesis Compiler. Available online: https://www.intel.com/content/www/us/en/software/

programmable/quartus-prime/hls-compiler.html (accessed on 19 July 2021).
17. Synopsys. DesignWare IP. Available online:https://www.synopsys.com/designware-ip.html (accessed on 19 July 2021).
18. Chen, Y.; Gurumani, S.T.; Liang, Y.; Li, G.; Guo, D.; Rupnow, K.; Chen, D. FCUDA-NoC: A Scalable and Efficient Network-on-Chip

Implementation for the CUDA-to-FPGA Flow. IEEE Trans. Very Large Scale Integr. 2016, 24, 2220–2233.
19. Islam, A.; Kapre, N. LegUp-NoC: High-Level Synthesis of Loops with Indirect Addressing. In Proceedings of the 2018 IEEE

26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Boulder, CO, USA,
29 April–1 May 2018; pp. 117–124.

20. Zhou, Y.; Al-Hawaj, K.M.; Zhang, Z. A New Approach to Automatic Memory Banking Using Trace-Based Address Mining.
In Proceedings of the 2017 ACM/SIGDA International Symposium (FPGA ’17), Monterey, CA, USA, 22–24 February 2017;
pp. 179–188.

21. Giri, D.; Chiu, K.L.; Di Guglielmo, G.; Mantovani, P.; Carloni, L.P. ESP4ML: Platform-Based Design of Systems-on-Chip for
Embedded Machine Learning. In Proceedings of the Conference on Design, Automation and Test in Europe, Grenoble, France,
9–13 March 2020; pp. 1049–1054.

22. Hara, Y.; Tomiyama, H.; Honda, S.; Takada, H.; Ishii, K. CHStone: A benchmark program suite for practical C-based high-level
synthesis. In Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008;
pp. 1192–1195.

23. Liu, G.; Primmer, J.; Zhang, Z. Rapid Generation of High-Quality RISC-V Processors from Functional Instruction Set Specifications.
In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019;
Volume 122, pp. 1–6.

24. Carrion Schafer, B.; Trambadia, A.; Wakabayashi, K. Design of complex image processing systems in ESL. In Proceedings of
the 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC), San Francisco, CA, USA, 27–31 July 2010;
pp. 809–814.

25. Wang, Z.; Schafer, B.C. Machine Leaming to Set Meta-Heuristic Specific Parameters for High-Level Synthesis Design Space
Exploration. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA,
20–24 July 2020; pp. 1–6.

26. Givargis, T.; Vahid, F.; Henkel, J. System-level exploration for Pareto-optimal configurations in parameterized systems-on-a-chip.
In Proceedings of the IEEE/ACM International Conference on Computer Aided Design (ICCAD 2001), San Jose, CA, USA,
4–8 November 2001; pp. 25–30.

27. Fornaciari, W.; Sciuto, D.; Silvano, C.; Zaccaria, V. A Sensitivity-Based Design Space Exploration Methodology for Embedded
Systems. Des. Autom. Embed. Syst. 2002, 7, 7–33.

28. Erbas, C.; Cerav-Erbas, S.; Pimentel, A.D. Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping
Problem in Multiprocessor System-on-chip Design. Trans. Evol. Comp. 2006, 10, 358–374.

29. Ferrandi, F.; Lanzi, P.L.; Pilato, C.; Sciuto, D.; Tumeo, A. Ant Colony Heuristic for Mapping and Scheduling Tasks and
Communications on Heterogeneous Embedded Systems. IEEE Trans. Integr. Circuits Syst. 2010, 29, 911–924.

30. Lukasiewycz, M.; Glass, M.; Haubelt, C.; Teich, J. Efficient symbolic multi-objective design space exploration. In Proceedings of
the 2008 Asia and South Pacific Design Automation Conference, Seoul, Korea, 21–24 March 2008; pp. 691–696.

31. Beltrame, G.; Fossati, L.; Sciuto, D. Decision-Theoretic Design Space Exploration of Multiprocessor Platforms. IEEE Trans. Integr.
Circuits Syst. 2010, 29, 1083–1095.

https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform/
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform/
https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf
http://www.cyberworkbench.com
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
 https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
 https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
 https://www.synopsys.com/designware-ip.html

Electronics 2021, 10, 1746 18 of 18

32. Piccolboni, L.; Mantovani, P.; Guglielmo, G.D.; Carloni, L.P. COSMOS: Coordination of High-Level Synthesis and Memory
Optimization for Hardware Accelerators. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–22.

33. Carrion Schafer, B.; Mahapatra, A. S2CBench:Synthesizable SystemC Benchmark Suite. IEEE Embed. Syst. Lett. 2014, 6, 53–56.

	Introduction
	High-Level Synthesis
	Related Work
	Proposed Behavioral SoC Design Flow
	Design Space Exploration: Micro-Architecture and System Level
	Experimental Results
	Conclusions and Future Work
	References

