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Abstract: Concept of closed loop control appears in many fields of engineering sciences, where
the output quantity of some physical system must be forced to follow some prescribed function
over time, e.g., when a robotic arm endpoint must track a desired trajectory or path given as timed
series of spatial coordinates. The classic approach for solving this kind of problem involves a PID
compensation block, and the necessary input signal for keeping the controlled process in the vicinity
of the desired trajectory is calculated as the weighted sum of momentary deviation, deviation integral,
and deviation derivative relative to the reference path. However, despite the obvious advantages,
practical usability, and simplicity of the PID controllers, their performance is limited when they are
utilized for controlling nonlinear systems. Even with linear systems, their proper operation requires
an accurate system model and precise tuning process for finding the best weight values for the
proportional, integral, and derivative effects, and the planned closed loop behavior might change
significantly as the parameters of the controlled plant change over time. In this article, a computed
torque-based controller is presented, which has only one adjustable parameter ensuring precise
trajectory tracking even with significantly alternated model constants. The practical usability of the
offered algorithm is evaluated and verified by simulations and experiments performed on a simple
mechanical bi-rotor testbed playing the role of controlled plant.

Keywords: Computed Torque Control; robust control; model based control; experiments on control
performance; control simulations

1. Introduction

The traditional formulation of the Computed Torque Control (CTC) assumes the pos-
session of a precise system model and the lack of unknown or unobserved external distur-
bances, known nominal trajectory to be tracked qN(t), the actual trajectory q(t) according
to (1) in which Q(t) denotes the generalized forces exerted by the robot drives, H(q) being
a positive definite (sometimes not very well conditioned but at least in principle invertible)
inertia matrix of the robot arm, and h(q, q̇) containing Coriolis and gravitational forces:

e(t) := eN(t)− q(t) , eint(t) =
∫ t

t0

e(ξ)dξ , (1a)

H(q)q̈ + h(q, q̇) = Q , (1b)

H(q)
[
qN(t) + KIeint(t) + KPe(t) + KD ė(t)

]
+ h(q, q̇) = Q . (1c)
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It is assumed that q(t) and q̇(t) can be measured by industrial sensors. By subtract-
ing (1b) from (1c) and utilizing the existence of H(q)−1, it is obtained that

ë(t) + KIeint(t) + KPe(t) + KD ė(t) ≡ 0 . (2)

Accordingly, the integral (KI), the proportional (KP), and the derivative (KD) feedback
gains must be appropriately set to guarantee the eint(t) → 0, e(t) → 0, and ė(t) → 0 as
t → ∞. The traditional way is based on the introduction of a “artificial state variable”
x(t) = [eint(t), e(t), ė(t)]T that evidently satisfies the LTI systems’ equation of motion in (3).

ẋ =

 e(t)
ė(t)
ë(t)

 =

 0 I 0
0 0 I
−KI −Kp −KD

 eint(t)
e(t)
ė(t)

 ≡ Ax . (3)

By investigating the Jordan canonical form of matrix A (e.g., [1]), it can be stated
that the system is stable if and only if the real part of each eigenvalue of matrix A in (3)
is negative.

A more traditional approach is considering the symmetric positive definite matrix Q
and the matrix function Φ ∈ Rn×n(ξ) defined as

Φ(ξ)
de f
= eξ AT

QeξA, ξ ∈ R . (4)

Evidently, Φ(ξ) is symmetric, positive definite since the inverse of eξ AT
is e−ξ AT

and
the inverse of eξA is e−ξA, i.e., these matrix exponential functions are invertible, therefore,
they cannot map a nonzero array to zero. The time-derivative of Φ(ξ) can be computed as

d
dξ

Φ(ξ) = ATΦ(ξ) + Φ(ξ)A from which it follows that (5a)

Φ(t1)−Φ(t0) =
∫ t1

t0

d
dξ

Φ(ξ)dξ ≡ ATΨ(t0, t1) + Ψ(t0, t1)A , (5b)

in which

Ψ(t0, t1)
de f
=
∫ t1

t0

Φ(ξ)dξ . (6)

In connection with the Canonical Form of Quadratic Matrices by Jordan [1,2], Ψ(∞)
exists only if each eigenvalue of the matrix A has a negative real part. In this case eξA → 0
as ξ → ∞, Φ(∞) = 0, and Ψ(t0, ∞) is finite. For the special case of t0 = 0, (5) yields that

−Q = ATΨ(0, ∞) + Ψ(0, ∞)A ≡ AT P + PA , (7)

in which evidently P ≡ Ψ(0, ∞)
de f
=
∫ ∞

0 eξAT
QeξAdξ > 0 (i.e., positive definite). For solving

the so-called Lyapunov equation defined by (7), modern program languages, such as e.g.,
Julia language [3], simple functions are available by the use of which it can be checked
whether a given setting of the parameters KI , KP, and KD and given matrix Q results in
a solvable Lyapunov equation. This approach has a close relationship with the idea of
PID controller.

