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Abstract: A deep collaborative learning approach is introduced in which a chain of randomly wired
neural networks is trained simultaneously to improve the overall generalization and form a strong
ensemble model. The proposed method takes advantage of functional-preserving transfer learning
and knowledge distillation to produce an ensemble model. Knowledge distillation is an effective
learning scheme for improving the performance of small neural networks by using the knowledge
learned by teacher networks. Most of the previous methods learn from one or more teachers but not in
a collaborative way. In this paper, we created a chain of randomly wired neural networks based on a
random graph algorithm and collaboratively trained the models using functional-preserving transfer
learning, so that the small network in the chain could learn from the largest one simultaneously. The
training method applies knowledge distillation between randomly wired models, where each model
is considered as a teacher to the next model in the chain. The decision of multiple chains of models
can be combined to produce a robust ensemble model. The proposed method is evaluated on CIFAR-
10, CIFAR-100, and TinyImageNet. The experimental results show that the collaborative training
significantly improved the generalization of each model, which allowed for obtaining a small model
that can mimic the performance of a large model and produce a more robust ensemble approach.

Keywords: randomly wired neural networks; model distillation; ensemble model; deep learning

1. Introduction

Deep learning has shown powerful performance on many computer vision tasks, such
as object recognition [1–3]. However, training a single model is not usually enough to reach
state-of-the-art performance. Ensemble learning is one of the solutions to gain high accuracy
and a more generalized model. An ensemble of deep learning models typically follows
the traditional approaches, i.e., training several deep learning models individually from
scratch. However, this strategy is computationally expensive and missing collaboration
among the individual models.

Another key development in the recent advances in deep learning is the network ar-
chitecture. Designing network architecture is mainly hand-crafted based on experience and
a great deal of trial and error. Models are moved from sequentially increasing the number
of convolutional layers to change the wiring patterns as in ResNet [3] and DenseNet [4].

Furthermore, neural architecture search (NAS) [5] has evolved to automatically design
the neural networks by optimally searching for the number of layers, the operation of each
layer, and the wiring patterns between them. However, this is a very time-consuming
process and computationally expensive. Recently, new models based on randomly wired
architectures [6] achieved competitive performance to the hand-designed models. In this
paper, we propose to build a deep learning model based on randomly wired patterns.

The training of deep learning models is a challenge since the gradient descent methods
do not guarantee to converge to a global minimum. Many collaborative techniques have
been introduced to boost the overall accuracy and obtain a more robust local minimum
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than a single model can. The collaboration between deep learning models could have
different forms, such as parameter sharing, auxiliary training, model distillation, and
function-preserving transfer learning. In parameter sharing, different models share weights
during training.

These models could form a tree-like architecture [7]. However, these models have
limited flexibility in terms of neural architecture. The auxiliary training is performed
by adding auxiliary classifiers to some intermediate layers of a very deep network [1].
However, it was shown [8] that auxiliary classifiers had no clear improvement in accuracy
or convergence. In model distillation [9] and function-preserving transfer learning [10,11],
the knowledge learned by one model is transferred to another model to facilitate the
training process.

The main difference is in the method of transfer learning. Model distillation is usually
used in compression by transferring knowledge from a large network to a smaller one
in order to improve the performance of the smaller (i.e., student) network. In contrast,
function-preserving transfer learning attempts to learn a large network from a smaller
one with function-preserving. However, these methods require separate training phases
without collaboration that cause more training time to have a very large teacher model.

Recently, co-distillation or online distillation techniques [12–15] have been more
attractive since these simplify the training process to a single-stage, where a group of
models is trained simultaneously to learn from the ground-truth and distill knowledge
from each other. This enables the deployment of small robust models on small devices,
such as mobile phones or other edge devices. In this paper, a novel co-distillation technique
is introduced to effectively train a set of randomly wired neural networks.

We propose deep collaborative learning for training models that are sharing some
parts of the network architecture. Deep collaborative learning (DCL) aims to train two
or more deep learning models in a collaborative way such that each model is sharing
its knowledge with at least one other model for better generalization in contrast to the
traditional methods, which train all the models individually before integrating the decisions
of each model. We create a chain of random neural network models that are simultaneously
trained to solve the task together. Each model is working as a teacher to the next model in
the chain.

The collaborative training is achieved by transferring knowledge with function-
preserving from the model labeled as a teacher after training for a few iterations to the
next model labeled as a student, which continues until the end of the chain. The whole
process is repeated until the training of each model is converged. This training strategy
significantly improved the performance of each model in the chain compared to training
each model individually. Figure 1 shows the components of the proposed system.

