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Abstract: This paper presents a new realization of a grounded simulated inductor using a single
dual output second-generation voltage conveyor (VCII±) as an active building block, two resistors
and one grounded capacitor. The main characteristic of the proposed circuit is that the value of the
series resistor can be significantly reduced. Thus, it has the property of improved low-frequency
performance. Another feature is the use of a grounded capacitor that makes the proposed circuit
attractive for integrated circuit (IC) realization. A simple CMOS implementation of the required
VCII± is used. However, a single passive component-matching condition is required for the proposed
structure. As an application example, a standard fifth-order high-pass ladder filter is also given.
SPICE simulations using 0.18 µm CMOS technology parameters and a supply voltage of ±0.9 V as
well as experimental verifications, are carried out to support the theory.

Keywords: simulated inductor; low-series resistor; VCII; voltage conveyor; high-gain VCII; current-
mode; ladder filter; band-pass filter

1. Introduction

Inductors are analog passive components that play an essential role in many ana-
log and mixed-signal circuits. Due to the large occupation of area and the low-quality
factor of spiral inductors, designers prefer to substitute them with simulated inductors
(SIs) [1–49]. SIs are constructed using a few active elements, resistors and one capacitor,
and exhibit characteristics of inductance within a specified frequency range. They find
wide applications in the design of active filters, oscillators, phase shifters, etc. SIs using
various kind of active devices offer some advantages such as the capability for integra-
tion, low area, high quality factor, operation in a wide frequency range, etc. However,
grounded SIs [1–49] have the following problems. Some of the grounded SIs [1,2] use oper-
ational amplifiers (OAs); therefore, they suffer from slew-rate limitations. Other grounded
SIs [1–10,12–14,19,21,31,33,34,39,48,49] employ more than one active building block (ABB).
The grounded SI configurations described in [1,2,6,11,12,15–20,24–28,35,37,39,43–47] in-
clude a floating capacitor that is not suitable for integrated circuit (IC) fabrication. The
grounded SI proposals in [17,22,24–30,36,38,42,45,46] contain complex internal structures.
Other grounded topologies [40–46] are made up of non-standard active devices. Finally,
the grounded SI architectures reported in [9,23,30–35,37] have a capacitor connected to a
low-impedance terminal or consist of an operational transconductance amplifier (OTA);
accordingly, their high-frequency performances are limited [50,51].

A literature survey revealed that, in recent years, the current-mode (CM) approach
has been widely used in the SI design [1–17,20–22,24–29,36,38–49]. The main reason is
the potential of the CM signal processing with its low-voltage nature and high-frequency
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operation, etc. [52,53]. Recently, a new CM active building block called second-generation
voltage conveyor (VCII) [54–56] has been used in the implementation of high-performance
grounded immittance-function simulators [48,57]. This new block is the dual circuit of the
more famous second-generation current conveyor (CCII). The difference between CCII
and VCII is that, unlike VCII, CCII lacks a low-impedance voltage output port. This
feature enables VCII-based circuits to benefit from advantages of processing signals in
the current domain while producing output signals in voltage form. Therefore, VCII is
suitable for all applications requiring output signal in the form of voltage. The results
reported in [54–56] reveal that VCII-based circuits outperform conventional circuits in
many aspects. For instance, achieved simulated impedances in [48,57] are robust against
process mismatches and temperature variations while their power consumption is reduced,
when compared to the other reported work. The latter feature comes from the very simple
internal structure of the used ABB, i.e., VCII. The maximum operation frequency range
and parasitic series impedance of the VCII-based grounded SI reported in [48] are 2.5 MHz
and 191 Ω, respectively. It also employs two ABBs.

Here, we aim to design a VCII-based grounded SI with improved performance that
uses only one ABB. The proposed circuit is based on one dual-output VCII (VCII±) as
ABB, two resistors and one grounded capacitor. The most important feature of the new
implementation is that the value of series impedance is considerably reduced by adjusting
resistor values. Hence, it has the property of improved low-frequency performance. It
employs only a grounded capacitor that results in easy integration in the IC process. In
addition, the frequency range is extended to 10 MHz. Additionally, complete circuit
analysis and SPICE simulation results are reported. As an application example, a fifth-
order high-pass (HP) ladder filter is presented. Nevertheless, there is a simple matching
condition which can be easily satisfied. Fortunately, this matching condition is also useful
in setting the value of parasitic series resistance to the desired value. The promising results
through the SPICE simulation program and experimental verifications show that VCIIs are
highly suitable in the SI applications. Compared to the grounded SI based on the negative-
impedance converters (NICs) of [49] which employ two active elements, two resistors
and one grounded capacitor, the realized inductor value is four times lower than the one
extracted from the proposed circuit for the same values of the capacitor and resistors.