The CTC controller can be introduced in a little bit different manner outlined in
Figure 1.

Approximate Model Actual System

Q Generalized Forceq̈Des

q̈

Figure 1. Interpretation of the CTC scheme in different manners.
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Assume that, for a second order system, on the basis of purely kinematic considera-
tions, a “desired” q̈Des(t) 2nd time-derivative is constructed that guarantees the eint(t)→ 0,
e(t)→ 0, and ė(t)→ 0 as t→ ∞ conditions if it is realized. If the available system model
is not exactly precise (i.e., it contains the Ĥ(q), ĥ(q, q̇) approximate model) while the exact
model contains the functions H(q), h(q, q̇), in Figure 1, the control force is computed from
the approximate model, and the realized q̈(t) value will be

q̈ = H(q)−1
[

Ĥ(q)q̈Des + ĥ(q, q̇)− h
]

, (8)

that in the special case of the “exact” approximate model leads to q̈(t) = q̈Des(t). In this
approach for designing q̈Des(t), we can follow a simpler choice than the more general
PID-based approach. Let 0 < Λ = const. and try to realize the motion according to(

Λ +
d
dt

)3
eint(t) ≡ 0 . (9)

Since for differentiable f (t) functions Λd f /dt ≡ d(Λ f )/dt, (9) leads to

q̈Des(t) = q̈N(t) + Λ3eint(t) + 3Λ2e(t) + 3Λė(t), (10)

which evidently corresponds to particular possible PID feedback terms depending only
on a single parameter Λ. To show that this setting results in vanishing tracking error as
t→ ∞, consider the functions gk(t) := (t− t0)

ke−Λ(t−t0). Since

ġk(t) = kgk−1(t)−Λgk(t), (11)

it follows that
(

Λ + d
dt

)i
gi−1(t) = 0. Consequently, the general solution of equations in (9)

for eint(t) is

eint(t) =
2

∑
`=0

c`g`(t) , (12)

in which the free coefficients {c0, c1, c2} can be chosen according to the initial condi-
tions. In other words, the linear set of the solutions is spanned by the basis vectors
{g0(t), g1(t), g2(t)} so that each basis vector converges to 0 as t→ ∞. It can be noted that,
for tackling the problem of modeling errors, the traditional approach, such as the “Adaptive
Inverse Dynamics Controller” or the “Adaptive Slotine-Li Controller” [4], evolves by the
use of Lyapunov’s stability theorem and his 2nd or “direct” method [5,6]. The “Robust
Variable Structure / Sliding Mode Controller” invented in the Soviet Union in the past
century (e.g., [7–9]), instead of trying to realize (9) (that according to the computations is
very sensitive to the modeling errors), introduced the concept of “error metrics” S(t) and
the control goal

S(t) :=
(

Λ +
d
dt

)2
eint(t) (13a)

Ṡ(t) ≈ −Ktanh
(

S
w

)
(13b)

with K > 0, w > 0 parameters. The simple idea behind (13) is that, for big S compo-
nents, the “tanh” function is saturated at ±1; therefore, S can be driven to the vicinity of
zero during finite time and subsequently can be kept around zero. The subtle dynamic
details of how S(t) is driven to zero or how is it kept near zero in this approach are
not important; for this reason, a very approximate model can work well to maintain the

S(t) =
(

Λ + d
dt

)2
eint(t) ≈ 0 that has quite similar consequences as (9) for the error integral

and the error. This solution evidently can suffer from the phenomenon of chattering if
parameter K is very big and the “smoothing parameter” w is too small.
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Recently, control algorithms based on or incorporating CTC have been used in a wide
variety of applied engineering research areas, such as motion control of miscellaneous
robot manipulators with open and closed (or parallel) kinematic chains [10,11] and cable-
driven robots [12]; overhead crane payload sway control [13]; attitude control of drone-like
multi-rotor aircraft [14]; operation of a musculoskeletal therapy device with artificial
muscles [15]; gait planning for bipedal robots [16]. However, in almost all cases, separate
integral, proportional, and derivative gains or parameters are used to “tune” the controlled
system for the optimal trajectory tracking, which makes finding the ideal parameter set a
complicated task.