Data Collection
Random Models 

Generator
Mapping to 

Neural Networks
Collaborative 

training

Need more Models? Ensemble Model

Model distillation

NoYes

Figure 1. The components of the proposed system. First, we collect the training labeled data. Second,
a chain of randomly wired models is created. Third, the models are mapped to neural networks and,
then, trained collaboratively. Finally, we produce a set of models that are co-distillation. We could
also produce a multiple set of random models and combine them to form a robust ensemble model.

The main contributions of this paper can be summarized as follows. First, the paper
provides a novel way to create an ensemble model generated from a random graph al-
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gorithm. The proposed method is different from all existing ensemble methods, which
are either based on traditional approaches, such as bagging, or implicitly creating an en-
semble, such as dropout. Second, the paper provides a novel way to train the generated
ensemble model by introducing collaboration between models. This shows significant
improvement of the training models compared to the independent training of models.
Third, the paper provides a novel model distillation approach in which the smallest model
has a similar performance to the largest model in the generated model chain with a much
smaller number of parameters. Fourth, the experiments are accomplished on three datasets
(CIFAR-10, CIFAR-100, and TinyImageNet) to validate and show the significance of the
proposed method.

The rest of this work is structured as follows. In Section 2, the related work is
introduced. Section 3 explains the details of the proposed method. The experimental
results and discussion are provided in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

Ensemble learning is traditionally used to improve the overall generalization of the
machine learning model by combining a set of diverse models to make the final decision.
The diversity among the models could be injected by using different sub-sampling of the
training data or stacking different models together. However, these general ensemble
strategies are not taking deep learning capabilities into account.

Creating an ensemble of deep learning models can be categorized into implicit and
explicit ensemble approaches. In explicit ensemble approaches, a set of deep models is
explicitly created and trained separately. In order to improve the training process, in [16],
the authors introduced the MotherNets model where a mother model was created from an
ensemble by capturing the structural similarity and trained from scratch. Then, the learned
model was transferred to the ensemble using function-preserving transformations. The
models in the ensemble were then trained using bagging. However, the accuracy of each
model was degraded compared to the MotherNets at the beginning of training and needs
several iterations to recover.

Our method is close to this one. However, we introduce collaborative learning to
train all models simultaneously. This strategy shows a significant improvement in the
performance of each model. In [12], the authors proposed a deep mutual learning (DML)
method to train an ensemble of models by adding a loss function to match the class
posterior probability of all models in the ensemble. In this paper, we propose transfer
learning with functional-preserving as a way of communication between models.

In implicit ensemble approaches, an ensemble is generated by training a single model
with multiple training options. Dropout [17] is implicitly creating an ensemble of different
sub-networks of a single model by dropping out a set of hidden nodes randomly on each
iteration during training. DropConnect [18] works similarly, but it drops out weights
instead of nodes during training. Then, the stochastic depth method [19] is proposed,
which shortens the network during training by randomly dropping layers instead of nodes
or weights and replacing them with identity functions. This implicitly creates an ensemble
of networks with different depths during the testing time.

Recently, Snapshot ensemble [20] was introduced to generate an explicit ensemble
from a single training process by tacking snapshots at various local minima produced
by using a cyclic annealing schedule. The implicit ensemble is usually seen as a regu-
larization method to reduce overfitting. Moreover, it can be used along with an explicit
ensemble approach.

Knowledge distillation refers to training a smaller model (i.e., a student) to mimic
the performance of a large model or an ensemble (i.e., a teacher). The student model is
trained with an additional loss function to prompt the model to be identical to the teacher
model. Various distillation methods have been introduced to examine different types of
loss functions [21,22], different forms of teacher model [23,24], and the best way to train
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the student model [25,26]. For example, in [27], the authors introduced an approach (called
AvgMKD) to distill knowledge from multiple teachers.

They integrated softened outputs of each teacher equally and imposed constraints
on the intermediate layers of the student models using the relative dissimilarity learned
from the teacher networks. However, by treating each teacher equally, the differences
between teacher models could be lost. In [14], authors proposed an adaptive multi-teacher
knowledge distillation method (named AMTML-KD) that extended the previous method
by adding an adaptive weight for each teacher model and transferring the intermediate-
level knowledge from hidden layers of the teacher models to the student models.