The organization of this paper is as follows. In Section 2, VCII± and the proposed SI
are introduced and analyzed. The non-ideal analysis is performed in Section 3. Simulation
results are reported in Section 4. Experimental verifications are presented in Section 5.
Finally, Section 6 concludes the paper.

2. The Proposed Circuit

Figure 1 shows the symbolic presentation and internal structure of the VCII± without
a Z− port. It has a low-impedance current input Y terminal, two high-impedance current
output X+ and X− terminals and one low impedance voltage output terminal, Z+. It simply
consists of a current buffer (CB) and a voltage buffer (VB). The input current is transferred
from the Y terminal to the X+ terminal in the same direction and the X− terminal in the
opposite direction. The voltage at the X+ terminal is transferred to the Z+ terminal. The
VCII± demonstrated in Figure 1 is described as:

IX+

IX−
VY

VZ+

 =


0 0 β
0 0 −η
0
α

0
0

0
0


 VX+

VX−
IY

 (1)
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Figure 1. VCII± without Z− port: (a) symbolic presentation (b) internal structure. 

The proposed VCII±-based SI is shown in Figure 2. Simple analysis shows that, in the 
case of ideal VCII (negligible contribution of parasitic impedances), the input impedance 
of the proposed SI is evaluated by 𝑍 (𝑠) = 𝑠𝐶𝑅 𝑅 + 𝑅 − 𝑅  (2)

In above equation, if R2 = R1 = R is chosen, the following input impedance is obtained: 𝑍 (𝑠) = 𝑠𝐶𝑅  (3)

One observes from Equation (3) that a positive lossless grounded SI is obtained. If 
non-ideal gains are considered, Equation (2) turns to: 𝑍 (𝑠) = 𝑠𝐶𝑅 𝑅 + 𝑅 + (1 − 𝜂)𝑅𝛼𝛽  (4)

From Equation (4), quality factor (Q) for equivalent inductance is found as 𝑄 = 𝜔𝐶𝑅 𝑅𝑅 + (1 − 𝜂)𝑅  (5)
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Figure 2. Proposed VCII±-based simulated inductor. 

Figure 1. VCII± without Z− port: (a) symbolic presentation (b) internal structure.

In Equation (1), β and η, being current gains, are ideally equal to one and two,
respectively. Additionally, α, being voltage gain, is ideally equal to unity.

The proposed VCII±-based SI is shown in Figure 2. Simple analysis shows that, in the
case of ideal VCII (negligible contribution of parasitic impedances), the input impedance
of the proposed SI is evaluated by

Zin(s) = sCR1R2 + R1 − R2 (2)
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In above equation, if R2 = R1 = R is chosen, the following input impedance is obtained:

Zin(s) = sCR2 (3)

One observes from Equation (3) that a positive lossless grounded SI is obtained. If
non-ideal gains are considered, Equation (2) turns to:

Zin(s) =
sCR1R2 + R1 + (1 − η)R2

αβ
(4)

From Equation (4), quality factor (Q) for equivalent inductance is found as

Q =

∣∣∣∣ ωCR1R2

R1 + (1 − η)R2

∣∣∣∣ (5)

From Equation (5) it can be realized that for the ideal case, where R1 = R2 and η = 2,
the Q value of the inductance is infinity.

3. Parasitic Impedance Effects

Figures 3 and 4 show the VCII± with its parasitic impedances and the equivalent
model of the proposed SI, respectively. Thus, the VCII± denoted in Figure 3 is described as

IX+

IX−
VY

VZ+

 =


sCx+ + 1

RX+
0 1 0

0 sCx− + 1
RX−

−2 0
0
1

0
0

RY 0
0 RZ+




VX+

VX−
IY

IZ+

 (6)
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By a simple analysis, including only parasitic impedances of the VCII±, Equation (2)
converts to:

Zin(s) = Req//
1

sCeq
//
(
sLeq + req

)
(7)