The methodology followed in the article is as follows: first, a simple real-world testbed
for control algorithms is introduced and its mathematical model is constructed based on
various parameter estimation measurements (Figure 2). Then, the performance of the
one-parameter CTC algorithm is studied by comparing the simulated and measured (when
the algorithm was running on a microcontroller, controlling the real-world testbed) tra-
jectory tracking results. Further experiments were carried out on the real-world testbed
showing trajectory tracking with alternative trajectory profiles (sine signal with increasing
frequency). The resistance against outer disturbances tested with simulation and measure-
ment as well and the results were compared qualitatively. Besides that, an alternative, more
traditional control method (PID compensator with nonlinear feedforward term, referred
to as “Nonlin. PID” in Figure 2) is also tested for trajectory tracking by simulation and
measurement. Finally, the robustness of CTC and “Nonlin. PID” methods against model
parameter variations (when the controller, tuned for the original plant model, interacts
with a plant with altered parameters) were compared using the simulational results of the
two methods.

CTC
vs.
nonlin PID
par. sensitivity
comparision

Testbed
structure

Trajectory tracking
performances with
different Λ
parameters

Dynamic
par. 
estimation

CTC simulation
with the testbed
model

Realized
CTC
(microcontroller)

Static par.
estimation

Trajectory tracking
for a sin. trajectory
with increasing 

frequency

Measurement
vs.
Simulation
comparision

Trajectory tracking
in presence of external
torque disturbance

Trajectory tracking
in presence of external
torque disturbance

Measurement
vs.
Simulation
qualitative
comparision

Nonlin. PID
control simulation
with the testbed
model

Realized nonlin. 
PID control
(microcontroller)

Simulation
vs.
Measurement
comparision

Trajectory
tracking
performance

CTC

Nonlin. PID

Testbed
model

Measurement

Simulation

Measurement

Simulation

Model parameter 
sensitivity
investigation

Trajectory
tracking
performance

Trajectory tracking
performances with
different Λ
parameters

Model parameter 
sensitivity
investigation

Figure 2. Block diagram of the methodology used in the article.
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2. Structure and Mechanical Model of the Bi-Rotor Testbed

To justify the practical usability of the proposed one parameter CTC scheme, a simple
twin-rotor experimental test stand was built, consisting of a beam rotating in the vertical
plane around a horizontal axis in the vicinity of its middle point. The angular position of
the arm—which is the controlled variable—can be varied by a control torque exerted by two
propellers at both ends of the rod. Propellers were driven by electric motors with variable
rotational speed, which can be regulated by a Pulse-Width Modulated (PWM) electric
signal. The test platform is also equipped with a programmable microcontroller board on
which the control algorithm can be implemented and executed in real-time. A photograph
of the device and free body diagram of the arm belonging to the testbed is shown in
Figure 3. Basic information about the main components of the device is summarized in
Table 1.

Figure 3. (Above) The double rotor test stand; (Below) Free body diagram of the bar, belonging to
the double rotor testbed.
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Table 1. Information about the main bi-rotor test bed components.