Another distillation variant is co-distillation [12,13] where the teacher and student had
the same network architecture and were trained in parallel using distillation loss before any
model converged. It has shown improvement in the speed of model training and its accuracy.
Zhang’s method [12] can be seen as co-distillation of models that have different architectures.
Our proposed method can be seen as the co-distillation of randomly generated models, but the
distillation method is using transfer learning instead of an extra loss function.

Knowledge transfer is another student–teacher paradigm, where the knowledge is
transferred by passing the parameters of each layer of a trained teacher model to the stu-
dent model as initialization before beginning training the student model. The knowledge
is transferred from a smaller model to a larger model with function preserving transforma-
tions to accelerate the training of the student model. The expansion of the student network
can be achieved by increasing its depth, width, or kernel size. Net2Net [10] expands the
depth of the teacher model by adding new layers with identity functions, while Network
Morphism [11] derives the new kernels after expanding the model that preserves the
function of the teacher model.

In this paper, we used knowledge transfer to train the the models generated by
a random graph algorithm. We construct a chain of random-based models and train
collaboratively with function-preserving transformations where each model is working as
a teacher model to the next model in the chain. The knowledge transfer allows us to train
each model in the chain based on the knowledge of each other and, therefore, go beyond
the local minima.

3. Proposed Method

Figure 2 shows an overall view of the proposed system. We creat a set of chains of
randomly wired neural network models. In each chain, a large random model is defined
based on a random graph algorithm and then iteratively pruned to create a set of small
random models. These models are mapped to neural networks and trained collaboratively
using functional-preserving transfer learning. Finally, the models in all chains are combined
to form a robust model.

Ensemble

Random Wire
 Model1,2

Random Wire
 Model1,C

Random Wire
 Model1,1 ...

Random Wire
 Model2,2

Random Wire
 Model2,C

Random Wire
 Model2,1 ...

Random Wire
 ModelN,2

Random Wire
 ModelN,C

Random Wire
 ModelN,1 ...

... ......

Input Output

Figure 2. The proposed system overview. First, multiple sets of a chain of randomly wired models are created. These
models are mapped to neural networks and trained collaboratively using functional-preserving transfer learning. Finally,
the models in all chains are combined to form a robust ensemble model.
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3.1. Randomly Wired Neural Networks

Finding the optimal neural network architecture is challenging and usually requires
careful hand designing of neural network blocks. Defining how network wiring is achieved
is one of the reasons for the recent advances of deep learning models. Early deep learning
models have series-like wiring where a set of convolutional blocks are connected sequentially.

Each convolutional block has one or more convolutional layers with non-linear activa-
tion functions and is followed by a pooling layer for spatial downsampling. By exploring
more in connectivity patterns, models, such as ResNet and DenseNet, have achieved
superior performances in many computer vision tasks. Another way to investigate the
wiring patterns is by using NAS to search for both the wiring and operation in each block.
However, the wiring patterns in all these models are manually designed, and the searching
space is limited to a small subset of all possible connections. In this paper, we adopted a
randomly wired method [6] to generate network architecture.

In randomly wired neural networks, the wiring patterns between neural network
blocks are generating based on a random graph algorithm. First, the method generates a
random graph based on one of these algorithms: Erdos-Renyi (ER) [28], Barabasi-Albert
(BA) [29], or Watts-Strogatz (WS) [30]. This graph is composed of a number of nodes and
edges between them without any restriction about how the graph is generated. Then, the
generated graph is mapped to functional neural networks and finally trained on the input
data. In this paper, we used the WS model to generate a random graph. The WS model
generated a graph that had small-world network properties.

This works by creating a ring network of N nodes where each node is connected to
its nearest K neighbors that are equally distributed on both sides of the node, followed
by probabilistic rewiring the rightmost edges of every node in the graph to the target
node. Rewiring is achieved by uniformly selecting a random target node without creating
any self-loop or duplicated edge. The generated random graph is converted to a directed
graph by simply making the edge direction from the node that has the lower-index to
the higher-indexed node where each node has an index that is assigned sequentially in
clockwise order.