Here, Leq, req, Req and Ceq are, respectively, calculated as

Leq = (C + CX−)(R1 + RY)(R2 + RZ+) (8)

req =
(R1 + RY) + (R2 + RZ+)

RX−
+ R1 + RY − R2 − RZ+ (9)

Req = RX+ (10)

Ceq = CX+ (11)

It is seen from Equations (7) and (8) that the proposed SI has restrictions at high
frequencies due to parasitic elements RX+ and CX+ and at low frequencies due to req.
Fortunately, req can be set to zero by choosing R2 as follows:

R2 =
(R1 + RY)RZ+ + (R1 + RY − RZ+)RX−

RX− − (R1 + RY)
(12)

If RX− is too high (RX− > ∞), the Equation (12) is reduced to R2 = R1 + RY − RZ+,
which is easily satisfied in practice.

4. Simulation Results

The performance of the proposed circuit of Figure 2 is tested through SPICE sim-
ulations using 0.18 µm CMOS technology parameters and a supply voltage of ±0.9 V.
The resulted performance parameters for the VCII±, derived from one in Figure 5 [58],
are reported in Table 1 in which VB = 0.23 V is chosen. The proposed solution for the
implementation of an equivalent inductor is not related to a specific VCII. The size of
M13, M9–M10 determines the value of rY. The size of M3, M18 determines impedance at
X+ port; the size of M8–M24 determines the impedance at X− port; and finally the size of
M11–M12, M14 determines the impedance at Z+ port. Aspect ratios of the PMOS transistors,
M1–M7 and M9–M12, are chosen as 40.5 µm/0.54 µm and M8, M13 and M14 are selected
as 81 µm/0.54 µm. Furthermore, those of NMOS transistors, M15–M23, are chosen as
13.5 µm/0.54 µm and that of M24 is selected as 27 µm/0.54 µm. Total power-dissipation
of the proposed SI is nearly found as 1.92 mW. To achieve an inductance value of about
200 µH, all the values of passive components are chosen as R1 = 2 kΩ, R2 ∼= 2.16 kΩ and
C = 50 pF. Frequency responses of the proposed SI and an ideal inductor are shown in
Figure 6. From the simulation results, the operation frequency range of the proposed SI
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is 1 kHz–10 MHz. The value of series impedance is also obtained as a negligible value
of 237 mΩ. To test the time-domain performance of the proposed inductor simulator, a
sinusoidal input current with peak amplitude of 25 µA and frequency of 1 MHz is used.
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Table 1. Some performance parameters of the VCII± of Figure 5.

Parameter Value Parameter Value

RY 19 Ω β 1.004
RX+ 41 kΩ η 2.021
RX− 20 kΩ α 0.973
RZ+ 19 Ω
CX+ 143 fF
CX− 111 fF
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Figure 7 shows the produced output signals along with applied input signal. Addi-
tionally, the value of total harmonic distortion (THD) is 1.8%. The value of the phase shift
between input current and output voltage is approximately 90◦. There is an offset voltage
at the simulation output voltage whose value is approximately −12 mV. Figure 8 shows the
THD variations for various amplitudes of the peak-input currents at a frequency of 1 MHz.
Favorably, the maximum value of THD remains below 3.7%. To test the frequency-domain
applicability of the proposed SI, it is used in a standard fifth-order HP ladder filter shown
in Figure 9 with Leq1 = Leq2 = 200 µH, RS = RL = 5 kΩ and C1 = C2 = C3 = 50 pF. Frequency-
domain analysis for the filer is given in Figure 10. A time-domain analysis for the filter
example is depicted in Figure 11, in which a sinusoidal input voltage with a 250 mV peak
and a frequency of 2.5 MHz is applied. Figure 12 demonstrates the THD variations for
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various amplitudes of peak-input voltages at 2.5 MHz. Monte Carlo (MC) simulations are
accomplished in 100 runs where all the passive elements of the filter, as shown in Figure 13,
are changed by 1%. Furthermore, threshold voltages of all the MOS transistors in Figure 5
are varied by 1% and the result for the filter example is given in Figure 14. Power supplies
are varied and the result for the filter example is depicted in Figure 15.
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A comparison among the proposed grounded SI with other reported similar works,
such as CFOA [4–7], CCII [8–11] and VCII-based ones [47,48], is drawn in Table 2, which
considers important parameters such as technology, power dissipation, supply voltage, fre-
quency range and the number of grounded and floating passive components, etc. The work
reported in [4] suffers from a high supply voltage of ±5V. Although the frequency range
of the circuit reported in [7] is limited to 1 kHz, it consumes larger power consumption
compared to the proposed circuit because it employs two CFOA as active building blocks.
In fact, compared to VCII, which consists of one CB and one VB, the internal structure
of each CFOA is formed by one CB and two VBs. Therefore, even in equal conditions,
the circuit reported in [7] consumes larger power if compared to the proposed one. The
circuit reported in [10], which employs three CCII as active building blocks, is applicable at
frequencies larger than 100 kHz while the proposed circuit low-frequency range is 1 kHz.
This is attributed to the reduced parasitic series resistance as well as its simplicity, which
employs only one active building block; therefore, the number of parasitic elements, which
are the frequency-performance limiting factor, is reduced. Although, compared to the previ-
ously reported VCII-based SI circuit of [48], the power consumption of the proposed circuit
is increased approximately 3 times, but the frequency range is extended from 2.5 MHz to
10 MHz. The work reported in [48] also shows a lossy inductor. In addition, the series
resistance is decreased from 191 Ω to 0.23 Ω. Moreover, by setting the values of R1 and R2,
the value of a parasitic series resistor can be set as required in the specific application.