Parameter Name Type and/or Manufacturer, Main Characteristics

motor (2 pcs) Brushless Direct Current (BLDC)
C20-1550 kv

Electric Speed Controller (ESC, 2 pcs) redox 30 A
controlled with PWM signal

propeller blade (2 pcs) � 150 mm

tilt sensor

Murata SCA100T-D02
meas. range: −90 to +90 deg

precision: ±0.86 deg
analog 0–5 V output used for angle reading

controller board
Adafruit Metro M4

micro-controller: Microchip ATSAMD51
Cortex M4 core running at 120 MHz

battery Nickel Metal Hydrid (NIMH)
7.2 V, 3600 mAh, 6 cell rechargable

display Nextion NX8048T050

The position of the lever arm is characterized by the inclination angle α given in
degrees, which is defined as the angle between the horizontal direction (perpendicular
to the gravitational gradient vector g) and the center-line of the arm. The instantaneous
value of thrust force vectors generated by the left and right propellers are denoted by F1(t)
and F2(t). The distance between the center lines of the two rotors is L. The gravitational
force mg (where m is the mass of the arm) is acting at the S center of gravity. The location
of point S relative to the rotational center point is given by distances hx, hy, where hx is
measured parallel with the arm center-line and hy is measured perpendicular to the arm
center-line. The horizontal and vertical components of the reaction force from the bearing
are denoted by Kx and Ky. α(t), α̇(t) and α̈(t) are the instantaneous angular position,
angular velocity, and angular acceleration of the lever arm, respectively. The damping
torque Md is considered to be proportional to the actual angular velocity:

Md(t) = dα̇(t), (14)

where d is a damping constant. By considering the aforementioned forces and torques,
the lever arm equation of motion can be written in the following form:

Θα̈(t) = Mc(t)−mg[hxcosα(t) + hysinα(t)]− dα̇(t), (15)

where Θ is the lever arm moment of inertia calculated to the rotational center. Mc(t) is the
actual control torque, the second term in the equation is the torque of the gravitational
force, and the third is the damping torque. Since the reaction forces Kx and Ky are rising at
the center of rotation, they do not produce torque contribution. The connection between
the u1(t), u2(t) input PWM signals (to the left and right motors) and the exerted F1(t), F2(t)
thrust forces can be modeled as first order linear functions:

F1(t) = Au1(t), F2(t) = Au2(t). (16)

This consideration can be only held when u1(t) or u2(t) varies very slowly or when
they are stationary constant values. Parameter A is already known from experiments
with the single-arm testbed. The actuator (BLDC motor with the propeller) dynamics is
modeled with a dead-time, first-order block with parameters τ force delay time and trise
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force rising time, which was also measured previously when the single-arm version of the
testbed was built (for more details about the force exertion dynamics, see [17]):

F1(t) = A[u1(t− τ)− triseu̇1(t− τ)]; F2(t) = A[u2(t− τ)− triseu̇2(t− τ)] (17)

The left and right motor PWM control signals are calculated from the single incoming
control signal u(t) according to the following logical rules:

u1(t) = ulowest + |u(t)|, when umax > u(t) > 0;
u1(t) = ulowest, when u(t) 6 0

u1(t) = uhighest, when u(t) ≥ umax
u2(t) = ulowest + |u(t)|, when umin < u(t) < 0;

u2(t) = ulowest, when u(t) > 0
u2(t) = uhighest, when u(t) ≤ umim.

The control signal distribution logic is also illustrated in Figure 4.

-6 -4 -2 0 2 4 6

10−4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
10−3

ulowest= 1.3 x 10−3

umin= −6 x 10−4 umax= 6 x 10−4

uhighest= 1.9 x 10−3

− − −

Figure 4. Distribution of the input signal u(t) between the two rotors.

Current control torque Mc(t) generated by the two propellers is:

Mc(t) =
L
2
(F2(t)− F1(t)). (18)

Therefore, momentary control torque acting on the arm written with the input signal
u is:

Mc(t) = A
L
2
[u(t− τ)− triseu̇(t− τ)]. (19)

The equation of motion, including the actuation dynamics, becomes:

Θα̈(t) + dα̇(t) + f (α(t)) = A
L
2
[u(t− τ)− triseu̇(t− τ)], (20)

where f (α(t)) is a nonlinear function−mg[hxcosα(t) + hysinα(t)]. However, because of the
tension and slight stuttering effects on the imperfect bearing, f (α(t)) might contain other
unmodeled terms. In a stationary state, when α̈(t) = 0, α̇(t) = 0 and u̇(t) = 0, equation of
motion (20) reduces to a time-invariant expression:

f (α) = A
L
2

u. (21)
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Stationary α− u states can be closely resembled, when input signal u is increased
linearly over time with a very small rate of change while the measured α values are also
captured during the experiment, as depicted in Figure 5. The connection between cohesive
α− u value pairs can be well approximated by a fourth-order polynomial function F(α),
which is considered as the static characteristic of the bi-rotor testbed:

u(α) = F(α) = 2
L
A

f (α) = c4α4 + c3α3 + c2α2 + cα + c0. (22)

0 20 40 60 80 100 120 140 160 180 200 220
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Figure 5. Results of the static measurement and the fitted curve for the static characteristic.