In the mapped neural networks, the edges of the generated random graph define the
direction of data flow in the neural network. Each node corresponds to a convolutional
block that consists of four layers: ReLU activation, 2D-convolution, batch normalization,
and dropout. The convolutional operation is performed by a 3× 3 kernel. The output
feature map xj at node ` is defined by convolving kernel k`i,j with the aggregated input

feature map x`i as follows:
x`j = ∑

i
x`i ∗ k`i,j + b`j (1)

where b`j is the bias term. The feature maps generated by the convolution operation go
through batch normalization for better regularization. Batch normalization is normalizing
the feature maps with the mean and standard deviation of the mini-batch. The dropout
layer is helpful in reducing the over-fitting problem by randomly removing a specified
proportion of nodes during training the network. Any node has one or more input and
also one or more output edges. The input of each node is aggregated as a weighted sum of
all the input feature maps xn where weights wn are positive and learnable parameters and
then go through ReLU activation σ as follows:

x` = σ(∑
n

xn · wn) (2)

ReLU returns zero if it receives a negative value or the input value itself otherwise.

σ(z) = max(0, z) (3)

The output edges are carried by the same copy of the computations accomplished by
the node. The random graph could have some input nodes and some output nodes. To
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maintain the data flow, each input node receive the same data that comes from the previous
layer or stage. For the output nodes, an average of all the output nodes is computed and
transferred to the next stage in the full neural network model.

The deep learning model usually consists of many stages that gradually decrease
the size of the feature map. Here, each stage is represented by a random graph that is
stacked together to form the model. Figure 3 shows the architecture of a randomly wired
neural network. It starts with one 3× 3 convolutional layer, batch normalization, and
convolutional block. Then, for each stage, a random graph is generated and mapped to
the neural network space. The final layers are a 1× 1 convolutional block, global average
pooling, and a softmax layer. The softmax layer is defined by applying the exponential
function to each element zi of the input vector z and normalizing the result:

f (z)i =
ezi

∑K
j=1 ezj

(4)

where K is the number of classes. The number of filters is gradually increased, starting
from 78 for the first two convolutional layers, and then the number is increased by a factor
for each stage. The number of filters is set to 1280 at the final convolutional layer before the
global average pooling.
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Figure 3. The architecture of a randomly wired neural network.

3.2. Deep Collaborative Learning

DCL refers to a set of deep learning models that are collaboratively learning from each
other. DCL includes three concepts creating function-preserving models, swapping teacher–
student training, and forming an ensemble model. First, a chain of deep random models is
created based on the idea of function preserving transformations across models. This chain
of deep random models is generated from one large random deep model by iteratively
removing nodes from the previous model in the chain. The chain-like construction allows
transferring knowledge previously acquired by a smaller model to a larger one to improve
the performance of each other.

The models in the chain are trained together using teacher–student learning to reduce
the degradation of the knowledge transfer. Each model is working as a teacher to the
next model in the chain, where the smallest model is at the beginning of the chain and
the largest model is at the end. A set of chains of models can be combined to build an
ensemble model that improves the final performance on different image classification tasks.
The ensemble of chains differs from traditional ensemble methods.
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First, it requires a lower number of models to achieve decent results. The diversity
between models is achieved by a simple change in the model architecture compared to
using data sub-sampling techniques or having more complex architecture, and finally our
ensemble model can converge faster than the traditional ensemble methods.

3.2.1. Function-Preserving Models

The idea of function-preserving transformations has been introduced in Net2Net and
Network morphism [10,11] where a teacher model (i.e., small model) was fully trained on
the training set and then transferred its knowledge to a student model (i.e., large model)
that preserved the same functionally of the teacher model. The student model could be
larger than the teacher model in the number of feature maps (i.e., wider), the number of
layers (i.e., deeper), or increasing the kernel size. However, these methods were applied to
hand-designed deep learning models that were trained separability without collaboration.
In this paper, we propose function-preserving transformation in chain-like random deep
models that are collaborative learning.

We started by generating a large random graph model with N nodes and iteratively
pruning nodes from the random graph until reaching the base graph to create a chain of
models. The pruned node was selected randomly from any graph node except the output
nodes. Since the graph may have many input nodes, the input nodes can be pruned. The
edges of the pruned node that connect to its input and outputs nodes were also removed.
In order to maintain the graph structure, new edges were defined to connect the input and
output nodes of the pruned one directly if there was no existing connection.

These new edges were added to both the pruned graph and all the previous graphs to
assure that the pruned (i.e., smaller) graph was a part of the all larger graphs to facilitate
the function-persevering transfer learning. The pruned node is now considered as a newly
added node in the original graph. This new node was added as an input to some existing
nodes according to the edges between them. Equation (2) can be redefined as:

x` = σ(∑
n

xn · wn + xnew · wnew) (5)

where xnew is the feature map of the new node, and wnew is the weight. The wnew is initially
set to zero; however, it is learnable during the training process.