Table 2. A comparison among the proposed circuit and some other previously reported similar works.

Reference # ABB (Type)

# of Passive
Elements

Frequency Range Technology
Power

Dissipation
(mW)

VDD-VSS
Improved Low

Frequency
Performance# of R

G (F)
# of C
G (F)

[4] 3 (CFOA) 2 (1) 1 (0) 1 µHz–1 MHz AD844 NA ±5 Yes
[5] 2 (CFOA) 1 (1) 1 (0) NA AD844 NA NA No

[6] * 1 (CFOA) 1 (1) 0 (1) Low AD844 NA ±15 No
[7] 2 (CFOA) 2 (1) 1 (0) 1 kHz–100 MHz 0.13 µm 3.05 ±0.75 Yes
[8] 2 (CCII) 2 (0) 1 (0) NA NA NA NA No
[9] 2 (CCII) 2 (0) 1 (0) NA AD844 NA ±12 No

[10] 3 (CCII) 2 (1) 1 (0) 100 kHz–100 MHz 0.35 µm NA ±1.5 Yes
[11] 1 (CCII) 2 (2) 0 (1) NA NA NA NA No

[47] * MOS transistors 2 (0) 0 (1) <1 kHz NA NA NA No
[48] 2 (VCII) 0 (2) 1 (0) 50 kHz–2.5 MHz 0.18 µm 0.65 ±0.9V No

Proposed 1 VCII± 0 (2) 1 (0) 1 kHz–10 MHz 0.18 µm 1.92 ±0.9V Yes

G: grounded, F: floating, NA: not available, *: lossy.

5. Experimental Verifications

Implementation of the VCII± by utilizing AD844s [59] is demonstrated in Figure 16
where supply voltages of AD844s are chosen as ±12 V. Additionally, passive elements
Ra = Rb = 2.2 kΩ; Rc = 1.1 kΩ for realizing VCII; R1 = R2 = 2.2 kΩ; and C = 2.2 nF for
realizing L, are selected to obtain Leq ∼= 10.65 mH. Figure 17 shows a picture of the fab-
ricated board, highlighting its main features. The experimental setup used to evaluate
the equivalent inductance is depicted in Figure 18 where R’ = 1 kΩ is chosen. Thus, a
time-domain analysis of the measured grounded SI is given in Figure 19, where a sinusoidal
input voltage signal (Vin) with 0.5 V peak at 25 kHz is applied to the input and output
voltage taken from Vout. The measured phase shift between them is approximately 86◦.
A second-order voltage-mode band-pass (BP) filter application is analyzed as well: in
Figure 20 the schematic that is used for this experiment is reported. Transfer function of
the BP filter in Figure 20 is evaluated as:

H(s) =
s 1

C f R

s2 + s 1
C f R + 1

LC f

(13)
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The measured transfer function is reported in Figure 21 and compared to the simulated
and the ideal ones. For this analysis the following values are chosen: R ∼= 1 kΩ, R1 ∼= 1.9 kΩ
(given in order to improve low-frequency performance); R2 = 2.2 kΩ and C = 2.2 nF, yielding
L ∼= 9.2 mH. Additionally, Cf = 30 nF is chosen to obtain f 0 ∼= 9.58 kHz. In Figure 21, there
is good agreement between ideal, simulated and measurement results above 1kHz. Any
discrepancy between these results occurs at frequencies below 1 KHz which is not in the
operation frequency range of the proposed circuit and is due to the combined non idealities
from AD844s. A time-domain analysis for the BP filter is given in Figure 22 in which a
sinusoidal input voltage with 1 V peak-to-peak at f = f 0 is applied.
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As it is shown in Figures 6–8 and Figures 10–15 (SPICE simulations) as well as
Figures 19, 21 and 22 (experimental verifications), the achieved time- and frequency-domain
performances using the proposed SI are very close to ideal ones.

6. Conclusions

A new implementation for the SI based on a single VCII± is proposed. It is composed
of one VCII± ABB, two resistors and one grounded capacitor that is attractive for IC
fabrication. The prominent feature of the presented work is its low series impedance.
As a result, it has the property of improved low-frequency performances. However, it
is restricted with a single resistive matching condition. To test the functionality of the
proposed circuit, it is used in the realization of a standard fifth-order HP ladder filter and a
second-order BP filter. Simulation and experimental results approach to ideal ones but an
unimportant difference arises from non-idealities of the VCII±.

Author Contributions: Conceptualization, S.M. and E.Y.; methodology, E.Y. and L.S.; software, E.Y.
and L.S.; validation, G.B. and E.Y.; formal analysis, E.Y., L.S. and S.M.; investigation, L.S.; resources,
L.S. and G.F.; data curation, G.B. and E.Y.; writing—original draft preparation, E.Y.; writing—review
and editing, G.F., S.M. and V.S.; visualization, G.B. and E.Y.; supervision, G.F., V.S. and S.M.; project
administration, G.F., V.S. and S.M.; funding acquisition, G.F. and V.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Antoniou, A. Gyrators using operational amplifiers. Electron. Lett. 1967, 3, 350–352. [CrossRef]
2. Maundy, B.; Gift, S.J.G. Active Grounded Inductor Circuit. Int. J. Electron. 2011, 98, 555–567. [CrossRef]
3. Hamad, A.R.; Ibrahim, M.A. Grounded Generalized Impedance Converter Based on Differential Voltage Current Conveyor

(DVCC) and Its Applications. ZANCO J. Pure Appl. Sci. 2017, 29, 118–127. Available online: https://zancojournals.su.edu.krd/
index.php/JPAS/article/view/1121 (accessed on 8 June 2021).

4. Yüce, E.; Minaei, S. On the Realization of Simulated Inductors with Reduced Parasitic Impedance Effects. Circuits Syst. Signal
Process. 2009. [CrossRef]

5. Fabre, A. Gyrator Implementation from Commercially Available Transimpedance Operational Amplifiers. Electron. Lett. 1992, 28,
263–264. [CrossRef]

6. Yuce, E. Novel Lossless and Lossy Grounded Inductor Simulators Consisting of a Canonical Number of Components. Analog.
Integr. Circuits Signal Process. 2009, 59, 77–82. Available online: https://link.springer.com/article/10.1007/s10470-008-9235-0
(accessed on 1 May 2021).

7. Yuce, E.; Minaei, S. Commercially Available Active Device Based Grounded Inductor Simulator and Universal Filter with Im-
proved Low Frequency Performances. J. Circuits Syst. Comput. 2017, 26, 1750052. Available online: https://www.worldscientific.
com/doi/abs/10.1142/S0218126617500529 (accessed on 1 May 2021).

http://doi.org/10.1049/el:19670270
http://doi.org/10.1080/00207217.2010.547807
https://zancojournals.su.edu.krd/index.php/JPAS/article/view/1121
https://zancojournals.su.edu.krd/index.php/JPAS/article/view/1121
http://doi.org/10.1007/s00034-008-9093-0
http://doi.org/10.1049/el:19920162
https://link.springer.com/article/10.1007/s10470-008-9235-0
https://www.worldscientific.com/doi/abs/10.1142/S0218126617500529
https://www.worldscientific.com/doi/abs/10.1142/S0218126617500529


Electronics 2021, 10, 1693 14 of 15

8. Sedra, A.; Smith, K. A Second-Generation Current Conveyor and Its Applications. IEEE Trans. Circuit Theory 1970,
17, 132–134. [CrossRef]
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