After the experimental determination of the static behavior, dynamic parameter values
for Θ and d are fine-tuned to match with the experimental step response results (Figure 6).
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Figure 6. The output of the real and modeled plant.
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The values of identified model parameters can be found in Table 2.

Table 2. Values, names, and units of identified model parameters.

Parameter Name Notation Unit Value

second order moment of inertia Θ [kg·m2] 0.0294
viscous damping d [N ·m · (s/deg)] 5.3× 10−7

actuation time delay τ [s] 0.08
actuation rise time trise [s] 0.1578
rotor axis distance L [m] 0.6

arm mass (with battery) m [kg] 0.51
input signal-force gain A [N/s] 2296.2

static parameter c0 [s] 2.390× 10−5

static parameter c1 [s/deg] 5.878× 10−6

static parameter c2 [s/deg2] 4.102× 10−8

static parameter c3 [s/deg3] 5.477× 10−10

static parameter c4 [s/deg4] −1.119× 10−11

simulation time step,
cycle time for control ∆t [s] 0.016

A prescribed control signal for a given desired acceleration α̈des with current measured
position and velocity values α, α̇, based on (20) and (22), is calculated as:

u(t) = 2
L
A
[Θα̈des(t) + dα̇(t)] + 2

L
A

f (α(t)) = 2
L
A
[Θα̈des(t) + dα̇(t)] + F(α(t)). (23)

Equation (23) serves as an inverse dynamic model for the controlled system. Here,
it is worth mentioning that the inverse dynamic model described by the (23) neglects
the actuation dynamics (time delay and rise time) since it is already compensated by the
derivative effect of the kinematic block (see in the next section).

3. Results

The details of the realized CTC control scheme as it was first tested in Matlab Simulink
is illustrated by Figure 7. For generating the rough nominal trajectory, the desired angular
position was changed according to a predefined time schedule (0 degrees for 15 s, than
+40,−40,+20,−20,+30,−30 and 0 degrees for 10–10 s). From these rough values, a smooth
time-dependent path is generated by the smoothed trajectory generator, which consisted
of four first-order serially connected low-pass filters with time constants of 0.2 s. This step
is essential, since the second-order temporal derivative of the nominal position (α̈N(t)) has
to be finite and two times continuously differentiable function which can be fed to the
kinematic block (described by Equation (10)) to calculate the desired angular acceleration
value α̈Des(t).

In the first 5 s of the operation, control signal u is set to zero resulting in u1 = u2 =
ulowest = 1.3× 10−4s signal levels for the left and right motors. This phase is used for
spinning up the rotors to reach their lowermost effective actuation levels (see Figure 4).
During this short “spinning up” phase, the arm executes small-amplitude free oscillation
and the position is not controlled. Meanwhile, the measured angle is fed into the smooth
trajectory planner, which thereby will be ready to generate a smooth transition path to the
desired commanded position, when its output is already connected to the rough trajectory
generator after 5 s. The measured transition between the uncontrolled first 5 s and the
controlled state on the real physical system is also outlined later in the upper left graph in
Figure 10.

During normal operation, the control signal u(t) is calculated in two steps. First,
the desired angular acceleration α̈Des(t) is determined by the kinematic block in the function
of nominal angular acceleration (α̈N(t), originated from the smoothed trajectory generator),
tracking error e(t) = αN(t)− αmeas(t), tracking error derivative ė(t), and tracking error
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integral eint according to Equation (10). Then, the desired acceleration α̈Des(t), the measured
current angular position αmeas(t), and its derivative α̇meas(t) are forwarded to the inverse
dynamic model (Equation (23)) to obtain the current control signal u(t), which here also
plays the role of generalized control force Q as also shown in Figure 1. To keep the controller
output in a feasible range (between umin = 6× 10−4 s and umax = 6× 10−4 s, see again
Figure 4), a saturation block is also added.

Besides the Simulink model, simulations were also carried out in the form of a Matlab
script, where the simulation time step was ∆t = 0.016 s and a simple first-order Euler
integration scheme was used to get the angular velocity and position values. For imi-
tating the sensor noise, a random number with normal distribution was added to the
realized α(t) positions, and the standard deviation parameter σ was 0.5053 degrees.
The simulation was executed using six different Λ trajectory tracking parameter values
(Λ = 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, the unit of Λ is s−1).