The created new graph is now the same as the original graph but without the pruned
nodes and its connections. The pruned graph has a number of nodes equal to N − 1. The
process was repeated until reaching the base graph, which is the graph with the smallest
number of nodes. The chain generator algorithm is given in Algorithm 1. After creating
the chain of random graphs, this was mapped to deep learning models as described in
Section 3.1. Figure 4 shows a demo of a chain of random models. Here, a random graph of
six nodes was created and iteratively pruned one node each time (two times).
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Figure 4. An example of a chain of random models. (a) The first generated random graph has six
nodes and one input (number 0) and one output (number 5). (b) The random graph after removing
node number 1. (c) The random graph after removing node number 4. The compensating edges
(shown in red color) will be added later to all previous graphs.

Algorithm 1: Generate a chain of random models
Input : N: number of nodes; C: chain length; S: number of stages
Output : A chain of random graph
for i← 1 to S do

Generate a random graph G with N nodes.
E[i][1] = G; t=1
while t < C do

t = t + 1;
Randomly pick one node P from the graph that satisfy selection condition.
Identify the input nodes Pin and output nodes Pout of node P.
Create new edges between Pin and Pout and set to D.
Prune node P and its input and output edges.
Create new graph Gtmp from the remaining nodes and edges.
E[i][t] = Gtmp
Update edges of graphs E[i][t− 1], . . . , E[i][1] by D.

3.2.2. Collaborative Learning

In our method, the chain of models is trained jointly and in a collaborative way.
Starting from the base model, each model in the chain is working as a teacher to the next
model until reaching the largest model at the end of the chain. The learning is accomplished
in a close loop where the last model passes its knowledge to the first model, and this process
is repeated until the training convergence. The collaborative learning strategy is to transfer
the knowledge of the model gained after a few epochs of training to the next model. Since
the teacher model is already included in the student model, this transfer learning with
function-preserving is possible.

The neural network blocks in both models are mapped based on matching nodes
between the two random graphs that the models are built accordingly. Initially, all the
edge weights are set to zero and convolutional kernels are randomly defined. After a few
epochs, all the learned edge weights and kernels are copied to the next model to be trained
for a few epochs and so on. This is repeated until training convergence, where each model
has resumed its training from the last epoch reached.

The collaborative training algorithm is presented in Algorithm 2. The list of random
graphs E needs to be inverted; therefore, we begin training with the smallest model.
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The function MappingNN(E) takes the random graphs and converts them to the neural
network models as discussed in Section 3.1. Each model is trained for a few epochs and
then transfers its weights to the next model. Ep is set to five epochs, and the total number
of epochs T is 60.

Algorithm 2: Deep Collaborative Learning
Input : E: A chain of random graphs; Ep: Epoch interval; T: total number of

epochs
Output : A chain of trained models
E = E.Reverse
NetList← MappingNN (E)
InitialEpoch = 0
for j← 1 to T/Ep do

CurrentEpoch← InitialEpoch + Ep;
for i← 1 to NetList.length do

NetList[i]← TrainingNN (NetList[i]; InitialEpoch; CurrentEpoch)
if i 6= NetList.length then

TransferWeights (NetList[i], NetList[i + 1])
else

TransferWeights (NetList[i], NetList[1])

InitialEpoch = InitialEpoch + Ep;

3.2.3. Ensemble Model

Training the chain of collaborative deep random models leads to a better and faster
converge for each model. However, it tends to make the models produce similar results
because of the function-preserving transformations that share all the knowledge learned
by one model to the other models. The ensemble model requires a set of diverse models
to produce an effective result. Here, we created a set of small chains of models and
combine them together. Each minimum chain contained three models that were trained
collaboratively using the DCL method.

This strategy significantly improved the ensemble performance of the chains of ran-
dom models. Each model had a softmax layer to produce the probability output of each
class. The last step was combining the output of all models in the chain to produce the
final decision. Many combination techniques can be used, such as sum rule, product rule,
majority voting, and stacking. Here, we compare sum rule, product rule, and majority
voting, as these methods have no parameters and do not require any further training. The
product rule is multiplying the output probabilities of each model.

M

∏
i

f (zi) (6)

where M is the total number of models in the ensemble. The sum rule has a more relaxed
behavior by taking the sum instead of the multiplication.

M

∑
i

f (zi) (7)

The majority voting is similar to the sum rule, but it adds a vote to each class based on
the model prediction.