For performance evaluation of the proposed CTC scheme in the real world, a Circuit-
Python code was generated and compiled on the microcontroller board belonging to the
test-bed. The execution cycle time of the real-time CTC algorithm was ∆t = 0.016 s (same
value as the simulation time step). To attenuate tilt sensor noise without causing any addi-
tional time delay, fifty angle values were read from the tilt sensor in every computational
cycle, and their mean value was utilized as the current α(t) value. Besides the mentioned
straightforward “oversampling-averaging” technique, no other more advanced method
was applied to improve the position signal quality. Instantaneous measured angular ve-
locity was approximated by a simple numerical derivation (α̇ ≈ ∆α/∆t). Experimental
measurements with a real-world test stand were also executed with six different Λ values,
lasting for 85 s.

Time series of the captured simulated and experimental data are compared in Figure 8.
Good quality trajectory tracking was achieved in general both for simulated and experi-
mental cases. The only appreciable difference between simulations and experiments is the
behavior during the uncontrolled phase in the first five seconds, which can be explained by
the fact that one of the rotors starts to spin slightly earlier (about 0.3–0.5 s) than the other,
resulting in a short living non-zero torque acting on the beam. In the plots depicting control
signal variations, upper and lower limits (umin = −6× 10−4 s, umax = 6× 10−4 s) are
outlined by a dashed line. The CTC algorithm results in highly fluctuating control signals
for all scenarios. However, the wobbling in u(t) seems to be more intense in simulations,
since the sensor noise level was slightly over-estimated. As the Λ parameter increases,
fluctuations become more and more significant, as well as u(t) more likely tending to
saturate at the limits of the usable signal range.
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Figure 7. Details of the realized CTC control scheme modeled in Matlab Simulink.
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Figure 8. Experimental and simulation results for trajectory tracking with a “CTC” scheme in the case of six different
Λ values.

Small scale variations in the quality of trajectory tracking caused by changing parame-
ter Λ can be highlighted by evaluating the absolute integral error between the realized and
nominal trajectory, while the control algorithm is active:
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eint,abs,realized =
∫ t=85s

t=5s
| αN(ξ)− αrealized(ξ) | dξ. (24)

Simulations and experimental measurements based on the aforementioned absolute
integral error quantity are ranked in Figure 9.
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Figure 9. Absolute integral errors from simulations and measurements.

It can be observed that there is an optimal trajectory tracking parameter value that
provides the smallest absolute integral error. The most advantageous value for Λ is 2.75 s−1

in the case of experiments and 2.25 s−1 for simulations. This observation can be explained
as follows: for smaller Λ values, the trajectory tracking is less “aggressive”, therefore some
details of the nominal trajectory are not followed perfectly, while, for larger Λ values,
the controller is “overreacting”, causing frequent saturation on the output, and, for this
reason, some features of the desired path are again missed. Some detailed views of the best
experimental trajectory followings with Λ = 2.75 s−1 are shown in Figure 10.

To show that the proposed CTC scheme is not optimized just for a certain specific
nominal trajectory, Λ = 2.75 s−1 experimental setting is also tested in the frequency domain
by applying a sinusoidal wave as the desired path with a decreasing time period known as
“chirp signal” (see Figure 11). Frequency is increased linearly over time from 0.001 Hz to
0.57 Hz, the peak-to-peak amplitude was 60 degrees with −30 minimal and +30 maximal
values. The smooth transition between the controlled and uncontrolled phase is achieved
by phase-shifting of the initial sine wave to match the last measured angle value at the end
of the five seconds long “free oscillation” period. The trajectory tracking is almost perfect
up to 0.3 Hz and a still acceptable quality path following can be observed up to 0.45 Hz
(as a comparison: the natural frequency of the abandoned system, when oscillating freely
is around 0.5 Hz). Low-grade path fidelity can be observed from 0.45 Hz to 0.65–0.7 Hz;
stability loss is occurring around 0.75–0.8 Hz.

The change in the quality of trajectory tracking under the influence of external dis-
turbance was first investigated by simulation (Figure 12). The duration of the applied
external disturbance torque was 10 or 1 s, and the absolute value was one-third of the
maximal achievable control torque (which is exerted when the lowest umin or the highest
umax control signal values are sent permanently to the input signal distribution function
depicted in Figure 4). When both short and long-duration disturbances occur or are re-
moved, a transition period of about 10 s is needed for the algorithm to bring the controlled
variable back to the vicinity of the prescribed nominal path.
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Figure 10. Detailed view of trajectory tracking from an experiment with Λ = 2.75 s−1.