M

∑
i

vi (8)

where vi is a binary vector that contains 1 to the chosen class by the model and zero
otherwise. It is hard voting as no final probability is computed for each class.
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4. Results and Discussion
4.1. Datasets & Implementation Details

The proposed method is evaluated on 3 datasets for image classification: CIFAR-10,
CIFAR-100, and TinyImageNet. CIFAR-10 and CIFAR-100 datasets consist of 50K training
images and 10K testing images associated with 10 and 100 class labels, respectively. Each
image is in RGB format and has a dimension of 32× 32 pixels. TinyImageNet classifica-
tion [31] is similar to the classification challenge of the ImageNet [32] with 200 classes for
training. Each class has 500 training images. TinyImageNet includes 100K training images
and 10K testing images. The images are colored with dimensions of 64× 64 pixels.

For all datasets, we used the same experimental settings as follows. We set the mini-
batch size to 100, the total number of epochs to 60, and the initial learning rate to 0.1.
The learning rate dropped by 0.1 every 20 epochs. The data augmentation is utilized by
including horizontal flips, randomly shift images horizontally and vertically, and randomly
rotate images. We run the experiments five times and report the best result.

4.2. Results on CIFAR-10, CIFAR-100, and TinyImageNet

We conducted several experiments to compare between training the generated chain of
models with and without deep collaborative learning. We evaluated the proposed method
as a knowledge distillation model and compared it with the state-of-the-art-methods. We
also compared our collaborative learning method with the MotherNets method [16], and
finally, the proposed method was assessed as an ensemble model.

In the first experiment, a chain of three models was defined by iteratively pruning one
node from each stage of the initial generated random graphs as described in Algorithm 1.
Each model had two stages with 16 initial nodes, and the number of filters was increased
by a factor of 3. The first and the second row in Table 1 report the results when the chain of
models trained independently and with the DCL. The first model (i.e., number 1) in the
chain refers to the smallest model and the last model (i.e., number 3) refers to the largest
model in terms of the number of nodes.

Table 1. A comparison between independent training, MotherNets, and DCL between models on
CIFAR-10, CIFAR-100, and TinyImageNet.

CIFAR-10 CIFAR-100 TinyImageNet

1 2 3 1 2 3 1 2 3

Independent 93.84 94.13 93.88 76.12 75.44 75.55 57.59 57.18 57.49

DCL 95.28 95.24 95.38 76.98 77.05 77.02 60.54 60.42 60.79

MotherNets [16] 93.85 93.58 94.08 76.73 76.17 74.95 57.40 56.51 57.63

The proposed collaborative learning significantly improved the performance of each
model in the chain compared to the individual training of each model. DCL improved the
average accuracy of each model by 1.35%, 1.31%, and 3.16% on CIFAR-10, CIFAR-100, and
TinyImageNet, respectively. For example, the third model in the chain had an accuracy
of 95.38%, 77.02%, and 60.79% on CIFAR-10, CIFAR-100, and TinyImageNet, respectively,
compared to 93.88%, 75.55%, and 57.49% for the independent training.

Next, we compared between the DCL and the MotherNets [16] as shown in Table 1
rows 2 and 3. In MotherNets, the first model was fully trained and considered as the
mother model so that it transfered its learning to the rest of the models. The DCL had a
significant improvement over MotherNets. For example, the accuracy of the second model
in that chain was 95.24%, 77.05%, and 60.42% on CIFAR-10, CIFAR-100, and TinyImageNet,
respectively, compared to 93.58%, 76.17%, and 56.51% using MotherNets. The MotherNets
models had a limited improvement compared with the independent training.

To show the advantage of the proposed method as a model distillation, we trained
a chain of six models based on two random graphs (i.e., one per stage) of 16 nodes on
CIFAR-10 and CIFAR-100 as shown in Table 2. The smallest model (i.e., model no. 1) had
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34% fewer parameters and approximated floating-point operations (FLOPS) compared
with the largest model (i.e., model no. 6).

The DCL demonstrated significant improvement in the accuracy of each model. For
CIFAR-10, The accuracy of models 1, 2, and 6 using the DCL was 94.81%, 94.99%, and
95.10% compared to 93.73%, 94.00%, and 93.80% for the independent training models. The
accuracy difference between the first and the last model in the DCL trained chain was only
0.29% with 34% less in the number of parameters of the first model compared to the last
model. While the accuracy difference between the second and the last model was 0.11%,
and the second model had 31% less in the number of parameters.

DCL showed a significant advantage as a model distillation by transferring the knowl-
edge between models with different sizes of parameters. For CIFAR-100, The DCL models
1, 2, and 6 had an accuracy of 76.96%, 77.10%, and 77.45% compared to 74.78%, 74.52%, and
75.44% using the independent training of each model. The accuracy difference between the
first and the last model and between the second and the last model was 0.49% and 0.35%,
respectively.

Table 2. Evaluation of DCL and independent training on CIFAR-10 and CIFAR-100 using a chain of
six random models.

CIFAR-10 CIFAR-100

Models Parameters FLOPS Independent DCL Independent DCL

1 41M 7.35× 108 93.73 94.81 74.78 76.96

2 43M 8.24× 108 94.00 94.99 74.52 77.10

3 47M 9.12× 108 93.81 94.99 75.14 77.64

4 52M 9.48× 108 93.73 94.89 75.50 77.53

5 57M 1.03× 109 94.19 95.12 75.48 77.38

6 62M 1.12× 109 93.80 95.10 75.44 77.45

The proposed method was compared to three knowledge distillation methods; DML [12],
AvgMKD [27], and AMTML-KD [14] as shown in Table 3. Each method was used to train
three student models on the CIFAR-10, CIFAR-100, and TinyImageNet datasets. DML
trained three student networked collaboratively to learn with each other and without
using any teacher models. AvgMKD and AMTML-KD used three teacher models based on
ResNet, VGG-19, and DenseNet. Table 3 reports the accuracy difference before and after
using the knowledge distillation method.

The performance of the proposed method outperformed other state-of-the-art methods.
On CIFAR-10, the proposed DCL method increased the accuracy of student model 1, 2 and
3 by 1.44%, 1.11%, and 1.50%, respectively, compared to 0.41%, 0.23%, and 0.05% for DML,
0.72%, 0.61%, and 0.35% for AvgMKD, and 1.35%, 1.18%, and 0.99% for AMTML-KD. On
CIFAR-100, The DCL method achieved an average improvement of 1.31% compared to
0.37%, 0.78%, and 1.53% for DML, AvgMKD, and AMTML-KD, respectively. The AMTML-
KD was slightly better than the DCL for the first student model only. On TinyImageNet,
The DCL method significantly improved the performance of all student models. The
average accuracy difference of DCL was 3.16% compared to 0.47%, 0.75%, and 1.42% for
DML, AvgMKD, and AMTML-KD, respectively.
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Table 3. A comparison between state-of-the-art distillation methods and DCL on CIFAR-10,
CIFAR-100, and TinyImageNet. The values denote the accuracy difference between the baseline
model and the distillation model.

CIFAR-10 CIFAR-100 TinyImageNet

1 2 3 1 2 3 1 2 3

DCL 1.44 1.11 1.5 0.86 1.61 1.47 2.95 3.24 3.30

DML [12] 0.41 0.23 0.05 0.30 0.37 0.44 0.68 0.33 0.40

AvgMKD [27] 0.72 0.61 0.35 0.95 0.71 0.69 0.93 0.68 0.65

AMTML-KD [14] 1.35 1.18 0.99 1.70 1.56 1.34 1.57 1.40 1.30

The ensemble model was tested using different combination techniques: sum rule
(SR), product rule (PR), and majority voting (MV), as shown in Table 4. Two chains of
random models were trained independently and using DCL. These chains were based on
a random graph of eight nodes and contained two stages. The increasing factor of filters
was set to 2 for the first chain and 3 for the second one. The PR and SR showed better
performance compared to MV.

For example, the results of the ensemble using PR of DCL models were 62.48%, 76.70%,
and 94.76% on CIFAR-10, CIFAR-100, and TinyImageNet, respectively, compared to 62.19%,
76.42%, and 94.69% for using SR and 60.47%, 75.48%, and 94.51% for using MV. Here,
we used PR to report the results of the ensemble model. The accuracy of the ensemble
of models trained independently (94.16%, 76.66%, and 60.56% on CIFAR-10, CIFAR-100,
and TinyImageNet, respectively) was much higher than each model in the chain (the best
results were 93.87%, 74.53%, and 58.77%).