To show that the effect of external torque perturbations is also neutralized in real life,
“qualitative” measurement series were elaborated, where the external disturbance was
induced manually by pushing one of the arms belonging to the test stand arm (the measured
results are shown in Figure 13, a similar magnitude of torque to the simulated disturbance
could have been achieved by suspending weights to the arm, but the coordination of
the weights’ loading and unloading with the simulation load timing would have been
too complicated). Each manual push lasted about 1 to 3 s. It is worth mentioning here
that, in this experiment, the nominal trajectory was not predefined, but was generated in
real-time by the microcontroller based on rough trajectory data provided by an incremental
encoder knob. Each time, the experimenter turned the encoder knob by one position, the
rough trajectory increased or decreased by 2 degrees, and this was fed to the smoothed
trajectory generator .
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Figure 11. Experimental trajectory tracking for a sinusoidal trajectory with increasing frequency.
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Figure 12. Trajectory tracking simulation in the presence of external torque disturbance, Λ = 2.25 s−1.
To illustrate the magnitude of the disturbance torque, the minimum and maximum control torque
levels that can be applied by the rotors are shown as dashed lines on the middle graph.
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Figure 13. Experimental “qualitative” trajectory tracking measurement in the presence of external
(manual) torque disturbance, Λ = 2.75 s−1. Start time instances of manual disturbances are marked
with arrows.

4. Performance Comparison of CTC and PID Compensator with a Nonlinear
Feedforward Term

Since the desired nominal trajectory encompasses a wide range of motion (from –40
to +40 degrees), most conventional PID controller design methods, such as fitting a linear
PID block to the linear approximated version of the original nonlinear system in a certain
operating point, are out of the question. However, when the nonlinear part of the system
model is supposed to be known or can be determined by carefully designed experimental
measurements (e.g., approximation by polynomial functions, as was done previously in
Section 2), PID compensation can be an option together with a nonlinear feedforward [4]
term. In our particular case, the control signal for the bi-rotor testbed can be formulated as

u(t) = A
L
2
[F(α(t))] + uPID(t), (25)

where
uPID(t) = KP[KIeint(t) + KPe(t) + KD ė(t))] (26)

is a built-in by default PID controller block in Matlab Simulink (referred to as the “ideal
form” of PID blocks), which can be “tuned” automatically to get a desired step response
function. With controller in (25) (not considering the actuation time delay and rise time),
the equation of motion (20) becomes:

Θα̈(t) + dα̇(t) + f (α(t)) = A
L
2
[F(α(t))] + uPID(t).) (27)

Since A L
2 [F(α(t))] = f (α(t)) (see Equation (22)), the troublesome nonlinear part is

canceled out and the resultant model can be further treated as an LTI system. Deficiencies of
the actuator dynamics (dead-time, rise time) can also be compensated up to a certain limit
by appropriate KP, KI , KD choice. The Simulink model of the realized “PID with nonlinear
feedforward” control scheme is depicted in Figure 14, where the feedforward linearizator
block contains formula A L

2 [F(α(t))] and the smoothed trajectory was generated in the
same way as was done previously in the case of the CTC method.
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Figure 14. Details of the “PID with nonlinear feedforward” control scheme modeled in Matlab Simulink.

The obtained KP, KI , KD parameters from PID tuning are shown in Table 3. Since the
lower computational demand is relative to the CTC algorithm, simulation time step and
execution cycle time for the real-time controller board were halved from their original value.
On the “D” channel, a first-order low-pass filter was inserted to attenuate the noise on
the angular velocity signal (in addition, the aforementioned oversampling and averaging
method for conditioning the measured angular position signal has also remained in use).

Table 3. Values of the tuned PID parameters used in “PID with nonlinear feedforward” con-
trol scheme.