These results indicate that a small change in the model architecture improved the
diversity between the models and, therefore, the ensemble accuracy. The ensemble of DCL
models demonstrated better performance compared with the ensemble of independent
models. The results of the DCL ensemble on CIFAR-10, CIFAR-100, and TinyImageNet
were 94.76%, 76.70%, and 62.48% compared to 94.16%, 76.66%, and 60.56% for the ensemble
of independent training models. Table 4 also shows the accuracy of each individual model
with and without DCL. The collaborative learning of a small set of models significantly
enhanced the accuracy of each model over the independent training.

Table 4. A comparison of an ensemble of DCL models and independent models on CIFAR-10, CIFAR-100, and TinyImageNet.

Chain of Models 1 Chain of Models 2

1 2 3 1 2 3 MV SR PR

CIFAR-10 Independent 92.40 92.89 93.37 93.64 93.08 93.87 94.19 94.24 94.16
DCL 93.54 94.11 93.92 94.13 94.64 94.46 94.51 94.69 94.76

CIFAR-100 Independent 71.31 72.50 72.65 74.53 74.11 74.48 76.19 76.55 76.66
DCL 72.54 73.22 73.26 75.21 75.74 75.44 75.48 76.42 76.70

TinyImageNet Independent 53.04 54.14 55.47 56.98 57.73 58.77 59.88 60.65 60.56
DCL 56.6 57.65 57.63 60.36 60.85 60.36 60.47 62.19 62.48

In the next experiment, we examined a different number of models to form an ensem-
ble on CIFAR-10, CIFAR-100, and TinyImageNet, and we report the ensemble accuracy of
the independent training and DCL in Table 5. The ensemble of DCL models was signifi-
cantly higher than the independent training of models on the CIFAR-10, and TinyImageNet
datasets. The models in the ensemble were created by changing the number of nodes, the
number of filters, and/or the number of stages.

We started with a simple configuration of the ensemble by setting the number of
stages to 2, the number of nodes to 8, and the increasing factor of filters to 2. Then, we
gradually changed these parameters to increase the number of models in the ensemble.
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The increasing factor of filters was altered between 2 and 3. The number of nodes was
increased to 16 and 32, and later the number of stages was set to 3. Note, each configuration
resulted in three models that were trained collaboratively using DCL.

On CIFAR-10, the best result of DCL was reached with an ensemble of 18 models
(95.84%) compared to the independent training (94.82%). On CIFAR-100, the accuracy of
an ensemble of 15, 18, and 21 DCL models was 79.31%, 79.57%, and 79.71%, respectively.
For the independent training, the ensemble accuracy was 78.12%, 78.28%, and 78.19%,
respectively.

On TinyImageNet, the DCL significantly improved the accuracy of the ensemble.
The accuracy of an ensemble of 9, 15, and 21 DCL models was 63.55%, 65.08%, and
66.39% compared to 61.18%, 61.90%, and 62.02% for the independent training, respectively.
Figure 5 shows the training and validation accuracy on CIFAR-10 of the ensemble of six
independent training and DCL models (using 32 nodes). DCL had significantly better
accuracy for training and validation and converged faster than independent training.

Table 5. Evaluation of different sizes of DCL model ensembles on CIFAR-10, CIFAR-100,
and TinyImageNet.

Number of Models

6 9 12 15 18 21

CIFAR-10 Independent 94.16 94.63 94.75 94.83 94.82 94.77
DCL 94.76 95.18 95.47 95.60 95.84 95.77

CIFAR-100 Independent 76.66 77.46 77.90 78.12 78.28 78.19
DCL 76.70 77.67 78.81 79.31 79.57 79.71

TinyImageNet Independent 60.56 61.18 61.70 61.90 61.64 62.02
DCL 62.48 63.55 64.77 65.08 65.04 66.39
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Figure 5. Training and validation accuracy of the ensemble of six independent training and DCL
models on CIFAR-10.

5. Conclusions

We presented a deep collaborative method for training a chain of randomly wired
neural networks to improve the performance of each model. The proposed method can be
used to produce a strong ensemble model and to achieve a robust knowledge distillation.
We created a large randomly wired deep learning model based on a random graph and
iteratively pruning nodes to create a chain of function-preserving models. The chain of
models was trained collaboratively by using transfer learning.

The proposed training method resulted in the smallest model in the chain having a
similar performance to the largest model. The proposed method was evaluated on the
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CIFAR-10, CIFAR-100, and TinyImageNet datasets. The experimental results showed the
effectiveness of the proposed method as a model distillation and an ensemble model. In
the future, we will extend our method to other recognition tasks and explore more training
techniques and design patterns that may lead to more powerful networks.
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