PID Parameter Name Notation Value

Proportional gain KP 5.33× 10−6

Integral gain KI 1.50
Derivative gain KD 0.37
Derivative filter

time constant in [s] TD 0.0079
simulation time step,

cycle time for control in [s] ∆t 0.008

Experimental and simulation results for trajectory tracking with “PID with nonlinear
feedforward” control scheme are shown in Figure 15. Trajectory tracking is much less
accurate relative to the CTC results, even with carefully tuned PID parameters. The
constant sections in the desired path are reached with a considerable amount of over- or
undershoots. These temporal peaks can be totally eliminated by choosing a less “aggressive”
PID parameter set option, but, in this case, the settling time (the amount of time necessary
to reach a constant value) expanded to 7–8 s, which generally resulted in even worse
quality trajectory tracking. Experimental results for path following are again slightly
better than the simulation ones, which can be explained by the “pessimistic” noise level
approximation, and also by the sensitivity of the PID-based algorithm to the variations of
the static and inertial parameters (see Figure 16 and the next two paragraphs about the
model robustness).
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Figure 15. Experimental and simulation results for trajectory tracking with a “PID with nonlinear feedforward” con-
trol scheme.

To test the robustness and model parameter sensitivity of the two different proposed
control schemes, a set of simulation studies were performed, where the original control
scheme interacts with altered virtual plant versions (Figure 16, for CTC, Λ = 2.25 s−1

case was chosen as the “original” controller since it had the smallest absolute integral
error value). In the first set of simulations, only inertial parameter Θ was varied by ±25%
relative to its identified value in Table 2; in the second set, only the viscous parameter d
was varied by ±25%; in the third set, only time-delay τ was varied by ±25%, and, finally,
in the fourth set of simulations, all “static parameters” including A, c0, c1, c2, c3, c4 were
altered by ±25% at the same time in the plant model, while other system parameters were
kept at a constant value.

While the CTC scheme was unaffected by all types of investigated model alternations,
the “PID with nonlinear feedforward” algorithm shows a significantly different trajectory
tracking behavior when the inertial or the static parameters were changed in the given
range. The only disadvantage that can be mentioned in this comparison against the CTC is
that it loses its stability when dead-time τ is increased drastically by factor 2.5 (0.2 s instead
of the “true” 0.08 s), while the same time “PID with feedforward” still remains stable with
very low quality trajectory tracking.
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Figure 16. Simulation studies for investigating robustness and model parameter sensitivity; for CTC cases Λ = 2.25 s−1;
for “PID with nonlinear feedforward” cases, the PID parameter set is from Table 3, A, c0, c1, c2, c3, c4 values used in every
case inside the CTC controller are from Table 2.

5. Conclusions

In highly nonlinear systems—e.g., in robotics, autonomous driving, navigation or
attitude control of aerial vehicles—precise trajectory tracking is a crucial issue, especially
if the system is loaded by time-delay as well. In this study, we have provided a gener-
ally applicable framework which aims to deal with this issue. We have developed and
implemented an effective single parameter CTC control algorithm which was tested by
various simulations and experiments that are ideal for applications where a specific nomi-
nal trajectory has to be followed precisely. The presented controller scheme preserves its
stability and precision for a wide range of trajectory tracking parameter Λ values even if
the actuation dynamics are corrupted by severe time delays, saturation, significant external
disturbances, and feedback sensor measurement noise. While designing the CTC controller,
no high precision exact model is required, since it shows appreciable robustness against
model parameter variations.

The robustness of the presented control scheme and its insensitivity to model parame-
ter variations can be further improved by adding a fixed point iteration-based adaptive
deformation block between the kinematic and inverse dynamic blocks in Figure 7, which
modifies or “deforms” the desired acceleration based on the last measured realized acceler-
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ation and the last calculated “deformed” acceleration value. Theoretical background and
various simulation studies connecting to the CTC scheme supplemented by a fixed point
transformation block can be found in [18–21]. It is worth noting that, while the theoretical
background of this adaptive approach was elaborated in 1922 by Banach in his Fixed Point
Theorem [22], the first proposal for its application in adaptive control was only published
in 2009 in [21]. This method means a kind of “general framework” that can be filled in
with various particular contents by specifying various functions, the use of which the
task of finding the appropriate control signal can be transformed to iteratively finding
the fixed point of a function. The function called “Robust Fixed Point Transformation”
was the first example that was published in [21]. Later different functions were suggested
and investigated via simulations in [23–25] that mean potential solutions. In the near
future, experimental performance investigation of fixed point iteration based methods will
hopefully be carried out by the help of the presented twin rotor test platform.
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